
Using Automated Prompts for Student Reflection on Computer
Security Concepts

Hui Chen
CUNY Brooklyn College
Brooklyn, NY, U.S.A.

hui.chen@brooklyn.cuny.edu

Agnieszka Ciborowska
Virginia Commonwealth University

Richmond, VA, U.S.A.
ciborowskaa@vcu.edu

Kostadin Damevski
Virginia Commonwealth University

Richmond, VA, U.S.A.
kdamevski@vcu.edu

ABSTRACT
Reflection is known to be an effective means to improve students’
learning. In this paper, we aim to foster meaningful reflection via
prompts in computer science courses with a significant practical,
software development component. To this end we develop an in-
structional strategy and system that automatically delivers prompts
to students based on their commits in a source code repository. The
system allows for prompts that instigate reflection in students to be
timely with respect to students’ work, and delivered automatically,
thus easily scaling up the strategy.

In this paper, we describe the design of a rule-based prompt de-
livery system, including a list of security related reflection prompts.
We collect preliminary evidence for the reflection strategy in a
course targeting mobile development. The evaluation provides ev-
idence that such a system can help realize a reflection-in-action
instructional strategy at scale and improve students’ learning.

CCS CONCEPTS
• Applied computing → Education; Computer-assisted in-
struction; •Computingmethodologies→Artificial intelligence;

KEYWORDS
reflection, reflection prompt, automated reflection
ACM Reference Format:
Hui Chen, Agnieszka Ciborowska, and Kostadin Damevski. 2019. Using
Automated Prompts for Student Reflection on Computer Security Concepts.
In Proceedings of ACM ITiCSE conference (ITiCSE’19). ACM, New York, NY,
USA, Article 4, 7 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Drawn from experiential and constructivist view of learning, re-
flection is a process where a student contemplates and learns from
current or past experiences. Instructors have strived to instigate
reflection in various fields of professional practice and education
for multiple decades [18], with numerous studies showing that re-
flection is beneficial to learning in many areas and disciplines [8]. In
particular are its benefits to system design [2], including computer
programming and software engineering [4–6, 22, 26]. While reflec-
tion is a diverse area of study, the focus of this paper is prompt-based

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE’19, 15-17 July 2019, Aberdeen, UK
© 2019 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

ronnie c.

I noticed that you wrote logging statements. 
Consider the contents of the logged data; 
could it be considered sensitive to security or 
privacy? Explain how this scenario relates to 
the principle of Chain of Control we discussed 
in class?grey

The log contains public addresses and 
urls. Everything in the log is general 
information that is easily found by 
Googling. There is no security risk. This 
relates to the Chain of Control because we 
don't want any untrustworthy sources 
accessing our information. Luckily, this 
information is not sensitive.

Figure 1: An example of automated reflection-in-action
where a student is encouraged to learn about the security
principle of Chain of Control, as they are working on devel-
oping a secure mobile app.

reflection, where students are asked to reflect based on questions
or directions provided by the instructor. The literature states that
the learning outcomes of prompt-based reflection are strongly de-
pendent on: 1) the quality of the prompts; 2) the timing of their
delivery [7, 12]. Both of these characteristics are contingent on
connecting the reflective prompts to individual student progress.
However, instructors closely monitoring each student’s progress on
numerous projects and assignments does not scale and is not realistic
in most computer science programs.

To address the challenge of scaling up prompt based reflection,
in this paper, we propose and provide preliminary evidence for
automated prompt-based reflection, an instructional strategy that ap-
plies principles from recommendation systems to suggest prompts
to students based on their current activity. The recommendation
system necessary to enable this instructional strategy uses as in-
put students’ ongoing work represented as changesets (or diffs) in
source code management system (e.g. git), which are increasingly
stored online via Web services like GitHub and BitBucket.

We evaluate the instructional strategy on reflection prompts
targeting secure mobile application development. The prompts
provide an opportunity to reinforce abstract security concepts in-
troduced in lecture, by applying them to each individual student’s
progress on a practical project of implementing an Android app.
Our results indicate that the instructional strategy is well received
by students, leads to improvements in learning of security concepts,
and even encourages students to revise and improve the design and
implementation of the software project itself. Figure 1 shows an
actual interaction with a prototype prompt recommendation sys-
tem, where a contextual and timely reflective prompt is delivered

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


ITiCSE’19, 15-17 July 2019, Aberdeen, UK Hui Chen, Agnieszka Ciborowska, and Kostadin Damevski

to a student designing an Android app with a login screen. The
contributions of this paper are:

• instructional strategy for automatically instigating reflec-
tion using prompts in the course of software development
assignments or projects;

• design of a recommendation system based technique for
automated prompt-based reflection;

• preliminary evaluation results of the efficacy of the instruc-
tional strategy.

The rest of this paper is organized as follows. Section 2 outlines
the background and related work. In Section 3 we describe the
automated system for reflection and the set of prompts we defined
for teaching secure mobile development. Section 4 discusses pre-
liminary results in applying the system and instructional strategy
in a mobile development focused course. Finally, we conclude the
paper and discuss the future work in Section 5.

2 BACKGROUND AND RELATEDWORK
The practice of reflection helps learners gain tacit knowledge. Dif-
ferent from a novice, an expert has a larger body of tacit or expe-
riential knowledge from which the expert can instinctively draw
insights and apply them to current problem settings [15]. Software
development is a discipline where the tacit knowledge is not easily
captured by a set of rules and formulae. Therefore, it is difficult
to be communicated by an instructor using lecture, and often re-
quires project-based or problem-based instruction. Reflection is a
key component in connecting concepts discussed in lecture, with
those observed during non-trivial projects or assignments.

Encouraging learners and practitioners towards quality reflec-
tion on their experiences has been attempted and investigated by
many educators and researchers. For instance, a frequently used
reflection technique is for students to write reflective essays or
blogs [26]. Our approach is different as it is based on prompts, which
are far more specific about what is being reflected than an open-
ended essay writing or blogging. Therefore, text of the prompts
plays an important role in the quality of the student reflection.

Two other important characteristics that make reflective prompts
effective are adaptivity and timeliness [7, 12]. Adaptivity means
that reflection should be specific to the context of the current work
by the student, and therefore able to influence the students future
action on the project. Timeliness refers to the sensitivity of the
prompts to the current actions by the students, in a way that the
prompts do not completely disrupt the student at key points of their
work. While adaptivity and timeliness can be obtained automati-
cally using the system we describe in the paper, the quality of the
prompts’ content still requires careful tuning by the instructor.

There are numerous existing uses of reflection either in computer
science education or aided by automated tools [6, 10, 13, 19, 22, 24–
26]. Researches have also developed automated reflection tools that
help learners, more specifically, designers, reflect [19, 24]. These
tools are not prompt-based, focusing instead on guiding designers
to carry out open-ended reflection activities, such as, writing re-
flective logs, curating visual bookmarks, and visualizing creative
designs [24, 26].

Edwards investigated students’ reflection via a test-driven de-
velopment approach in lower-division programming courses, sug-
gesting reflection’s effectiveness in the fostering of comprehension,
analysis, and hypothesis-testing skills across programming assign-
ments [6]. Different from the type of reflectionwe describe, Edwards
used reflection that is explicit and algorithmic as expressed in the
program code to construct automated test cases.

Fostering effective reflection across a wide range of students
is in effect a very challenging and complex topic. Although re-
flection’s benefits are often regarded as self-evident and central
to building capacity for lifelong learning, many concerns exist in
applying reflective practice [8]. For instance, from the perspective
of cognitive load theory, reflective practice, if not applied well,
can overwhelm students and have negative impacts on students’
learning [11, 23], in particular on novices. Proper scaffolding and
guidance are important to reduce students’ cognitive load when in-
stigating reflection [9, 17]. This paper describes a specific approach
that allows individualized delivery of prompts after students’ in-
cremental submission of their work. We also investigate whether
our prompts and the automated timing of their delivery can tar-
get opportune times for reflection, which does not produce undue
cognitive burden in reflection.

3 RECOMMENDING PROMPTS FOR
REFLECTION

3.1 Rule-Based Recommendation System
From the educator’s perspective, a typical use case of the our au-
tomated prompt-based reflection consists of a few steps. First, the
instructor composes a set of reflective prompts specific to an as-
signment or project. The reflective prompts may reference content
from lecture, or reference external documents, such as book chap-
ters, API documentation, and research articles. The set of reflective
prompts and the supporting explanation carry the reflection guid-
ance provided to students.

Second, the instructor utilizes a prompt recommendation and
delivery system, an essential component of the automated reflection
approach described in this paper. This prompt recommendation
and delivery scheme can range from the instructor specifying rules
for the delivery of each prompt (e.g. a student invoking a method
on the Log static class could trigger the prompt in Figure 1) to more
general and automated approaches that allow for flexible expression
of how prompts should be delivered.

Third, the student responses to the prompts are collected and
delivered to the instructor. While directly grading the prompts is
discouraged [8], their content provides valuable feedback to the
instructor on students understanding of specific concepts.

In building a prompt recommendation system, there are design
choices along two dimensions: 1) input data; and 2) models of stu-
dent software development activity. The prompt recommendation’s
system input data can be static, i.e., submitted source code upon the
completion of the project, episodic, i.e., versions of students’ source
code committed to a source code repository, or live, i.e., students’
activity streaming from their IDE. From episodic data we can learn
a student’s progress on a project, while from interaction data we
can infer what actions the student is carrying out at each moment in
time. Along the second dimension, student software development



Using Automated Prompts for Student Reflection ITiCSE’19, 15-17 July 2019, Aberdeen, UK

prompt

GitHub
repo

prompt

reflection
rule-based
prompt
selection
service

instructor

student

commit

prompts + 
rules

prompt

reflection

reflection set

Figure 2: Design of the rule-based prompt delivery system.

activity models can be deterministic, typically consisting of a set of
rules, or be probabilistic, building a probability distribution over
the reflective prompts. In this paper, we concentrate on describing a
a rule-based approach based on episodic changeset data. The advan-
tage of a rule-based system is its simplicity, while the disadvantage
that it requires the instructor express a specific rule (i.e. a regular
expression over some aspect of the changeset) for the delivery of
each prompt. Next, we describe the architecture of our system.

Figure 2 illustrates the major components and actors in the rule-
based prompt recommendation system. We base our architecture of
the rule-based prompt recommendation system on GitHub, which
offers integration abilities via RESTful Web services. The instructor
initially constructs reflection prompts 1, and rules for their delivery
that are represented as regular expressions. The set of prompts are
stored in a reflection prompt database, which we implement as a
separate Web service. As students push their local commits to the
central repository, GitHub’s Webhook mechanism communicates
their content to the rule-based prompt selection (Web) service. The
delivery service examines the content of each commit (or diff), exe-
cutes each rule (i.e. regular expression) from the database, selecting
a prompt from the set of available reflection prompts. Following
the selection, the service extracts the student’s e-mail address from
GitHub’s payload, and uses it to immediately send an e-mail to
the student containing the reflection prompt and brief instructions.
The e-mail uses the instructor’s account, for which we use GMail’s
RESTful Web service, although many other general alternatives are
possible. Once the prompt is delivered to students, the students
compose answers to the prompts as e-mail replies that are sent to
the instructor of the course.

3.2 Reflection Prompts
We designed a set of reflection prompts to help students learn secure
design principles as they are applied in mobile application devel-
opment. We considered two dimensions when designing reflection
prompts, content relevancy and work relevancy.

To establish content relevancy, we identified a list of secure de-
sign principles, secure coding standards, and secure coding best
practice. Saltzer and Schroeder devised a list of principles for infor-
mation protection, such as, fail-safe default, least privilege, separa-
tion of privilege, and complete mediation [16]. These principles are

1An alternative to this is for the instructor to reuse existing prompts on a specific
topic.

often used as guidelines to develop secure systems, and discussed
in well-known textbooks, such as, "Computer Security: Art and
Science" by Bishop [3] and "Security in Computing" by Pfleeger and
Pfleeger [14]. More recently, Smith revisited Saltzer and Schroeder’s
principles and gave them a contemporary treatment, yielding a
list of overlapping secure principles [20]. In addition, for Android
mobile app development, more specific secure development recom-
mendations exist, such as, the Android Secure Coding Standard by
the Software Engineering Institute [21] (the secure coding standard)
and Android’s “App Security Best Practices” [1] (the best practice).

We establish a mapping among the secure design principles, the
secure coding standard, and the best practice, and write prompts
aiming at providing students with opportunity to reflect on a se-
lected list of secure design principles. Table 1 lists all the concepts,
prompts and rules that we created. Although in this study we fo-
cus on secure software design principles, note that the reflective
prompts and the system we described can be applied to guide stu-
dents through various CS topics (e.g. operating systems, program-
ming languages) with easy to discern patterns in the source code.

4 PRELIMINARY STUDY RESULTS
To investigate the impact of the automated prompt-based reflection
on students’ learning, we conducted a studywith about 80 computer
science students, focusing on concepts in software security. During
the study we collected a set of preliminary results based on students’
reflections and surveys, that we present in this section.

4.1 Method
We deployed the system and the prompts in a Fall 2018 Software
Engineering course taught at one of the authors’ affiliated institu-
tions to junior and senior undergraduate students. The course is
based on a large scale group project, an Android App of student’s
own choosing, spanning 3 graded iterations each lasting roughly 2
weeks. A lecture on secure software development was delivered in
class, discussing overall principles and a set of examples extracted
from real-world Android security exploits [1, 16, 20].

Students were informed about the automated prompt-based re-
flection project upon beginning of the study. Participation in the
study was voluntary, although was encouraged with a bonus point.

We run the rule-based automatic prompt-based reflection system
for the period about 5 weeks, covering 2 out of 3 project iterations,
starting from October 4, 2018 to November 12, 2018. Based on



ITiCSE’19, 15-17 July 2019, Aberdeen, UK Hui Chen, Agnieszka Ciborowska, and Kostadin Damevski

Table 1: Security-related reflection prompts targeting mobile development.

Secure Principles
by Saltzer and
Schroeder [16]
and Smith [20]

Regex Rule Prompt

Least Privilege "<uses-permission" in
AndroidManifest.xml

I noticed that your app requires the use of a new permission (defined in the Android Manifest
file). Permissions may pose a risk to users’ privacy so I would like you to answer these
questions: 1) Is the permission necessary for the functioning of your app? 2) Does your app
need to hold the permission all the time when the app is running? If not, when should you
request the permission and when should you relinquish the permission? 3) Explain how does
the Principle of Least Privilege that we discussed in class relate to this scenario?

Fail-safe default /
Deny by default

"<provider" in
AndroidManifest.xml

I noticed that you declared a new Content Provider in your Android Manifest file. Recall that if
you do not wish to send data from your app to another app, which you probably do not, you
should understand the "android:exported" attribute of the provider element and make sure the
value of it is set properly. Explain how does the use of a content provider and setting this
attribute relate to the the Principle of Deny by Default we discussed in class?

Least common
mechanism /
Chain of control

"new\s+Intent.+ACTION"
in *.java

I noticed that you are using an implicit Intent. Think about the fact that the data we package in
an implicit Intent can be received by anyone that registers for that Intent broadcast. Do you
think this exploit is possible for your application? Explain how this scenario relates to the
principle of Chain of Control we discussed in class?

Least common
mechanism /
Chain of control

"openFileOutput\(" in
*.java

I noticed that your app stores data in a file. Does the stored data contain any sensitive
information? Who has access to the data (i.e. is it internal or external storage)? Explain how
this scenario relates to the principle of Chain of Control we discussed in class?

Least common
mechanism /
Chain of control

"Log\." in *.java

I noticed that you wrote logging statements. This is great as logging is an important means to
diagnose an application in development and in production. Consider the contents of the logged
data; could it be considered sensitive to security or privacy? Explain how this scenario relates
to the principle of Chain of Control we discussed in class?

the student’s commit pushed to the remote repository on Github,
the system automatically determines whether a security related
reflection prompt should be sent. The student may receive multiple
reflection prompts, however a reflection prompt is not sent twice
to the same student. Upon the conclusion of each iteration, we sent
an anonymous and voluntary post-reflection survey.

4.2 Data Collection
Over the course of the study, we collected data about student’s
reflections, including answers to the reflection prompts, the time
of sending a prompt and the time of receiving an answer. Overall,
we sent 35 reflective prompts and gathered 26 responses from 20
students.

At the end of an iteration, we sent the post-reflection survey
via email to students that received at least one prompt during the
iteration. The survey was designed to evaluate the efficacy of the
proposed approach from a viewpoint of a student. The questions
in the survey relates to e.g. prompts difficulty and relevancy, effort
required to answer a prompt and the influence of reflection on the
students’ knowledge.

4.3 Analysis and Evaluation
Data collected during the automated prompt-based reflection study
is depicted by Figure 3 composed of part (a) related to to the stu-
dents’ reflections and part (b) presenting the survey summary. Over-
all, the results are consistent with the literature and confirm that
students benefit from the reflection practice. Most of the students
that received the reflection prompt, decided to participate in the

study (20 out of 29) and more than half of the provided answers
were completely to the instructor’s satisfaction. The voluntary post-
reflection survey was completed by 15 out of 20 students, with 13
students that responded to the received prompt. The post-reflection
survey indicates that students generally had positive feeling toward
the reflection process. It is noteworthy that 1/3 of students (5) who
answered the survey realized their violation of secure design princi-
ples only after they received the prompts, and almost equal number
of students (6) indicated that they either modified or planned to
modify their code in a result. The majority of these students con-
sidered the reflection process had great impact on their learning of
secure design principles and practice.

In the following, we discuss a few observations from the data.
Students’ reflections sizes.We measure the size of a student’s re-
flection using word count. The distribution of words per an answer
is presented in the upper part of Figure 3. The number of words
in a reflection is commonly over 100 words (16 out of 26 reflec-
tions) implying that most of the students engaged in the reflection
process.
Timing of the prompts. One of the objective of the study was
to provide students with the reflection prompt at convenient time.
Analyzing the time interval between sending the prompt and re-
ceiving the student’s answer, we observe that only 10 out of 26
responses were provided within the first day of receiving the reflec-
tion prompt, although this results may have been influenced by the
medium used to disseminate prompts as the frequency of checking
an e-mail application may vary between students.

To evaluate the timing of prompts from students’ perspective,
during the survey the students were asked to assess if they were



Using Automated Prompts for Student Reflection ITiCSE’19, 15-17 July 2019, Aberdeen, UK

Figure 3: Overview of the data collected via the preliminary study consisting of reflection responses(a) and a post-reflection
participant survey (b).

bothered by receiving the prompt while working on the project. All
of 13 students that responded to the prompts answered that they
were either not bothered at all or slightly bothered. However, the 2
survey participants who did not answer the prompts, indicated that
the reason for not responding was that they were too busy to reflect.
It seems that sending the reflection prompts when students update
the remote code repository is an appropriate time only to some
students but not to all. This also could be an indication that the
students who are not bothered by the prompts may have reached a
milestone in their project work.
Quality of the reflection prompts. We consider two factors
when determining prompt quality: relevancy of the prompts to
the course material and difficulty to answer the prompts. All the 15
survey respondents answered that prompts are somewhat relevant
or very relevant to the course material. Only 1 student believed that
the prompt was too difficult to answer, while 12 students indicated
that the prompts were somewhat difficult. Based on these results,
we conclude that the prompts were relevant and at a proper level
of difficulty to reflect effectively.
Students’ effort of reflections.Only 2 students claimed that they
spent more than 30 minutes to answer the reflection prompts, while
most of the students, 8 out of 13, estimated they needed between 10
and 30 minutes to provide a response. This result suggests that the
prompts did not put significant additional burden on the students,
while allowing them to refresh or expand their knowledge.
Impact on students’ learning. Finally, we examine the impact
of the automatically prompted reflection on students’ learning ef-
fectiveness and outcomes. 5 out of 13 students reported they were
not aware of potential security risks in their code, however, all of
them indicated that they had revised or had a plan to revise the
code as the result of answering the prompts. In addition, one of
the students, that was aware of the risk, also decided to revise or

improve the code. Most of the students, 10 out of 13, indicated that
the reflection helped them gain additional insights or strengthened
their knowledge of security principles.

4.4 Students’ Comments and Reflection
Analyzing the student’s free-text comments collected via the post-
reflection survey, we noticed that students found the reflective
practice to be beneficial for their learning process. For instance,
one student wrote,
“I think it was extremely helpful as it forced me to research and refresh my
mind to answer. It was also helpful in relation to our final [...]. The prompt
was also good because it wasn’t just a straightforward question, but it had
information and terms I did not know so I was able to research and gain
more knowledge before answering.”

and yet another indicated,
“Not logging certain information was something I never thought about
being a possible security crack in a program. But it does make perfect sense
that you need to be careful to not log information that could be exploited.”

These comments reveal that students, encouraged by the reflec-
tion, are able to expand their knowledge and gain new insights
by conducting additional research. In addition, some of students’
reflections show that the students pondered alternatives and gained
practical experience by relating the reflection process to real-world
applications, such as,
“[t]he logging statements I used were mainly for debugging purposes. How-
ever, they did print out the toString of events that the user created for the
calendar. This could be considered sensitive information, as the user might
not want any outside sources seeing these events. Much like the Principle of
Chain Custody says, the programmer should not log anything that could
be considered sensitive or private, as the log can be obtained rather easily,
like by connecting an Android device to a PC. In a future iteration, I will be
sure to remove logging statements that output the toString of the user’s



ITiCSE’19, 15-17 July 2019, Aberdeen, UK Hui Chen, Agnieszka Ciborowska, and Kostadin Damevski

events before I update the repository, in order to protect the user’s privacy,
or ensure that I am not logging any private information.”

4.5 Threats to Validity
This exploratory study aims to show that an automatic prompt-
based reflection system can be applied to computer science courses
to help students improve learning outcomes. While the sample size
of this case study is not large enough to provide any robust and
general conclusions, the collected data provides some evidence that
the described intervention via the system is consistent with the
literature on applying reflection.

The work suffers several threats to validity. For instance, there
are a few threats to external validity. First, we informed students
that we wanted to observe how they would respond to reflection
prompts, which would influence students’ decision whether to take
part in the study. This is in effect an instance of “Hawthorne effect
(attention causes differences)”. Second, it might as well be that these
group of students were the very first to be prompted for reflection.
This is an example of “novelty and disruption effect (anything dif-
ferent makes a difference)”. Because this intervention is new to
them, the students responded to the uniqueness of the approach
rather than the actual reflective practice. Third, we designed and
implemented the system, and unknowingly implemented reflective
intervention in a way that worked with this group of students.
However, whether other educators can achieve the same results
while using our system remains untested. This is in effect called “ex-
perimenter effect”. We discuss in part some approaches to alleviate
these threats in Section 5.

5 CONCLUSIONS AND FUTUREWORK
This paper describes a strategy for automated prompt-based reflec-
tion. Using a rule-based prompt delivery system, we instantiate this
strategy for teaching secure development in mobile programming
courses. We present preliminary results based on our experience in
applying the system and strategy to a junior-level computer science
course. The results show that the system enables us to scale-up
prompt based reflection. The students were relatively positive on
their experience responding to the prompts, while the quantitative
data also show high rate of prompt responses.

Apart from growing the scale of this study to increase sample
size and variety, we consider a few enhancement of the automatic
prompt-based reflection system. First, the prompts at present are
hand-written and selected by the system based a set of rigid rules.
It is easy to make a mistake in the rules which results in the wrong
prompt being delivered to the student. Our aim to enhance the
way instructors can express the prompt delivery rules, or provide
automated targeting of prompts without rules, e.g., based on past
student commit histories.

Apart from this, we are also interested in improving and expand-
ing the set of prompts targeting mobile application development.
As one student commented in our post-reflection survey: “could ask
more challenging questions that we haven’t covered, like those related
to databases or storing passwords, etc.”

REFERENCES
[1] Android. 2018. App security best practices. (2018). available via https://developer.

android.com/topic/security/best-practices, retrieved November 12, 2018.

[2] Eric P.S. Baumer, Vera Khovanskaya, Mark Matthews, Lindsay Reynolds, Victoria
Schwanda Sosik, and Geri Gay. 2014. Reviewing Reflection: On the Use of
Reflection in Interactive System Design. In Proceedings of the 2014 Conference
on Designing Interactive Systems (DIS ’14). ACM, New York, NY, USA, 93–102.
https://doi.org/10.1145/2598510.2598598

[3] Matt Bishop. 2003. Computer security: art and science. Addison-Wesley Profes-
sional.

[4] Christopher N. Bull and Jon Whittle. 2014. Supporting Reflective Practice in
Software Engineering Education through a Studio-Based Approach. IEEE Software
31, 4 (July 2014), 44–50. https://doi.org/10.1109/MS.2014.52

[5] John W. Coffey. 2017. A Study of the Use of a Reflective Activity to Improve
Students’ Software Design Capabilities. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education (SIGCSE ’17). ACM, New
York, NY, USA, 129–134. https://doi.org/10.1145/3017680.3017770

[6] Stephen H. Edwards. 2004. Using Software Testing to Move Students from
Trial-and-error to Reflection-in-action. SIGCSE Bull. 36, 1 (March 2004), 26–30.
https://doi.org/10.1145/1028174.971312

[7] Angela Fessl, Oliver Blunk, Michael Prilla, and Viktoria Pammer. 2017. The
known universe of reflection guidance: a literature review. International Journal
of Technology Enhanced Learning 9, 2-3 (2017), 103–125.

[8] Linda Finlay. 2008. Reflecting on reflective practice. PBPL paper 52 (2008),
1–27. Available: https://www.open.ac.uk/opencetl/resources/pbpl-resources/
finlay-l-2008-reflecting-reflective-practice-pbpl-paper-52.

[9] Cindy E Hmelo-Silver, Ravit Golan Duncan, and Clark A Chinn. 2007. Scaffolding
and achievement in problem-based and inquiry learning: A response to Kirschner,
Sweller, and Clark (2006). Educational psychologist 42, 2 (2007), 99–107.

[10] Norio Ishii and Kazuhisa Miwa. 2005. Supporting Reflective Practice in Creativity
Education. In Proceedings of the 5th Conference on Creativity & Cognition (C&C
’05). ACM, New York, NY, USA, 150–157. https://doi.org/10.1145/1056224.1056246

[11] Paul A Kirschner, John Sweller, and Richard E Clark. 2006. Whyminimal guidance
during instruction does not work: An analysis of the failure of constructivist,
discovery, problem-based, experiential, and inquiry-based teaching. Educational
psychologist 41, 2 (2006), 75–86.

[12] Äli Leijen, Kai Valtna, Djuddah AJ Leijen, and Margus Pedaste. 2012. How to
determine the quality of students’ reflections? Studies in Higher Education 37, 2
(2012), 203–217.

[13] Stephen MacNeil. 2017. Tools to Support Data-driven Reflective Learning. In
Proceedings of the 2017 ACM Conference on International Computing Education
Research (ICER ’17). ACM, New York, NY, USA, 299–300. https://doi.org/10.1145/
3105726.3105745

[14] Charles P Pfleeger and Shari Lawrence Pfleeger. 2002. Security in computing.
Prentice Hall Professional Technical Reference.

[15] Gary Rolfe. 1997. Beyond expertise: theory, practice and the reflexive practitioner.
Journal of clinical nursing 6, 2 (1997), 93–97.

[16] Jerome H Saltzer and Michael D Schroeder. 1975. The protection of information
in computer systems. Proc. IEEE 63, 9 (1975), 1278–1308.

[17] Henk G Schmidt, Sofie MM Loyens, Tamara Van Gog, and Fred Paas. 2007.
Problem-based learning is compatible with human cognitive architecture: Com-
mentary on Kirschner, Sweller, and Clark (2006). Educational psychologist 42, 2
(2007), 91–97.

[18] Donald A. Schön. 1987. Educating the Reflective Practitioner: Toward a New Design
for Teaching and Learning in the Professions. Wiley. https://books.google.com/
books?id=qqxsQgAACAAJ

[19] Moushumi Sharmin and Brian P. Bailey. 2013. ReflectionSpace: An Interactive
Visualization Tool for Supporting Reflection-on-action in Design. In Proceedings
of the 9th ACM Conference on Creativity & Cognition (C&C ’13). ACM, New York,
NY, USA, 83–92. https://doi.org/10.1145/2466627.2466645

[20] Richard E Smith. 2012. A contemporary look at Saltzer and Schroeder’s 1975
design principles. IEEE Security & Privacy 10, 6 (2012), 20–25.

[21] Software Engineering Institute. 2018. Android Secure Coding Standard. (2018).
available via https://wiki.sei.cmu.edu/confluence/display/android, retrieved No-
vember 12, 2018.

[22] Jeffrey A. Stone. 2012. Using Reflective Blogs for Pedagogical Feedback in CS1. In
Proceedings of the 43rd ACM Technical Symposium on Computer Science Education
(SIGCSE ’12). ACM, New York, NY, USA, 259–264. https://doi.org/10.1145/2157136.
2157216

[23] John Sweller, Paul A Kirschner, and Richard E Clark. 2007. Why minimally
guided teaching techniques do not work: A reply to commentaries. Educational
psychologist 42, 2 (2007), 115–121.

[24] Andrew M. Webb, Rhema Linder, Andruid Kerne, Nic Lupfer, Yin Qu, Bryant
Poffenberger, and Colton Revia. 2013. Promoting Reflection and Interpretation in
Education: Curating Rich Bookmarks As Information Composition. In Proceedings
of the 9th ACM Conference on Creativity & Cognition (C&C ’13). ACM, New York,
NY, USA, 53–62. https://doi.org/10.1145/2466627.2466636

[25] Yu-Chun Grace Yen, Steven P. Dow, Elizabeth Gerber, and Brian P. Bailey. 2017.
Listen to Others, Listen to Yourself: Combining Feedback Review and Reflection
to Improve Iterative Design. In Proceedings of the 2017 ACM SIGCHI Conference
on Creativity and Cognition (C&C ’17). ACM, New York, NY, USA, 158–170.

https://developer.android.com/topic/security/best-practices
https://developer.android.com/topic/security/best-practices
https://doi.org/10.1145/2598510.2598598
https://doi.org/10.1109/MS.2014.52
https://doi.org/10.1145/3017680.3017770
https://doi.org/10.1145/1028174.971312
https://www.open.ac.uk/opencetl/resources/pbpl-resources/finlay-l-2008-reflecting-reflective-practice-pbpl-paper-52
https://www.open.ac.uk/opencetl/resources/pbpl-resources/finlay-l-2008-reflecting-reflective-practice-pbpl-paper-52
https://doi.org/10.1145/1056224.1056246
https://doi.org/10.1145/3105726.3105745
https://doi.org/10.1145/3105726.3105745
https://books.google.com/books?id=qqxsQgAACAAJ
https://books.google.com/books?id=qqxsQgAACAAJ
https://doi.org/10.1145/2466627.2466645
https://wiki.sei.cmu.edu/confluence/display/android
https://doi.org/10.1145/2157136.2157216
https://doi.org/10.1145/2157136.2157216
https://doi.org/10.1145/2466627.2466636


Using Automated Prompts for Student Reflection ITiCSE’19, 15-17 July 2019, Aberdeen, UK

[26] Jose P. Zagal and Amy S. Bruckman. 2007. GameLog: Fostering Reflective Game-
playing for Learning. In Proceedings of the 2007 ACM SIGGRAPH Symposium on

Video Games (Sandbox ’07). ACM, New York, NY, USA, 31–38.


	Abstract
	1 Introduction
	2 Background and Related Work
	3 Recommending Prompts for Reflection
	3.1 Rule-Based Recommendation System
	3.2 Reflection Prompts

	4 Preliminary Study Results
	4.1 Method
	4.2 Data Collection
	4.3 Analysis and Evaluation
	4.4 Students' Comments and Reflection
	4.5 Threats to Validity

	5 Conclusions and Future Work
	References

