
Design and Evaluation of a Multi-Recommendation
System for Local Code Search

Xi Gea, David C. Shepherdb, Kostadin Damevskic, Emerson Murphy-Hilld

aApple Inc., Cupertino, CA, USA
bABB Corporate Research, Raleigh, NC, USA

cDepartment of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
dDepartment of Computer Science, North Carolina State University, Raleigh, NC, USA

Abstract

Searching for relevant code in the local code base is a common activity dur-
ing software maintenance. However, previous research indicates that 88% of
manually-composed search queries retrieve no relevant results. One reason that
many searches fail is existing search tools’ dependence on string matching algo-
rithms, which cannot find semantically-related code. To solve this problem by
helping developers compose better queries, researchers have proposed numerous
query recommendation techniques, relying on a variety of dictionaries and algo-
rithms. However, few of these techniques are empirically evaluated by usage data
from real-world developers. To fill this gap, we designed a multi-recommendation
system that relies on the cooperation between several query recommendation tech-
niques. We implemented and deployed this recommendation system within the
Sando code search tool and conducted a longitudinal field study. Our study shows
that over 34% of all queries were adopted from recommendation; and recom-
mended queries retrieved results 11% more often than manual queries.

Keywords:

1. Introduction

Many programming tasks start with a search [1, 2]. However, searching code
is difficult for developers: many are forced to use out-of-date tools, like regu-
lar expression based search tools, to search millions of lines of code they have
never seen [3]. Since these tools depend solely on developers composing queries
that exactly match unfamiliar strings, 88% of all queries using these tools return
no relevant results [2]. Because developers spend as much as 40% of their time
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Figure 1: Sando screenshot.

searching, navigating, reading, and understanding source code [1, 2], these failed
searches waste a lot of developers’ time, potentially increasing the cost of software
development.

Local code search tools help developers find a starting point for programming
tasks. These tools are now distributed as part of popular integrated development
environments (IDEs): InstaSearch [4] and Sando [5] are available for Eclipse [6]
and Visual Studio [7], respectively. These tools take developers’ queries as input
and retrieve code elements from the currently opened project in the IDE. Re-
searchers have shown local code search tools to be more effective than regular
expression search tools [5], and have observed that such tools are used frequently,
on a daily basis, by many developers in the field [8]. Unlike regular expression
search tools like grep, local code search tools: (1) retrieve code elements, such
as methods, classes and fields, instead of lines of text; (2) return ranked results,
making more relevant results more accessible; and (3) index the codebase before
developers need to search, making search almost instantaneous [5].

Despite these advantages, local code search tools suffer from some of the same
issues that plague regular expression search tools. For instance, imagine a devel-
oper wants to search for how usernames are stored in an authentication system.
They may search for “user file” or “user element”. However, the implementation
may refer to storage as a “user document”. The developer would not think to
compose this query without knowledge of the exact terms used in the codebase.
Neither regular expression search tools nor local code search tools will help a
developer in this scenario.

2



To address this problem, researchers propose multiple query recommendation
techniques [9, 10, 11]. However, few of these techniques are empirically studied
in the real-world setting. Without observing developers’ actual interaction with
the recommendation techniques, the usability and usefulness of these techniques
are unclear. To fill this gap, we implemented Coronado, an extension to the Sando
search tool that integrates various recommendation techniques to help developers
compose new queries and refine failed ones. Taking advantage of the popularity of
Sando, we were able to evaluate these recommendation techniques by collecting
field data. In summary, the contributions of this paper are:

• An implementation of multiple query recommendation techniques as an ex-
tension to Sando, a local code search tool for Visual Studio [5], which we
discuss in Section 2.

• The result of longitudinal field study, presented in Section 3, investigating
Coronado’s usability and usefulness. This study collected usage data from
591 unique Sando users for 24 months. Our study suggests that the queries
recommended before manual search fails are equally useful to the recom-
mendations afterwards; and recommending the identifiers in the codebase
is the most effective technique.

This paper is an extension of our previous study of recommendations in code
search [12]. Relative to the earlier work, this paper describes Coronado in greater
depth. Also, by leveraging data collected from a significantly longer timespan than
in [12], this paper strengthens the previous set of results by analyzing data from
more than two times as many users over more than three times as long a period
of time. A comparison of the results of the earlier field study from [12] to the one
in this paper indicate consistent usage and effectiveness of the recommendation
techniques.

The longer data collection timespan also allows for the selection of Coronado
“super users”, whose query recommendation use can be investigated over time,
to determine if any change in developer recommendation use can be observed.
Our results indicate that recommendation use tends to increase over time, as the
developers likely gain confidence in this capability of the recommendation system
to produce good queries, especially on unfamiliar code bases.

2. Sando Recommendations

Before delving into the recommendation techniques, we first introduce a local
code search tool called Sando on which our techniques was implemented and
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evaluated. As a Visual Studio plug-in, Sando allows developers to search code
snippets in their local codebase by issuing queries similar with those accepted by
Google. Sando supports searches over C and C# code. Sando treats the different
levels of software entities as documents, including classes, methods and fields.
Search results are a list of documents that contain the terms in the input query.
Sando orders the results based on Inverse Document Frequency scores that reflect
a term’s importance to a document in a collection of documents [13]. Figure 1 is a
screen shot of Sando, where the search box is at the top (A) and the list view at the
bottom (B) presents search results. Near the search box, the cloud button invokes
a recommendation technique based on tag clouds as illustrated in Section 2.2, the
“[C]” button clears the search history, and the “[?]” button provides help.

When a users single clicks one of the search results, Sando displays a pop up
window to give her an overview of the corresponding code element. The lower
half of the pop up window (C) has the entire code element, and the upper half con-
tains the exact lines containing the queried terms (D). To open the file containing
a search result, the user double clicks the result.

The design of Sando’s recommendation system intertwines interactive query
recommendation techniques, intended to aid the user in constructing an initial
query, with semi-automatic query modification and expansion techniques, intended
to help the user reformulate an initial query that has presumably yielded poor re-
sults. In this paper, we dub the first set of recommendations as pre-search and the
second set, which occur after an initial query, as post-search recommendations. In
both cases, Sando relies on user feedback to manually select, modify, or expand
the query terms submitted to the system, in the spirit of a typical recommendation
system. Such explicit user interaction is generally expected to produce more ac-
curate results than a completely automated query expansion system, at the cost of
more effort by the user.

We used Sando as our platform to implement and evaluate the recommenda-
tion techniques for the following reasons: (1) Sando is representative of local code
search tools, as it implements similar functionality as the search tools in other
integrated development environments; (2) Sando is an open source project with
extensible APIs, so we can easily add features to it; (3) Users have downloaded
Sando over fifteen thousand times1, which provides us a significant number of
users from which to collect feedback. We next detail the recommendation tech-
niques in two steps. Section 2.1 describes the individual components used in our

1goo.gl/jjuhP1
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techniques; Section 2.2 and Section 2.3 describe how we generate and present the
recommended queries.

2.1. Components
To bridge the cognitive gap between local code search users and the codebase

under search, we implemented an extension to Sando named Coronado that is
based on five components: codebase terms, term co-occurrence matrix, Verb-
Direct-Object repository, software engineering thesaurus, and English the-
saurus. Before we explain how Coronado uses these components to recommend
queries, we first discuss each component and how Coronado collects and main-
tains those contents.

2.1.1. Codebase terms
The first component of Coronado contains the terms in the codebase under

search. Coronado collects these terms when Sando’s indexer traverses the pro-
grammer’s project. Sando’s indexing process breaks a source code element into a
set of terms, including raw identifier names and terms extracted by splitting identi-
fiers that use camel case. For instance, Sando indexes a method name “parseFile”
as three terms: “parse”, “file”, and “parseFile”. C and C# keywords are not in-
dexed.

Sando indexes the codebase in two stages: the initial indexing and the in-
cremental indexing. Sando performs the initial indexing only when the devel-
oper opens a project whose index information has not been cached previously by
Sando. Sando performs incremental indexing whenever the developer changes a
project whose index information is cached. Initially indexing a project of 10,000
lines of code takes Sando about twenty seconds, and incrementally indexing a
changed C# file takes about twenty milliseconds. By reusing the terms collected
during indexing, Coronado builds and maintains the set of terms in the codebase
under search.

2.1.2. Term co-occurrence matrix
The second component of Coronado is a matrix that records the number of co-

occurrences of every two terms that appear together. For each pair of terms [t1, t2]
that occur together in a source document, the matrix builder increments the current
value of the element at [t1, t2] in the matrix by one. To give an example, consider
the following code snippet:

PathManager CreatePathManager(string path) {
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if(Path.HasExtension(path))
return new PathManager(Path.GetDirectoryName(path));

else
return new PathManager(path);

}

The method contains the following twelve terms: path, manager, PathMan-
ager, create, CreatePathManager, has, extension, HasExtension, get, directory,
name, and GetDirectoryName. Therefore, for this method, the co-occurring pairs
are the combinations of any two terms; that is, 144 (12 ∗ 12) in total. When the
developer adds this method to the codebase, the term co-occurrence matrix incre-
ments the current value of each element corresponding to each pair by one, for
example, elements of {create, path}, {path, manager} and so on.

 [      ]
1   1     2

1     1     0

2     0     1 

Row = { “blue”, “green”, “red”}

Column =  {“blue”, “green”, “red”}

A = {1, 1, 2, 1, 1, 2, 1}

IA = {0, 3, 5}

JA = {0, 1, 2, 0, 1, 0, 2}

“blue”

 “blue”   “green”  “red”

“red”

“green”

Figure 2: Yale format for a sparse matrix.

One caveat is that keeping the co-occurrence matrix in memory is inefficient.
For instance, consider Sando itself, a project with about 10,000 lines of code and
about 2000 terms. For such a project, the number of elements in the matrix is
about 4 million (2000 ∗ 2000). To improve memory efficiency, we exploited the
fact that the co-occurrence matrix is usually sparse; that is, according to our tool
usage data, over 90% of the elements in the matrix contain the value of 0. Thus,
we represent the co-occurrence matrix by using the Yale format, a data structure
that efficiently stores sparse matrices without substantially impacting lookup and
insertion speed [14].

The Yale format represents a sparse matrix by using three arrays: (1) the values
of all non-zero elements in the matrix are stored in row-major form; (2) the indices
of the first non-zero elements of the matrix’s rows (1); and (3) the column indices
of the elements in array (1). Figure 2 gives an example of Yale format where
A, IA and JA correspond to the aforementioned three arrays respectively. The
more zeros in the matrix, the more the Yale format improves memory efficiency
compared to a normal matrix.
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2.1.3. Verb-Direct-Object repository
Another component in our Coronado technique is Verb-Direct-Object repos-

itory. Based on the observation that source code is often about performing ac-
tions on objects, Fry and colleagues proposed a technique that combines natu-
ral language processing and source code analysis [15]. Their technique extracts
Verb-Direct-Object pairs from a codebase, such as “open file” or “close stream”.
By adopting this technique, Coronado periodically analyzes the codebase under
search, extracting the Verb-Direct-Object pairs and caching them for future rec-
ommendations.

2.1.4. Software engineering thesaurus
Coronado also uses a thesaurus of terms that are frequently used in software

development. Software engineering has developed its own set of terms, synonyms
and abbreviations that do not exist in conventional English, such as “imap”. Some
software engineering terms have specific meanings that are different than their
conventional English meanings, such as “class”. Thus, simply reusing a general
thesaurus cannot help interpret field-specific information, and can even be detri-
mental to client software tools [16]. To build a field-specific thesaurus, we reuse
Gupta and colleagues’ work that mines the relationship between different terms in
source code and generates 1724 pairs of semantically related terms. Among these
pairs, 91% are synonyms specific to the field of software engineering [16]. The
examples of these field-specific synonyms include “execute”–“invoke”, “load”–
“initialize” and “instantiate”–“create”. In addition to the related terms, their work
also quantifies the commonality of the pairs of synonyms. For instance, “cre-
ate” has been found to be related to several terms, including “make”, “do”, and
“construct”. However, ”make” is more closely related to “create” than it is to
“construct” or “do”.

2.1.5. English thesaurus
The final component of Coronado is a general English thesaurus. To build

this thesaurus, we reused Miller’s lexical database WordNet [17]. WordNet rep-
resents related concepts as a graph, where nodes are words and synonym edges
connect words with similar meanings. Thus, finding synonyms using WordNet
takes constant time because Coronado simply looks for neighbors of a given word.
Although WordNet obtains a complete set of English words, keeping the whole
data set in memory is costly. Hence, we reduced the size of WordNet to include
the 100k most frequently used words in English [18]. We speculate that the 100k
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words are sufficient for most queries, although how often a user queries with un-
usual words remains an open question because, for privacy reasons, we do not
collect data about what terms Sando users are searching for.

2.2. Pre-search recommendation
We next describe how Coronado uses these components. Whenever a devel-

oper types something into Sando’s search box, Coronado suggests queries even
before the developer clicks the search button as illustrated in Figure 3. We call
these pre-search recommendations. These recommendations come from three
sources: identifiers, Verb-Direct-Object pairs, and co-occurring terms.

Since our pre-search recommendations are displayed to the user at every key
press in the search box, the response time for their lookup is important to their
usability. We measured pre-search recommendation generation response times
on the order of seconds for large codebases (e.g. the Linux kernel), which def-
initely affected Sando’s usability. Like many other search tools, we found that
pre-generating a trie data structure [19] from the recommendation terms reduces
response time by orders of magnitude at the cost of relatively little additional
memory and CPU time.

2.2.1. Identifiers
The first source of the pre-search recommendations are identifiers. When the

programmer types a string into the search box, Coronado looks through the code-
base terms component to determine whether that string is a prefix of any identifier
in the local terms. Each identifier is then recommended to complete the devel-
oper’s search string, and displayed in a drop-down menu below the search box.
For example, Figure 3a displays what search terms are recommended to the de-
veloper when she types the string “update” when searching over the Family.Show
codebase, an open source project that allows users to build family trees [20].

2.2.2. Verb-Direct-Object pairs
When the developer hits spacebar after typing a verb in the search box, Sando

retrieves the Verb-Direct-Object pairs whose verb is the given search term, from
the Verb-Direct-Object repository component. If Sando finds multiple Verb-Direct-
Object pairs, Sando ranks them by using the co-occurrence matrix; the more often
the verb and direct object appear together, the higher up the pair will appear in the
drop-down box. The drop down menu in Figure 3b exemplifies the Verb-Direct-
Object recommendations when the developer inputs “update” to the search box;
because update co-occurs most often with Status than any of the other objects in
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(a) Recommending identifiers.

(b) Recommending Verb-Direct-Object pairs.

(c) Frequently co-occurring terms.

Figure 3: UI of pre-search recommendations.

the Verb-Direct-Object list in Family.Show, “update Status” is the most highly
recommended search query.
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2.2.3. Frequently co-occurring terms
The third type of pre-search recommendation suggests frequently co-occurring

terms by using the term co-occurrence matrix. After inputting one or more terms
in the search box, the developer can click the cloud button near the search box
to show a tag cloud. The terms in the tag cloud are those that co-occur most
frequently with the term or terms in the search box. The bigger the font size in
the tag cloud, the more co-occurrences the term has with the terms in the search
box. Figure 3c shows an example – this tag cloud presents terms that co-occur
frequently with “parent” in Family.Show. The term “children” co-occurs more
frequently with “parent” than “define” does. Clicking on a term in the tag cloud
adds that term to the end of the original search query.

For frequently co-occurring terms, we chose to visualize the terms in a tag
cloud, rather than a conventional drop-down list, like we used for identifier and
Verb-Direct-Object recommendations. We made this choice because our early
experiments suggested that for a given codebase, there are more co-occurring
terms than either identifiers or Verb-Direct-Object pairs. Thus, because tag clouds
use screen space more efficiently than drop-down lists, we used them for rec-
ommending term co-occurrence. In later discussion, we also refer the frequently
co-occurring terms as the tag cloud recommendation.
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Figure 4: Post-search recommendation.

10



2.3. Post-search recommendation
In addition to helping the developer complete queries, Coronado also issues

recommendations after the developer clicks the search button and no search re-
sults were returned. In this case, the developer’s query contains terms that do not
exist in the codebase. To help her compose a new query, Coronado uses the code-
base terms, software engineering thesaurus, and English thesaurus to recommend
semantically similar terms in the codebase under search. Supposing the origi-
nal query has several space-separated terms, Coronado first queries the codebase
terms component to check whether each term exists in the codebase. If a term does
not exist in the codebase, and thus the search fails, Coronado uses the following
three steps to generate a new query.

2.3.1. Pre-processing
If a term does not exist in the codebase, some parts of the term might. Thus,

Coronado greedily splits the term and incorporates the parts that exist in the local
terms to the recommended queries. More specifically, for a given term in the
query, Coronado tries to find its longest prefix and suffix that exist in the local
terms, and in turn, the codebase itself. Next, the technique recursively splits the
middle part of the term until no in-codebase prefix or suffix can be found.

For example, suppose the developer searches for “getelementname”, which
does not exist in the codebase. If the local terms contain “get” and “name”, split-
ting the searched term leads to three new terms: “get”, “element”, and “name”.

Figure 5: UI of post-search recommendations.
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2.3.2. Synonym recommendation
After splitting, if the split terms do not exist in the local terms, Coronado

tries to find synonyms for them in the thesauri. Coronado starts with the software
engineering thesaurus due to its higher relevance than the English thesaurus. If no
synonyms in the software engineering thesaurus are found, Coronado tries to find
synonyms in the English thesaurus. After retrieving the synonyms, the technique
next excludes those synonyms that are not in the local terms. The remaining
synonyms are recommended to the developer as the replacements to the original
term. If finding multiple synonyms to recommend, Coronado uses the term co-
occurrence matrix stated in Section 2.1 to rank them. The synonyms that occur
more frequently with the other terms of the input query rank higher. We illustrate
the process of finding synonyms in Figure 4.

2.3.3. Typo correction
For those terms that neither exist in the local terms by themselves nor have

synonyms in the thesauri, Coronado considers them as the typos of a term in the
local terms. Therefore, Coronado uses these terms to correct them. The algorithm
for correction adopts 2-gram indexing to quickly find the terms that spell similarly
with a given typo [21].

More specifically, this correction algorithm first creates a correction table with
416 (26∗ 26) rows where each row is labeled by a pair of letters (from “aa”, “ab”,
“ac” to “zz”). Next, for every term in the local terms, Coronado inserts the term
to those rows in the table whose label is a part of the term. For instance, the
term “example”, assuming it is in the local terms, is inserted to the rows of “ex”,
“xa”, “am”, “mp”, “pl” and “le”. After inserting all of the local terms, Coronado
is ready to use this table to correct a given typo by going through the following
steps:

• For the typo, we first calculate the rows it will be inserted into as if the typo
were a term.

• We next analyze the existing terms in these rows, and find out the term that
shares the most common rows with the typo as its correction. If finding
multiple such terms, we further select the one whose edit distance to the
typo is the smallest as the correction to the typo.

After calculating the post-search recommendations, Sando displays the rec-
ommended queries under the search box; each query is a hyperlink, the click on
which leads to Sando’s searching the corresponding query, as illustrated in Fig-
ure 5.
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3. Field Study

We conducted a longitudinal study to answer the following research questions:

• RQ1: How often do developers use Coronado’s recommendations during
their normal work to improve their queries?

• RQ2: Do developers seem satisfied with queries constructed from Coron-
ado’s recommendations?

• RQ3: Do Coronado’s recommendations remain relevant to users over time?

●

●●

●

●●● ●

●●

●

●

●● ●●● ●● ●●

●

●● ●● ●●●

●

● ●● ●●● ●●●●

●

●● ●●● ●● ●●●●

●

●

●

● ●

●

●

●

●● ●●

●

●● ●●● ● ●

●

●

●

●

●

● ● ●●●● ●

●

●

●

●

● ●

●

●

● ●●●●

●

● ●● ●

●

●

●

● ●

●

●●●

●●

●

●

●●

●

●

●● ●●●●● ●●●● ●● ● ●●

●

●● ●● ●● ●● ●●

●

●●●●● ●

●

●● ● ●● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●● ●● ● ●

●

●

● ●

● ●

●

●●

●

●● ●●

●

● ●●●

●

●●●

●

●

●●

● ●●●

●

●●● ●● ●●●● ●

●

● ●● ●●●●

●

●● ● ●●

●

●

● ●● ●● ●

●

●

●

●

●

●●

●

●● ●

●

●●●

●

●

●

●● ●●●

●

●

●

●●

●

●

●

●● ● ●●●

●

●● ● ●● ●

● ●

●

●

●

●● ●●● ●● ● ●●

●

●

●

● ●

●●

●●●

●● ●

●

●

● ●● ●●

●

● ●●

● ●

●● ● ●●● ●● ● ●● ●●

●

●

●

●● ●

●

●

●●

●

●

●● ●

●

● ●● ●● ●● ●●

●

● ●●● ●

●

●

●●

●●

●

●

●

●●

●

● ●●●●●●● ●●●

● ●

●

●

●

●

● ● ●● ● ●

●

●●● ●

●●

●●

●

●

●●

●

●●●

●

●●●

●

●●●●●

● ● ●

●●

●

●●● ●

●●

●

●

●● ●●● ●● ●●

●

●● ●● ●●●

●

● ●● ●●● ●●●●

●

●● ●●● ●● ●●●●

●

●

●

● ●

●

●

●

●● ●●

●

●● ●●● ● ●

●

●

●

●

●

● ● ●●●● ●

●

●

●

●

● ●

●

●

● ●●●●

●

● ●● ●

●

●

●

● ●

●

●●●

●●

●

●

●●

●

●

●● ●●●●● ●●●● ●● ● ●●

●

●● ●● ●● ●● ●●

●

●●●●● ●

●

●● ● ●● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●● ●● ● ●

●

●

● ●

● ●

●

●●

●

●● ●●

●

● ●●●

●

●●●

●

●

●●

● ●●●

●

●●● ●● ●●●● ●

●

● ●● ●●●●

●

●● ● ●●

●

●

● ●● ●● ●

●

●

●

●

●

●●

●

●● ●

●

●●●

●

●

●

●● ●●●

●

●

●

●●

●

●

●

●● ● ●●●

●

●● ● ●● ●

● ●

●

●

●

●● ●●● ●● ● ●●

●

●

●

● ●

●●

●●●

●● ●

●

●

● ●● ●●

●

● ●●

● ●

●● ● ●●● ●● ● ●● ●●

●

●

●

●● ●

●

●

●●

●

●

●● ●

●

● ●● ●● ●● ●●

●

● ●●● ●

●

●

●●

●●

●

●

●

●●

●

● ●●●●●●● ●●●

● ●

●

●

●

●

● ● ●● ● ●

●

●●● ●

●●

●●

●

●

●●

●

●●●

●

●●●

●

●●●●●

● ● ●

●●

●

●●● ●

●●

●

●

●● ●●● ●● ●●

●

●● ●● ●●●

●

● ●● ●●● ●●●●

●

●● ●●● ●● ●●●●

●

●

●

● ●

●

●

●

●● ●●

●

●● ●●● ● ●

●

●

●

●

●

● ● ●●●● ●

●

●

●

●

● ●

●

●

● ●●●●

●

● ●● ●

●

●

●

● ●

●

●●●

●●

●

●

●●

●

●

●● ●●●●● ●●●● ●● ● ●●

●

●● ●● ●● ●● ●●

●

●●●●● ●

●

●● ● ●● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●● ●● ● ●

●

●

● ●

● ●

●

●●

●

●● ●●

●

● ●●●

●

●●●

●

●

●●

● ●●●

●

●●● ●● ●●●● ●

●

● ●● ●●●●

●

●● ● ●●

●

●

● ●● ●● ●

●

●

●

●

●

●●

●

●● ●

●

●●●

●

●

●

●● ●●●

●

●

●

●●

●

●

●

●● ● ●●●

●

●● ● ●● ●

● ●

●

●

●

●● ●●● ●● ● ●●

●

●

●

● ●

●●

●●●

●● ●

●

●

● ●● ●●

●

● ●●

● ●

●● ● ●●● ●● ● ●● ●●

●

●

●

●● ●

●

●

●●

●

●

●● ●

●

● ●● ●● ●● ●●

●

● ●●● ●

●

●

●●

●●

●

●

●

●●

●

● ●●●●●●● ●●●

● ●

●

●

●

●

● ● ●● ● ●

●

●●● ●

●●

●●

●

●

●●

●

●●●

●

●●●

●

●●●●●

● ●

1

10

100

1 10 100 1,000
Number of Queries Using Sando (Log Scale)

D
ay

s 
of

 A
ct

iv
e 

S
an

do
 U

se
 (

Lo
g 

S
ca

le
)

Developer Contributions to the Sando Dataset

Figure 6: A plot of the characteristics of the Sando usage data, collected from 591 developers
in the wild, showing the number of queries for each user on the X axis, and the number of days
developers interacted with Sando on Y axis. A ◯ denotes that a user was active for less than one
week, △ denotes Sando interactions of one week to one month, and ◻ denotes activity spanning
over one month.
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Table 1: Use of query recommendations in Sando users’ data.

Interaction Type Number of Queries
Total Queries 4917
Manual Queries 3275 (66%)
Recommended Queries 1642 (34%)
Passive Rec. 969 (59%)
Active Rec. 673 (41%)
Lookup Intent 441 (66%)
Exploratory Intent 233 (34%)

3.1. Study Setting
We evaluated Coronado through a collection of anonymous usage data from

Sando users in the wild. Sando automatically uploads usage data to S3 cloud
storage [22] for users that give their permission. Coronado was instrumented to
log two types of events, recommendation review and recommendation acceptance.
More specifically, the events that we included in the log are:

• The developer reviews a pre-search recommendation. An event is written to
the log when a user reviews a pre-search recommendation, either by high-
lighting a drop-down recommendation (i.e., highlighting a recommendation
in Figure 3a) or displaying a tag cloud (Figure 3c).

• The developer accepts a pre-search recommendation. An event is written
to the log when a developer accepts a pre-search recommendation, either
by choosing a recommendation from the drop-down list or by clicking on a
term in the tag cloud.

• A user reviews post-search recommendations. Each time a Sando user sub-
mits a query containing terms that do not exist in the codebase under search,
Sando issues a set of post-search recommendations, displayed as clickable
links (see Figure 5). Each time Sando displays these links, an event is
logged.

• The developer accepts a post-search recommendation. After Sando issues
post-search recommendations, the user may accept these recommendations
by clicking on the hyperlink. Each time a link is clicked an event is written
to the log.
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In addition to the aforementioned events, Sando also logs events that apply to
all queries. These events include:

• The developer submits a query. Each time a user searches using Sando, we
log the number of results returned.

• The developer examines a search result. Sando provides two ways to ex-
amine a search result, via a preview pop-up summary of the result or by
opening the relevant file in the code editor. We log both of these events.

3.2. Results
We released a version of Sando with Coronado recommendations to the Visual

Studio Gallery site [23] and continuously gathered usage data for approximately
24 months. In total, we collected logs submitted by 591 unique Sando users2.

As shown in Figure 6, the majority of the users issued few queries, while
several power-users issued upward of 100 queries using the tool. There was a
steady stream of queries gathered over the time period and the dataset was not
dominated by queries gathered over a short time span. As more developers down-
loaded Sando over the collection period, the number of collected queries steadily
increased from month to month. Each developer issued a range of between 1 and
241 Sando queries, while the mean number of queries per developer was 8.49
with a standard deviation of 17.22 queries, indicating that the data set was also
not influenced by a small group of developers.

All known Sando and the SrcML.NET developers were excluded from the data
set (SrcML.NET is a service used by Sando). We also excluded Sando users that
generated only one query with the tool, under the assumption that they were only
trying the tool and were not using it to perform any maintenance activity. In the
following analysis, we used data from the remaining 487 users that issued 4917
queries.
RQ1. Use of recommendations. During the collection period, Sando users exe-
cuted 4917 queries, 1642 of which utilized recommendations (34%), as shown in
Table 1. We observe that the recommendation usage rate is fairly high, consid-
ering that developers are working on their own systems, that they are likely not
accustomed to code search tools with recommendations, and that there was no
in-tool documentation of the recommendation feature.

2Data for a 25 day period, consisting of 44 separate users issuing a com-
bined total of 363 queries, is available at https://github.com/abb-iss/
SandoRecommendationStudyData/
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Both the adoption rate of recommendations, used in about 34% of all
queries, and the raw number of recommendations utilized, 1642, indicate
that recommendations are having a real impact on developers in the field.

We categorized the observed recommendations into two basic categories, pre-
search and post-search. Developers used pre-search recommendations 673 times
while they employed post-search recommendations 969 times (see Table 1). This
indicates that developers actively sought recommendation usage in 41% of the
recommended queries while they accepted recommendations after the query in
59% of the cases.

The balance between pre-search and post-search recommendations sug-
gests that both types of recommendations in Coronado are equally useful.

Of the pre-search recommendations (673 in total) 112 were Verb-Direct-Object
pairs, 441 were identifiers, and 115 were from tag clouds. Heavy use of identi-
fier recommendations is an indication of searches for the purpose of information
lookup, where the developer likely has a specific part of the code (e.g. a specific
method or class name) in mind. On the other hand, using the Verb-Direct-Object
pairs and tag cloud recommendations are likely to be used in more exploratory
searches, as exemplified in Figure 6(c), where the developer only vaguely knows
what she is looking for.

The distribution of recommendation types suggests that a substantial
part (34%) of recommendations usage in the field is during exploratory
searches.

Table 2: Failure rates for Sando queries.

Recommendation Type Failure Rate
Manual (No Rec.) 49%
Recommended 38%
Verb-DO 21%
Identifier 19%
Tag Cloud 73%

RQ2. Quality of search results for recommended queries.

16



When investigating user satisfaction with a search query it is valuable to mea-
sure cases where searches completely fail, as they are a straightforward indicator
of the inadequacy of the result set returned by the search tool. A large number
of inadequate result sets translates to anticipated dissatisfaction of the users with
the code search tool. In our data, we considered a search to have failed if there
was no further interaction with the search UI (e.g., no clicks on any kind, single
or double, on the results) after the query. During our collection period, of the
1641 queries from recommendations 623 resulted in failure (38%) and of the 3275
manual queries 1611 resulted in failure (49%), as shown in Table 2.

Recommendation-based queries received a click more often than manual
queries.

Using failed queries as our metric, we can examine the effectiveness of each
of the recommendation techniques that constitute our Coronado approach. Of the
112 queries where the users relied on the Verb-Direct-Object recommendation,
only 23 (or 21%) were unclicked (i.e. failed) queries. Similarly, for identifier rec-
ommendations, 84 out of 441 (or 19%) queries failed. Tag cloud recommendations
fared a lot worse, 84 out of 115 queries (or 73%) yielding no interactions with the
result set. The post-search recommendation techniques in Coronado yielded a
success rate of 43% (419 failed queries out of 969 issued), matching the success
rate of manual queries.

Identifier and Verb-Direct-Object recommendations were most successful
when used by developers in the field.

RQ3. Recommendation use on the same code base over time.
Our final research question evaluates whether users rely more on recommen-

dations over time, as, presumably, they become more familiar with Coronado. To
measure this, we extracted sequences of 20 or more queries on the same code base
by the same user, and considered recommendation use in the first 10, relative to
the last 10 queries.

There were 24 query sequences that satisfied this condition in the Sando dataset.
Descriptively, during the first 10 queries users used a mean of 3.29 recommenda-
tions, compared to 5.16 recommendations during the last 10 queries. We used
statistical hypothesis testing, using the one-tailed Wilcoxon signed-rank test to
determine whether the increase observed in the means of the first and latter set of
queries was significantly different. Based on the computed p-value of 0.00013,
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which is less than the 0.05 significance level, we reject the null hypothesis that the
recommendation use frequency in the two sequence intervals is identical. Instead,
we adopt the alternative hypothesis that the latter queries use more recommenda-
tions than the earlier set.

Recommendation use on the same code base by the same user over time
tends to increase.

3.3. Differences to Prior Results and Analyses
Coronado was initially presented in [12], coupled with initial results for RQ1

and RQ2. In this paper, analysis of those two research question is conducted
with a dataset of nearly twice as many queries (4917 vs. 2563 in [12]) and more
than twice as many users (591 vs. 274 in [12]). The results for RQ1 and RQ2
remained very consistent with the ones reported in the original study, as follows.
The use of recommendation remained steady, changing only 2 percentage points
from 32% to 34% on the larger dataset. The use of active recommendations was
similar 41% compared to 42% in [12]. The failure rates also remained generally
consistent in the larger datasets: 42% of manual queries in the smaller to 49%
in the larger dataset; 35% of recommended queries to 38% in the current, larger
dataset; 19% of Verb-DO recommended queries to 21% in the larger dataset; and,
exactly the same, at 19%, for identifier recommended queries. The fact that the
results remained, qualitatively, the same, while the number of queries, users, and
length of time increased significantly, to 24 months of data collection, further
underscores the validity of the results reported for RQ1 and RQ2.

To better understand the variance of our results, we performed bootstrapping
(i.e. random resampling with replacement) on the data from the larger dataset. We
used 1000 random samples of 10,000 queries randomly sampled from the dataset.
We generally found low variances across all of the measures. For instance, at 99%
confidence, based on this technique, the confidence interval of the failure rate of
manual queries was (47.6% - 50.8%), while for recommended queries the interval
was (38.6% - 42.1%). The failure rate of the Verb-DO recommendations was in
the range (13.6% - 27.4%), and for identifier recommendations (15.6% - 22.4%),
exhibiting larger ranges due to relatively less data of each recommendation type.

3.4. Implications
Based on the data from the longitudinal study, several implications may help

researchers improve the usability and the usefulness of query recommendation
techniques for code search. We next summarize these implications.
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Both preventive and the corrective recommendations are important. As the
results of RQ1 suggest, pre-search and post-search recommendations are equally
useful, suggesting that developers need both reminders and corrections to com-
pose effective queries. Existing query recommendation techniques integrates no
feedback loop from the retrieved results, thus they cannot correct the failing queries [9,
10].

Simply recommending identifiers in the codebase can reasonably assist devel-
opers. Recommending the identifiers in codebase may be the most straightforward
technique we implemented. However, according to the collected data, developers
adopted this recommendation more frequently than more sophisticated ones, sug-
gesting that the basic program entity serves as an important clue for developers’
retrieval of the relevant code snippets.

Verb-Direct-Object pairs are effective for exploratory searches. The low fail-
ure rate and significant adoption rate of Verb-Direct-Object pairs are especially
encouraging as these recommendations, unlike identifier recommendations, occur
on searches where the developer is unfamiliar with (a segment of) the codebase
and does not have a specific program element in mind. Such exploratory searches
can be more challenging for a code search technique and therefore the low mea-
sured failure rate for these queries should be considered a successful outcome for
this technique.

The readability of the recommended queries matters. Different recommenda-
tion techniques lead to the varied readability of the recommended queries. For
instance, aligning with how developers explain code snippets, the recommended
identifiers and the Verb-Direct-Object pairs are more readable and understandable
than the queries recommended from the other techniques, which difference ex-
plains the former two’s higher adoption rate. As another example, the tag cloud
recommendation, despite of effectively capturing the related terms in the code-
base, attracts less adoption due to the distance between the fragmented informa-
tion and the developers’ perception of the codebase.

Recommending queries followed by manual selection leads to more useful re-
sults than using either one alone. Existing query expansion techniques silently
add terms to developers’ original queries without explicitly interacting with the
developers [9, 10, 11]. Our study shows that developers’ explicit selection im-
proves the usefulness of the recommended queries, leading to more promising
results retrieved.

Developers trust recommendations more over time. As developers experience
the benefits of a query recommendation system, they tend to utilize it more over
time, likely relying on the suggestions of the system to avoid failed searches. Our
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study shows that this trend exists over a relatively small number of queries, for
relatively few users.

3.5. Threats to validity
Our log file analysis is potentially susceptible to several threats, both internal

and external. One internal threat is how we measure user satisfaction of retrieved
results. Conventional measurements of the quality of the retrieved results, such
as precision and recall [24], cannot be collected by analyzing the log files. How-
ever, failed queries, or the clickthrough rate, which is the name for this metric in
the Internet search community has consistently been shown to produce a reliable
measure [25], albeit somewhat coarse-grained, of user satisfaction with a result
set.

Externally, we collected data only from 591 users for a period of about 24
months. The results drew from the limited number of users and time length may
be not generalisable to other Sando users for a longer period of time. Another ex-
ternal threat is that we investigated only several recommendation techniques, thus
the observed usefulness and usability may not apply to other techniques. In fu-
ture, we plan to add more recommendation techniques to Sando and continuously
monitor the users’ interaction with them.

4. Related Work

A large body of existing work is related to ours. In this section, we summarize
them from two different themes, namely query reformulation and improving code
search.

Query reformulation. In information retrieval systems, queries of higher
quality can lead to more relevant results. The original queries provided by users
may not be good enough; hence researchers proposed multiple ways to reformu-
late them. In general, query reformulation techniques either expand [9], or re-
duce [10], given queries. Specific to the field of software engineering, Haiduc and
colleagues proposed a recommender called Refoqus that suggests query expan-
sion by analyzing a set of attributes of given queries [26]. Semi-automatic query
reformulation techniques integrate developers’ feedback to improve the original
queries. For example, De Lucia and colleagues proposed a technique that uses de-
velopers’ feedback to incrementally discover traceability [27]. Coronado differs
from all these techniques in that Coronado recommends related search terms and
refine failed ones; that Coronado guarantees that the recommended terms lead to

20



some results; and that Coronado uses software engineering-specific lexical infor-
mation to find related terms.

Improving Code Search. To better assist developers retrieve relevant code
snippets, researchers proposed various techniques. For instance, Yang and Tan
leverage the context of words to mine semantically related terms in the code-
base [28]. Ali and colleagues combine software repository mining results with
information retrieval techniques to improve the accuracy of the later [29]. Sis-
man and Kak enrich developers’ queries by injecting terms appearing in the arti-
facts drawn from their manual queries [11]. Bajracharya and colleagues proposed
Structural Semantic Indexing that associates code snippets by the APIs they used,
thus the developers can easily retrieve the usage examples of certain APIs [30].
Marcus and Maletic apply latent semantic indexing to recover the traceability link
between documentation and source code [31]. Different from these works, this
paper aims at evaluating the usefulness and the usability of existing techniques
instead of proposing new ones.

5. Future Work

Future research can build on our work by improving and refining search rec-
ommendation techniques. For instance, future search tools could apply the degree-
of-interest model to better rank recommended queries [32], using contextual in-
formation to promote search terms related to developers’ recent activity.

The second way to improve the recommendation technique is to integrate
domain-specific lexical knowledge for the software under search. In the current
implementation of Coronado, we only used the software engineering thesaurus
and the English thesaurus to recommend related terms after the developer’s man-
ual search fails. We believe a domain-specific thesaurus can further improve the
quality of recommended terms. For instance, if a developer searches in a medical
application, recommending related terms in the medical domain potentially leads
to more promising queries.

Another way to improve the state of the art in recommendation techniques is to
suggest queries to developers based on their colleagues’ successful queries. Such
a technique could leverage collaborative filtering using data from developers who
work on the same codebase to recommend better and more relevant queries [33].

Before developing better recommendation techniques, conducting empirical
studies of local code search tool users is helpful. Analyzing log files, as we did
in our field study, can show usage patterns, but cannot uncover the causes of de-
velopers’ behavior. For instance, we know that users use pre-search recommenda-
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tions less often than post-search recommendations, but we do not know the causes
without a user study.

Another area of further inquiry could be in ways to more rapidly build trust in
the recommendation system, in order to increase its rate of usage and reduce failed
queries. Several means for achieving this goal are possible, such as improving
the tool’s UI, creating in-tool suggestions or demonstrations, or providing visible
external learning materials.

6. Conclusion

Local code search tools help developers easily find the code they want to reuse
or edit. However, composing the right queries can be difficult for developers who
are not familiar with the codebase under search. To help developers compose
queries that return relevant parts of the codebase, researchers proposed various
query recommendation techniques. To investigate the usability and the usefulness
of these recommendation techniques, we integrated several of them to the Sando
search tool and conducted a longitudinal field study. We found that, in the field,
developers issued 34% of all their queries by taking recommendations; preventive
and corrective recommendations are equally useful; and that developers tend to
adopt recommendations that are more readable.
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