
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTEMBER 2017 1

Predicting Future Developer Behavior in the IDE
Using Topic Models

Kostadin Damevski, Hui Chen, David C. Shepherd, Nicholas A. Kraft, and Lori Pollock

Abstract—While early software command recommender systems drew negative user reaction, recent studies show that users of
unusually complex applications will accept and utilize command recommendations. Given this new interest, more than a decade after
first attempts, both the recommendation generation (backend) and the user experience (frontend) should be revisited. In this work, we
focus on recommendation generation.
One shortcoming of existing command recommenders is that algorithms focus primarily on mirroring the short-term past — i.e.,
assuming that a developer who is currently debugging will continue to debug endlessly. We propose an approach to improve on the
state of the art by modeling future task context to make better recommendations to developers. That is, the approach can predict that a
developer who is currently debugging may continue to debug OR may edit their program.
To predict future development commands, we applied Temporal Latent Dirichlet Allocation, a topic model used primarily for natural
language, to software development interaction data (i.e., command streams). We evaluated this approach on two large interaction
datasets for two different IDEs, Microsoft Visual Studio and ABB Robot Studio. Our evaluation shows that this is a promising approach
for both predicting future IDE commands and producing empirically-interpretable observations.

Index Terms—command recommendation systems; IDE interaction data;

F

1 INTRODUCTION

Since Microsoft’s digital assistant Clippy, embedded within
Microsoft Office for Windows, first uttered the words, “It
looks like you’re writing a letter. . . ”, command recom-
mender systems have drawn the ire of the public. Based on
a misunderstanding of research which suggested that users
interact with their computers as they would humans [1],
Clippy patronized a generation of users, leading not only
to its removal from Office, but also to a near-complete ab-
sence of command recommendation systems from desktop
software.

Much has changed since Clippy’s demise in 2004. Desk-
top software has become increasingly complex, with appli-
cations such as AutoCAD, a 3D modeling system, growing
to have thousands of commands [2]. Accordingly, users can
be overwhelmed by the volume of available commands and
thus have become more receptive to recommender systems
and their suggestions, as demonstrated, for example, by
a study in which over 700 AutoCAD users downloaded
and utilized a command recommender system for over 30
days [3].

• K. Damevski is with the Department of Computer Science, Virginia
Commonwealth University, Richmond, VA, 23284, U.S.A.
E-mail: damevski@acm.org

• H. Chen is with the Department of Computer and Information Science,
Brooklyn College of the City University of New York, Brooklyn, NY,
11210, U.S.A.
E-mail: huichen@ieee.org

• D.C. Shepherd and N.A. Kraft are with ABB Corporate Research, Raleigh,
NC, 27606, U.S.A.
E-mail: {david.shepherd,nicholas.a.kraft}@us.abb.com

• L. Pollock is with the Department of Computer and Information Sciences,
University of Delaware, Newark, DE, 19350, U.S.A.
E-mail: pollock@udel.edu

Manuscript received December 14, 2016; revised February 17, 2017.

Similar to 3D drawing systems, Integrated Development
Environments (IDEs), which are often extensible via plug-
ins, have manifest command overload for many years.
Developers who use these IDEs commonly exercise only a
fraction of their capabilities [4], [5], while novices often feel
overwhelmed by the breadth of commands [6]. Attempts
have been made to reduce this complexity — e.g., by filter-
ing commands not relevant to the current context [7], [8] or
suggesting commands to help increase developer fluency [9]
— but no system has yet demonstrated promise for use in
practice, partly due to the ineffectiveness of their underlying
recommendation engines.

Towards increasing the use of command recommen-
dations in an IDE, this paper presents a new modeling
approach for recommendation generation. The technique
leverages ideas from natural language topic modeling that
can effectively model future task context, to predict the next
set of tasks that a developer will perform in the IDE. While
the state of the art software engineering recommendation
systems rely on past task context, assuming that the fu-
ture mirrors the short-term past, we model the future task
context explicitly, enabling better quality recommendation
generation for IDEs. For instance, our system can predict
that, after searching code via grep, a developer is likely
to explore the identified code via structural navigation
rather than to simply continue searching. Our technique
is practical in that it both addresses the noisy nature of
IDE interactions [10], which are the basis for the prediction,
and captures their streaming (time-based) nature, which has
rarely been modeled in the past [11], [12], [13].

A secondary contribution of this paper is that the con-
structed model is interpretable, allowing for analysis by
researchers to determine the relationships between extracted
high-level IDE user behaviors. Such analysis can be per-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTEMBER 2017 2

formed to examine individual tendencies, or as a holistic
examination of IDE-developer interactions, which can guide
understanding of how developers work in the field, con-
tributing to empirical research in software engineering by
validating findings from laboratory studies.

Specifically, we describe how to adapt and apply a pop-
ular probabilistic topic model, Latent Dirichlet Allocation
(LDA) to IDE interaction data, which is in itself a novel (and
effective) contribution. We also demonstrate why this model
is appropriate for extracting high-level behaviors from low-
level interaction datasets. We leverage a variant of LDA that
takes time into account, called Temporal LDA, and describe
a technique to train this model using historical interaction
data and use it for online development task prediction
during a developer’s interaction with the IDE. Results on
two large interaction datasets, one of nearly 200 Microsoft
Visual Studio users and another of more than 25,000 ABB
Robot Studio users, show that the prediction is accurate and
interpretable, yielding insights on transitions between high-
level behaviors of developers in the field.

The rest of the paper is organized as follows. We begin by
describing in detail the features of the IDE interaction data,
available at scale, which serves as input to our approach in
Section 2. Next, in Section 3, we describe what makes topic
models appropriate for interaction data, while Section 4
discusses the related work. In Section 5, we describe the
details of Temporal LDA, while Section 6 shows the pre-
liminary results in applying this model. Section 7 discusses
the settings for some of the important parameters of our
approach. Finally, Section 8 presents the conclusions and
future work of this paper.

2 IDE INTERACTION DATA ANALYSIS CHAL-
LENGES

Interaction data captured in the field, during the daily
work of professional developers, exhibits distinguishing
characteristics that are common across different IDEs: (1)
numerous kinds of interactions and a very large set of
reasonable interaction sequences (or paths) exist; and (2)
interactions are captured exhaustively and not extensively
pre-filtered, thus the data reflects most clicks, key-presses
and events in the IDE. The collected IDE interaction traces,
in turn, exhibit the following characteristics, relative to other
kinds of user interaction data (e.g., generic web page click-
through datasets), which pose the main challenges in data
analyses:

• comprise of both events and commands – events that
reflect the state of the tool are captured in the same
trace as commands that reflect user actions.

• exponentially distributed1 – some events or commands
dominate the trace (e.g., cursor movement com-
mands), while most other commands occur relatively
infrequently.

• noisy – the traces include spurious commands (or
clicks), or unrelated events, that may not be impor-
tant to the behavior of interest.

1. Strictly speaking, the geometric distribution, which is the discrete
counterpart of the exponential distribution is more accurate.

• partially ordered – the order of the events or com-
mands is important in certain analyses, but not im-
portant in others, as often there are many different
interaction paths in accomplishing a high-level task.

To illustrate the data characteristics and associated anal-
ysis challenges, Figure 1 depicts real interaction traces from
Microsoft Visual Studio, focusing on a single developer
as she is starting to debug, by first setting a breakpoint
followed by starting execution in the debugger. While each
individual snippet shows this behavior, we observe that
other commands and events are interspersed between the
two commands for setting a breakpoint and debugging, and
that sometimes even the order of these two commands may
not matter (i.e., a breakpoint can be set after the debugger
has been started and achieve the same goal).

3 INTERACTION DATA ANALYSIS VIA TOPIC MOD-
ELING

To our knowledge, topic models, which are commonly used
to model natural language text, have not been applied to
modeling interaction data, particularly IDE interaction data.
The use of topic models is motivated by their capability to
reduce dimensionality, which could be useful to raise the
level of abstraction in IDE interaction data from low-level
interaction messages to higher level developer behaviors.
However, the possibility to apply these models relies on
how difficult it is to adapt the modeling technique from
natural language text to IDE interaction data. Here, we
examine how in certain important ways, IDE interaction
logs indeed mimic natural language text, which inspired
our investigation into this modeling technique for command
recommendation generation.

3.1 IDE Interaction Data and Natural Language Text
Both natural languages and interaction traces possess local reg-
ularity and repetition. In IDE interaction data, the number
of interactions per unit of time, for a typical developer,
during their daily work can be large. We differentiate the
number of interactions, which is the count of messages in the
interaction trace over a period of time, from the number of
interaction types, which is the number of unique messages in
the log. In our dataset, we commonly observe Visual Studio
developers with 5,000 interactions per day. In addition, the
number of interaction types that can be observed in a typical
IDE is also large. We have observed approximately 1,200
interaction types in Visual Studio and nearly 4,000 in Robot
Studio.

When we examine a smaller unit of the log, such as an
hour of one developer’s work, we find that the number
of interaction types is small, consisting of usually highly
regular and repetitive patterns. This is expected, as within
a small period of time, a developer is likely focusing on
a specific task and interacting with a small subset of the
development environment which consists of relatively few
interactions. In natural language text, similar words tend to
occur within a paragraph or document, a notion sometimes
referred to as ”naturalness” [14]. We posit that this regu-
lar behavior and naming relations between the interaction
types within smaller units of IDE usage time mimics the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTEMBER 2017 3

2013-11-18 11:17:58,Debug.EnableBreakpoint
2013-11-18 11:17:59,View.OnChangeCaretLine
2013-11-18 11:18:02,Debug.ToggleBreakpoint
2013-11-18 11:18:03,View.Output
2013-11-18 11:18:03,Debug.Start

2013-11-18 12:06:34,Debug.ToggleBreakpoint
2013-11-18 12:06:46,View.Solution Explorer
2013-11-18 12:06:57,View.File
2013-11-18 12:06:59,View.Output
2013-11-18 12:06:59,Debug.Start

2013-11-18 12:33:33,Debug.ToggleBreakpoint
2013-11-18 12:33:35,Debug.Start

2013-11-18 15:49:31,Debug.Start
2013-11-18 15:49:31,Build.BuildBegin
2013-11-18 15:49:32,Build.BuildDone
2013-11-18 15:49:39,Debug.Debug Run Mode
2013-11-18 15:49:41,View.File
2013-11-18 15:49:41,Debug.Debug Break Mode
2013-11-18 15:49:59,Debug.ToggleBreakpoint

setting a breakpoint (C)
starting the debugger (C)

moving the cursor in the editor window (C)

clicking on the output window (C)

clicking in the project (solution) explorer (C)
a new file is opened in the editor (E)

starting to build solution (C,E)
the build is complete (E)

stopped on a breakpoint (E)

enabling a disabled breakpoint (C)

the debugger is executing the program (E)

Fig. 1. Four interaction log snippets, showing a developer setting a breakpoint and starting the debugger. In interactions exhibiting this behavior,
a variety of additional IDE commands (C) and events (E) are often interspersed with the direct commands that toggle a breakpoint and start the
debugger.

naturalness of text writing, and suggests that models used
for analyzing natural language text might apply to IDE
interaction data.

IDE interaction data exhibits naming relations such as syn-
onymy and polysemy. A common goal of interaction trace
logging is to capture as many different interactions as pos-
sible, that is, to be exhaustive (see Section 2). Thus, the trace
often contains multiple messages that share meaning in a
specific behavioral context. For instance, in Visual Studio’s
interaction log, opening the Find window using a shortcut
produces a slightly different message compared to opening
the same window by using the dropdown menu. Another
example is shown in Figure 1, where both ToggleBreakpoint
and EnableBreakpoint have the same meaning in the same
context. This is similar to the notion of synonymy in natural
languages, where several words have the same meaning in
a given context.

Similarly, IDE commands carry a different meaning
depending on the task that the developer is performing.
For example, an error in building the project after pulling
code from the repository has a different meaning than
encountering a build error after editing the code base. This
characteristic is akin to polysemy in natural language, where
one word has several different meanings based on its con-
text. Thus, the natural language concepts of polysemy and
synonymy are similar to these observed patterns in the log,
where there could be several words that have one meaning
and one word can have different meanings depending on
context. All of these observations motivate the consideration
of models used for natural language to be applied to IDE
interaction data analysis.

3.2 Models, Documents, and Words

One goal of IDE interaction data analysis is to discover
the developer’s high level task behavior such as structured
navigation, by discovering and interpreting sequences of
lower level interaction events and commands [12]. A com-
mon approach to extracting and interpreting high level
information from low level information in natural language
is to use topic modeling to reduce the dimensionality of
the natural language text. The most common techniques
for topic modeling in natural language are Latent Dirichlet
Allocation (LDA) and Latent Semantic Indexing (LSI). In
this paper, we leverage the regularity and naming relations
of IDE interaction data described earlier to examine their
applicability of topic modeling for reducing the dimension-
ality of interaction data.

LDA is a mixed membership generative model [15] that
was independently developed for text [16] and for genet-
ics [17], respectively. Mixed membership models imply that
a population has multiple subpopulations, and an individual
in a sample is assigned to many subpopulations. For text,
the population can be a corpus of documents, and the
subpopulations are indexed by using topics. For genetics,
the populations can be corpora of genomes, and the sub-
populations are indexed by using genotypes. Besides text
and genetic data, LDA has also been applied to images,
social networks, music, purchase histories, and source code
to discover internal structures.

To apply LDA to IDE interaction data, we need notions
of a document and a word. The interaction log messages, as
a whole, can directly be used as the words. The notion of
a document in IDE interaction data analysis can be formu-
lated as any window of interaction events and commands
executed over a contiguous time interval. By applying LDA

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTEMBER 2017 4

to an IDE interaction window, we do not take into account
the order of interactions, but instead study the words in
the interaction data as a bag of words. We believe this is
a reasonable approach given the amount of noise present in
interaction datasets [10], and that many small scale tasks can
be accomplished by varying command orders (as observed
in Figure 1). We discuss the potential impacts of a bag of
words approach and our choices for the various parameters
in creating windows from the interaction log and in building
the LDA model in Section 7.

4 RELATED WORK

Today, large-scale interaction datasets are continuously
gathered for numerous software engineering tools, most
notably several modern IDEs2 [18], [19], [20]. Analyzing
IDE interaction data has presented opportunities for exam-
ining a broad range of software processes, including the
examination of developers’ preferred IDE views [21], com-
monly used (or under-used) refactoring commands [22], edit
styles [23], and feature location [5]. Apart from use in empir-
ical research, the most common goal of processing captured
interaction data has been to guide improvements to the soft-
ware development environment, prioritizing new features
or suggesting improvements to existing features [24], [25].

Analyzing interaction traces has also been popular in
other domains, such as generic business processes [26] and
web click data [27], though complex software interaction
traces differ from these in important ways (as discussed
in Section 2). General software execution logs, which only
loosely correspond to user interactions, have been the target
of approaches to raise their abstraction level in order to
improve their interpretability [28]. Iqbal et al. present a
model that can detect breakpoints (i.e. transitions between
tasks) [29], opportune moments to deliver notifications or
recommendations to a user of a complex software applica-
tion. The proposed breakpoint detection model is created
using supervised learning, and requires a user annotated
dataset of breakpoints specific to a particular application,
while this paper’s technique uses unsupervised learning.

There are several notable approaches that use IDE inter-
action data to build recommendation systems in software
engineering [30]. Mylyn surfaces source code artifacts and
IDE views that are relevant to a specific task, based on
the developer’s past interaction data accumulated for that
specific task (i.e., its task context) [31]. Murphy-Hill et
al. built an IDE command recommendation system based
on several algorithms, including collaborative filtering and
most frequently used commands [9]. While none of the rec-
ommendation algorithms used a per-developer task context,
several of them relied on task context aggregated across
the population of all developers, for example, by modeling
how developers use specific new commands as frequent
sequential patterns.

Our paper introduces two novel contributions beyond
these previous efforts: 1) an exploration of the notion of
using natural language inspired, probabilistic models for
IDE interaction data; and 2) an approach for predicting the

2. The Eclipse Usage Data Collection (UDC) dataset is an older, well-
known example.

future development command context in software devel-
opment. These contributions could benefit both empirical
research in software engineering by aiding understanding
of developer behavior in the field, without the observational
bias of lab studies (i.e. Hawthorne effect), as well as software
engineering recommendation systems by improving their
models of task context.

5 TEMPORAL LDA TOPIC MODELING AND PRE-
DICTION

We begin by first describing the specifics of Latent Dirichlet
Allocation (LDA) of IDE interaction data, followed by a
definition of its extension for time-based topic modeling,
Temporal LDA. Both models are initially created using
historic IDE interaction data, collected either for a single de-
veloper or globally across all developers. Once constructed,
the Temporal LDA model can be used for prediction and
updated online, during the developer’s interaction with the
environment.

5.1 LDA Model of IDE Interaction Data

To build the initial LDA model, we decompose past devel-
oper interaction with an IDE into a set of interaction sessions,
delimited by a period of inactivity of at least 5 minutes. We
choose this interval with the goal of ensuring that, most of
the time, a development task (e.g., structured navigation,
debugging) does not span two sessions3, which we validate
empirically by sampling and examining interaction traces.

To produce a reactive predictive model that can pre-
dict developer tasks in regular time intervals, rather than
sporadically, on an activity break, we further divide the
sessions into a succession of fixed-size windows, where each
window is a sequence of m commands and events. Using
shorter windows, rather than the sessions, also fosters better
temporal locality in the model. We train both the initial LDA
model with windows as documents as well as use windows
for the Temporal LDA model and prediction. The choice of
the parameter m, the number of interactions to include in a
window, is important to the reactivity and accuracy of the
model and is discussed in Section 7.

So, in applying LDA to interaction traces, a window
of interactions corresponds to a document, an interaction
message corresponds to a word, and a developer intention
corresponds to a topic. In the following description, we use
the interaction data specific terms (message, window, topic),
when describing the LDA model.

An interaction message, denoted as m, is the basic unit
of discrete data, while a vocabulary is the set of unique
messages in the dataset, which we denote as V . The num-
ber of messages in the vocabulary or the vocabulary size
is V = |V |. A interaction window is a sequence of N
messages denoted as m = (m1,m2, . . . ,mN) where mn

is the m-th message in the sequence. A corpus is a set of
M windows, denoted as D = {m1,m2, . . . ,mM} = m1:M

where M = |D|.

3. The converse that a session spans multiple tasks, is normal and
expected.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTEMBER 2017 5

α θd zw,n mw,n βk η
Nw

M

K

Fig. 2. Directed graphical model representation of LDA. Nodes represent
random variables; edge denote possible dependences between random
variables (x→ y means xmight be dependent on y); observed variables
are shaded; unshaded nodes represent hidden (or latent) variables; a
rectangle is a plate representing a replicated structure.

A topic, denoted as β, is a probability distribution
over a fixed vocabulary. Specifically, if we assume K top-
ics are associated with the corpus, the topics are B =
{β1, β2, . . . , βK}. The K topics are thus defined by their
Probability Mass Functions (PMFs), e.g., the i-th topic βi is
defined by its PMF as P (m = mj) = βi,j wheremj ∈ V and
βi,j is a probability, and thus βi,j ≥ 0 and

∑V
j=1 βi,j = 1.

Note that each interaction window exhibits all of these K
topics; however, with different proportions, i.e., window w
exhibits a topic indexed by k, where 1 ≤ k ≤ K , with
proportion θw,k.

Given a set of observed windows from the IDE inter-
action data, we can train an LDA model to discover a set
of topics, which are latent (or hidden) variables. The LDA
model used in this paper can be summarized by the graph
model shown in Figure 2. As input, LDA requires the set of
messages in all of the windows in the corpus, represented
by the shaded variable mw,n and its surrouding plates
denoting repeated structures for windows and messages.
The variables (hyperparameters) shown on the right and
left side of Figure 2, η and α, can also be specified, affecting
the distribution of the topics in the corpus (α) and the
distribution of messages in each topic (η). Modifying these
variables defines how sparse or dense the LDA model will
become, with respect to its window to topic and topic to
message relationships.

Note that we use a variant of LDA that features one
symmetric and one asymmetric Dirichlet distribution for the
priors parameterized by η and α. Prior work demonstrates
that symmetric prior on topics and asymmetric prior on topic
proportions produces better results than other variants [32].
In LDA, the priors are chosen to follow the Dirichlet
distribution for computational efficiency and mathematical
convenience since Dirichlet is a conjugate prior to the Multi-
nomial distribution, which is used to model the document
word (or message window) counts (i.e., the “bag of words”
representation).

5.2 Temporal LDA
IDE interactions, as they are occuring during a developer’s
daily work, comprise of a stream (or sequence) of sessions
(i.e., documents). Temporal LDA is an approach that extends
LDA to model document streams, which has previously
been proposed for predicting the topics distribution of a
new tweet given a succession of historical tweets [33].

Temporal LDA learns a transform matrix that captures
the transition of LDA topics between two consecutive

θ
(u)
t,1

. . .

θ
(u)
t,i

. . .

θ
(u)
t,K

θ
(u)
t+1,1 =

K∑
k=1

θ
(u)
t,k Tk1

K∑
k=1

θ
(u)
t+1,k

. . .

θ
(u)
t+1,i =

K∑
k=1

θ
(u)
t,k Tki

K∑
k=1

θ
(u)
t+1,k

. . .

θ
(u)
t+1,K =

K∑
k=1

θ
(u)
t,k TkK

K∑
k=1

θ
(u)
t+1,k

T11

T1i

T1K

Ti1

Tii

TiK

TK1

TKi

TKK

Fig. 3. The Temporal LDA model captures topic-to-topic transitions in
consecutive windows of interactions.

windows of developer interactions. We conceptualize the
Temporal LDA model in Figure 3, where θ

(u)
t = {θ(u)t,i :

1 ≤ i ≤ K} is the topic portions of developer u’s in-
teraction sequence at the window indexed by time t and
T = (Tij : 1 ≤ i ≤ K, 1 ≤ j ≤ K) is the transform matrix.

Note that Tij , an element in the transform matrix, is
not a probability value. Instead, Tij is the weight of θ(u)t,i ’s
contribution to θ

(u)
t+1,j , which indicates how strongly topic

j exhibited in an interaction sequence window at time
t + 1 is influenced by topic i exhibited in an interaction
sequence window at time t; this influence can be positive or
negative. Therefore, we should not consider Temporal LDA
as a probabilistic model even though the topic proportions
of a document at time t, i.e., θ(u)t depends on the topic
proportions at time t + 1, i.e., θ(u)t+1, where both θ

(u)
t and

θ
(u)
t+1 are probability distributions of topics.

An essential task in building Temporal LDA is to deter-
mine the transform matrix T for a set of developers U . To
this end, we resort to the determining the solution of the
following linear equation system,

Θ1T = Θ2 (1)

where Θ1 and Θ2 are L by K matrices, where L ≤ M − 1
and M is the number of interaction sequence windows in
the corpus. This indicates that some interaction sequence
windows cannot be used to obtain the transform matrix, as
a result of the following constraint, row i in Θ1 and that in
Θ2, 1 ≤ i ≤ L must satisfy the following condition,

Θ1,i = (θu1
ti,j

: 1 ≤ j ≤ K,u1 = u2 = u ∈ U) (2)

Θ2,i = (θu2
ti+1,j : 1 ≤ j ≤ K,u2 = u1 = u ∈ U) (3)

This constraint states that both Θ1,i and Θ2,i must come
from two interaction sequence windows of the same de-
veloper in two consecutive windows ti and ti + 1 for any
developer u = u1 = u2 ∈ U .

Once T is obtained, we predict the topic distribution of
an interaction sequence at window t+ 1, i.e., θt+1 given the
topic distribution of an interaction sequence at window t,
i.e., θt as follows:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTEMBER 2017 6

θt+1 = θtT (4)

Updating the Temporal LDA model over time, in the
course of a developer’s interaction with the IDE, can be
performed in several ways, depending on the stability of the
learned model. For instance, if we observe that initial data
to train the LDA model is not representative, or assume that
the model can grow stale, we may choose to periodically
retrain the entire model, paying a significant performance
cost in the process. To make it practical, the rebuilding of the
model can be performed offline, e.g., overnight. Metrics like
perplexity and predictive likelihood can be used to measure
the quality of an LDA model with respect to newly arriving
data. On the other hand, if we observe that the initial LDA
model is of sufficient quality, we can focus on only updating
the transform matrix T, tailoring it further to each devel-
oper’s tendencies. In this case, the transform matrix can be
incrementally updated online using the original transform
matrix in a way that reduces computational cost [33].

5.3 Summary
We summarize applying the Temporal LDA model to inter-
action data as follows. Using entire, unsplit log messages as
words, and windows of m interactions in temporally con-
tiguous sequences as documents, we train an LDA model
using historical interaction data. The trained LDA model
and the (same or subset of) historical data is used to create
a transform matrix T, the underlying data structure of
the Temporal LDA model, used for making predictions of
future interaction topics when given the current window of
interactions. Trained in this way, the Temporal LDA model
can be used as part of the IDE, to improve how recom-
mendations are generated online, during a developer’s use
of the environment. The model can be updated at various
frequencies and with different subsets of the interaction
datasets produced, depending on assumptions of its quality,
computational cost, and the desire to tailor it to an individ-
ual developer or, more broadly, to all developers.

6 EVALUATION

To evaluate our approach of Temporal LDA for IDE inter-
action data analysis, towards predicting future developer
task context using an interpretable model, we designed our
evaluation with the intent of answering the following three
research questions:

• How accurate is Temporal LDA in predicting future
IDE interactions?

• How effective is Temporal LDA in recommending
IDE commands?

• Is Temporal LDA capable of producing models of
developer behavior that can be interpreted by those
familiar with the vocabulary of interaction log mes-
sages?

The first research question concerns the ability to predict
future behaviors (i.e. topics) exhibited by developers in the
IDE, while the second focuses on predicting an individual
commands of interest (e.g. ExtractClass refactoring),
which could be recommended to a developer. The third

0 1 2 3 4 5
number of hours per session

100

101

102

103

104

105

106

n
u
m

b
e
r

o
f

se
ss

io
n
s

(l
o
g
 s

ca
le

)

ABB Robot Studio
Microsoft Visual Studio

Fig. 4. Density plot of interaction session times (in hours) in the evalua-
tion datasets for ABB Robot Studio and Microsoft Visual Studio.

research question examines, via a case study, whether this
type of a model could be interpreted by developers, assum-
ing that they are familiar with the interaction log messages.

6.1 Evaluation Data Sources and Procedure
For evaluation, we use developers’ interaction traces for Mi-
crosoft Visual Studio and ABB Robot Studio. Visual Studio
is a well known general purpose IDE, while Robot Studio
is a popular IDE intended for robotics development that
supports both simulation and physical robot programming
and uses a programming language called RAPID. Both
datasets are large and representative.

The Robot Studio data represents 25,724 developers over
a maximum of 3 months of activity, or a total of 76,866
developer work hours. The Visual Studio data represents
196 developers at ABB, Inc. over a period of up to 12
months, or a total of 32,811 developer work hours.4 Individ-
ual developers were identified by their machine identifiers.
Otherwise, the data collection was completely anonymous
and demographic information was unavailable for either
dataset. Figure 4 shows a density plot of developer in-
teraction sessions for each of the two datasets, using a
session break threshold of 5 minutes of inactivity, as de-
scribed in Section 5. The density plot shows the presence
of numerous longer sessions that allow for evaluation of
the prediction accuracy based on session replay. As the
Robot Studio dataset represents a narrow time slice and
because interaction logs are not collected in real time and
can be cached for long periods on user machines, there are
numerous users that make a small contribution to our Robot
Studio dataset. Though their contribution to the dataset is
small, these users are not from different populations (e.g.
trial users vs. licensed users).

We formed training and test data sets by dividing the
data, such that the training data was used to train the Tem-
poral LDA model and the test set was used for evaluation.
We removed sessions that have only one window, due to
the constraint in equations (2) and (3), which states that

4. Available at: http://abb-iss.github.io/DeveloperInteractionLogs

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTEMBER 2017 7

TABLE 1
Summary of training and test data, after filtering of short sessions.

Training Data Test Data
IDE |U | V Nd Ns M Nhs Mh

VS

145

1275

25 19937 210688 3433 68660
145 50 13908 103877 1116 22320
145 100 8722 48819 241 4820
142 150 6178 29336 84 1680
142 200 4583 19730 32 640

RS

25239 5174 25 357428 1901854 6688 133760
25239 5174 50 341785 794168 1628 32560
16042 3445 100 136907 266152 356 7120
11389 2731 150 70939 75891 167 3340
8487 2339 200 42173 10804 115 2300

notations: VS – Microsoft Visual Studio; RS – ABB Robot Studio; |U | – number
of developers (or users); V – number of unique interactions; Nd – number of
interactions in each window (window size); Ns – number of sessions; M –
number of windows; Nhs – number of sessions that have test windows; Mh

– number of windows in the test data set.

we can only use sessions that have at least 2 consecutive
windows for training the model. For evaluation, we used
sessions with at least 20 windows, forming a test set by
reserving the last 20 windows from each session longer than
this threshold.

Table 1 depicts a summary of the training and test data.
For instance, after filtering out short sessions, the training
and test datasets contain 145 developers’ interactions with
Microsoft Visual Studio. These datasets are made of 1, 275
unique Visual Studio interactions, and when we set the
window size at 25 messages, there are 19, 937 sessions in
the data set, resulting in a total of 210, 688 windows for the
training set, while the test data set has 3, 433 sessions and
68, 660 windows (as shown in the top row of Table 1).

6.2 Prediction Accuracy

As indicated in equation (4), Temporal LDA predicts the
topic distribution exhibited in the next sequence of IDE
interactions by using the topic distribution of the previous
IDE interactions of the same developer. To evaluate the
accuracy of this prediction, we identify windows from a
previously recorded interaction sequence as the ground
truth and compare our predicted topics to the ones exhibited
by that developer’s interactions in the ground truth.

There are multiple ways one could compare the pre-
dicted topics to the ones exhibited by the developer. For
evaluating the potential use of topic modeling in recom-
mendation systems, an important characteristic is that the
single most influential predicted topic (i.e., the one with the
highest probability) is accurate, because recommendations
are likely to be made for that specific topic. Thus, we
compute the accuracy of matching the most influential topic
between the prediction and the ground truth. We label this
metric precision at 1 to indicate that the highest ranked topic
(i.e., the one with the highest probability) is the primary
focus of evaluation.

In addition, to measure the accuracy of the overall pre-
dicted distribution of topics, which gives a more compre-
hensive basis of evaluating the accuracy of the prediction,
we also compute cosine similarity between the distribution
of predicted and observed topics for the ground truth win-
dows of interactions. We show both of these metrics for

TABLE 2
Prediction accuracy of Temporal LDA model (topics = 50). Both metrics

range from 0 (least accurate) to 1 (most accurate).

IDE Nd Avg. Precision at 1 Avg. Cosine Similarity

VS

25 0.51 0.74
50 0.58 0.79

100 0.67 0.85
150 0.74 0.89
200 0.83 0.91

RS

25 0.89 0.94
50 0.94 0.97

100 0.99 0.99
150 0.96 ∼ 1.00
200 0.97 ∼ 1.00

TABLE 3
Percentage improvement (in number of test set windows) of Temporal

LDA over mirroring the topics from the last window. (topics = 50)

IDE Nd Improvement in
Precision at 1

Improvement in
Cosine Similarity

VS
25 5.4% 68.0%
50 4.3% 65.2%

100 3.0% 62.0%
150 2.8% 59.1%
200 2.3% 54.6%

RS
25 2.8% 27.7%
50 0.2% 27.3%

100 0.1% 16.4%
150 0.1% 10.8%
200 1.2% 18.7%

both IDEs and at several window sizes in Table 2. This table
shows, for instance, that for 2/3 of the time, (precision at 1
= 0.67) for Visual Studio at a window size of 100 messages,
Temporal LDA correctly identified the most influential topic
out of 50 possible choices. As a baseline, consider the
accuracy of always predicting the most probable LDA topic
in the training set (i.e. ZeroR classifier) of 0.0993 or 9.93%.
We also observe that the prediction accuracy improves with
increasing window size, and Robot Studio is somewhat
more predictable than Visual Studio at the same window
size increments.

Next, we compare the prediction accuracy of our ap-
proach to simply mirroring the topics in the previous win-
dow, which effectively reflects the state of the art where
it is assumed that the developer continues to perform
exactly the same action as in the previous window. This
baseline can check whether the T matrix has a positive
impact on the prediction accuracy, as state of the art rec-
ommendation systems often use the short term past as
a representation of the short term future. As before, we
use precision at 1 and cosine similarity as the metrics.
We computed the relative percent of windows where Tem-
poral LDA provides an improvement over mirroring, i.e.
(winsTemporalLDA − winsMirroring)/Mh, where a win is
awarded for a window where a specific technique provides
a better prediction (according to the metric) and Mh is the
total number of windows in the evaluation set. The results
are listed in Table 3. The first row of this table shows
that, relative to topic mirroring, Temporal LDA improved
the precision at 1 prediction by 5.4% and improved cosine
similarity in 68% of test windows of length 25 in the Visual

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTEMBER 2017 8

Studio dataset. Overall, these results show improvements in
the number of predicted windows, relative to topic mirror-
ing, for all window sizes and both IDEs, and for both of
the evaluation metrics. We also observe that the utility of
Temporal LDA, relative to mirroring, is smaller for Robot
Studio, as interactions with this IDE seemed to be much
more repetitive.

6.3 K-tail Evaluation of Recommendation Accuracy

One of the key goals of our technique is to recommend
previously unused IDE commands to individual develop-
ers, which are relevant to their current development task.
The IDE command recommendation system proposed by
Murphy-Hill et al. [9] introduced a set of algorithms, rang-
ing from straightforward to sophisticated (e.g. combining
sequential pattern mining with collaborative filtering) for
command recommendations. The effectiveness of the al-
gorithms (i.e. the recommendation accuracy) was assessed
using the k-tail evaluation strategy, initially proposed by
Matejka et al. [2]. The intuition behind this evaluation
strategy is to create a gold set using a set of commands
that were newly discovered (or never before observed to
be used) by a developer in the logged interaction data.
The recommendation system’s accuracy is evaluated by its
ability to detect these newly discovered commands.

More specifically, in the interaction trace captured from
a specific developer, after a start-up period of 2 windows,
we evaluate the algorithm’s ability to predict commands
that were previously unseen in that user’s trace. Only those
newly discovered commands that occur more than once in
the trace are used, filtering out spurious command uses.
In order to translate from topics, which Temporal LDA
predicts, to commands in the evaluation dataset we consider
the top j highest probability commands in the strongest
predicted topic. As a reasonable value for j we use the
number of different commands that occurred in the window
prior to the one predicted.

Using this evaluation setup, we present the percentage of
newly discovered commands that were correctly predicted
by Temporal LDA in our two datasets in Table 4. Across
different window sizes Visual Studio has recommendation
accuracy of between 38.2% and 21.1%, generally decreasing
with larger window sizes. We expected smaller window
sizes to perform better, since their narrower scope is more
likely to focus in on the command of interest. On the
other hand, Robot Studio accuracy was significantly higher,
between 66.6% and 82.2%, with the highest accuracy peak
at window size 100. Peaking at larger window sizes is likely
due to the repetitiveness of Robot Studio’s interaction data,
which allows larger windows to capture a single longer
developer behavior, but only up to a point.

The recommendation accuracy that we observed for
both Robot Studio and Visual Studio was higher than the
algorithms in Murphy-Hill’s paper (< 30%). However, these
accuracies should not be compared directly without consid-
ering that: (1) we predict topics, which is easier than pre-
dicting commands, as there are fewer potential topics than
commands; (2) we use fixed-time windows while Murphy-
Hill et al. consider an evaluation approach that is time-
insensitive; (3) we use different IDEs (Murphy-Hill uses

TABLE 4
% of correct message recommendations in k-tail evaluation

IDE Nd % of correct
recommendations

VS

25 38.2
50 31.1

100 23.1
150 25.3
200 21.1

RS

25 66.6
50 75.3

100 82.2
150 74.6
200 70.3

Eclipse) which affect the prediction significantly judging by
our two datasets. Another difference is that Murphy-Hill’s
proposed algorithms are directed towards recommendation
of a single command, rather than accurate prediction of the
overall behavior of the developer, and therefore could in fact
be coupled with our approach instead of contrasted against
it. For instance, command popularity, based on the usage of
a command by similar developers, can easily be integrated
with the predicted probability distribution of commands in
a topic from our approach. Also, our approach could be used
to predict when (not which) to introduce a command to a
developer, enhancing Murphy-Hill’s work along a different
dimension.

6.4 Interpretability of Developer Behavior

The interpretability of the Temporal LDA model indicates
how easy it is for researchers, and others, to understand:
(1) the extracted topics and (2) the transition tendencies
between pairs of topics. In order to illustrate the inter-
pretability of the model, we must select reasonable pa-
rameter choices in building it, e.g. a window size of 50
interactions and 50 LDA topics for the Visual Studio dataset.
In particular, the latter parameter (i.e. number of topics)
must be carefully chosen to maximize interpretability, bal-
ancing between too few topics, where many behaviors are
grouped into a single topic, and too many topics, where the
behaviors become extremely fine grained. By examining the
results for a few different numbers of topics in the Visual
Studio dataset, we found that 50 topics provided a good
balance in raising the level of abstraction, so that higher-
level behaviors come to light, but without confounding
numerous behaviors to a single topic.

Interpreting the resulting topics requires deep knowl-
edge of the constituent messages, and the different possible
contexts of their occurrence, much as knowledge of natural
language words and their typical context is necessary in
interpreting topics extracted from text. Often, interaction
log messages are too brief to be clearly understood by
developers that are not familiar with them or the product.
We present the slice of topics related to debugging behavior
in Visual Studio in Table 5. Debugging provides an ade-
quate case study because it consists of numerous relevant
messages (> 50) in our Visual Studio dataset, relatable to
most developers. The extracted Temporal LDA model (in
table 5) exhibits typical behaviors such as starting to debug,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTEMBER 2017 9

TABLE 5
A listing of the LDA topics and words that concern debugging, extracted for the Visual Studio IDE using our dataset (n = 50 topics). We provide a
description of each topic, an ordered listing of the constituent words (interactions), and a visualization of the distribution of word influences (only

words with probability of 0.1 or greater are shown).

Topic 1 Stepping over with the debugger. (1.Debug.Debug Break Mode, 2.De-
bug.Debug Run Mode, 3.Debug.StepOver)

Topic 10 Performing a (automatic) build and starting to debug. (1.Build.BuildDone,
2.Build.BuildBegin, 3.Debug.Enter Design Mode, 4.Debug.Start, 5.De-
bug.Debug Run Mode)

Topic 17 Stepping into with the debugger. (1.Debug.StepInto, 2.Debug.Debug Break
Mode, 3.Debug.Debug Run Mode)

Topic 18 Starting to debug. (1.Debug.Debug Break Mode, 2.Debug.Start, 3.De-
bug.Debug Run Mode)

Topic 28 Clicking on the call stack window. (1.View.Call Stack)

Topic 33 Toggling a breakpoint (1.Debug.ToggleBreakpoint)

Topic 42 Continuing to debug the project. (1.Debug.StartDebugTarget, 2.Debug.Start,
3.Debug.Debug Run Mode, 4.Debug.Debug Break Mode)

Topic 49 Stopping the debugger. (1.Debug.Enter Design Mode, 2.De-
bug.StopDebugging)

Glossary of Interactions: Debug.Debug Break Mode – the debugger has stopped at a breakpoint; Debug.Debug Run Mode – the debugger is running the code;
Debug.StepOver, Debug.StepInto – stepping over (or into) a line of code with the debugger; Build.BuildDone, Build.BuildBegin – event signaling that building the
project has started or completed; Debug.Enter Design Mode – event when the debugging session ends either because execution completed or because the debugger
was stopped by the user; Debug.Start, Debug.StopDebugging – commands that start or end the debugging session; View.CallStack – clicking on the call stack window;
Debug.ToggleBreakpoint – insert or remove a breakpoint from a line of code; Debug.StartDebugTarget – event that occurs when continuing to run a previously
executing debugger;

Fig. 5. Topic to topic transitions based on Temporal LDA model. Extreme
values are highlighted in red.

stepping through code, etc. We observe that for this dataset,
each of these behaviors is logically assigned to its own
topic. We also observe that events that always accompany
some of these commands, e.g., Debug.Debug Break Mode.
Debug.Debug Run Mode, which are confounding to some
other approaches, are correctly included in several topics.

To further examine the interpretability of the model,
we present a more in-depth analysis of the transformation
matrix inferred by Temporal LDA in Figure 5 focusing on

the debugging topics introduced in Table 5. We find several
interesting observations when focusing on the more extreme
values in this matrix, highlighted in red. For instance, by
observing the high value on the matrix diagonal at cell
(1,1), we notice that when stepping over some code with
the debugger, developers are most likely to keep repeating
this action. Most of the debugging topics exhibit repetitive
tendencies, observed by high values in the matrix diagonal,
with the stepping topics as the most repetitive. This was
also observed in a former study using the same Visual
Studio dataset [11]. Apart from repeating, Topic 33, which
represents toggling a breakpoint, strongly transitions into
Topic 18 (starting to debug) and Topic 1 (stepping over with
the debugger). This makes sense as developers likely set
breakpoints before starting to debug, or set breakpoints in
the middle of a debugging session, while stepping over the
code, as we observed earlier in the log snippet in Figure 1.
We also observe high values from Topic 49 (stop debugging)
to Topic 10, which rebuilds the code, presumably after
a change, and restarts the debugger, and extremely low
(negative) transition to topic 1 (stepping over). Note that, in
this discussion, for simplicity, we omitted the transition of
these topics to and from the remaining topics, which, sums
to 1 in each row of the matrix, so it is proportional.

Robot Studio also contains debugging interactions, but
its debugging capability of RAPID programs is not as
rich as in Visual Studio. A Temporal LDA model formed
with the same parameters (window size of 50 messages
and 50 topics) provided two topics that were strongly de-
bugging related. One of thee topic dominantly exhibited
the RapidStepIn interaction message, while another topic
exhibited the RapidStepOver message coupled with the
ActiveWindowChanged message, which occurs when a new
file is opened in the editor window. Both topics had strong
repetitive behavior, observable in their transitions in the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTEMBER 2017 10

transformation matrix, with values of 0.97 and 0.98. A third
topic, which encoded the behavior of starting and stopping
a rapid program, showed significant transitions towards the
two debugging topics, with strength of 0.17 towards the
stepping in debugging topic, and 0.03 towards the stepping
over topic, relative to its repetitive behavior strength of 0.72.

7 PARAMETER ANALYSIS

In the previous sections, we observed that the model can
be interpretable and has reasonable prediction accuracy, at
specific choices of parameters for converting the interaction
stream into documents that can be used in the LDA model
and at specific choices of parameters of the LDA and Tem-
poral LDA models. In this section, we describe the effect of
different parameter values to the quality of the prediction,
focusing separately on the parameters used to process the
data and the parameters used to construct the model.

7.1 Effect of Interaction Data Processing

The key parameters in processing the interaction data are:
(1) the number of the commands in each window, and,
less so, (2) the session break criteria. The interaction data
is initially broken into sessions, based on some time-based
criterion, and then further subdivided into equal-length
windows, which form documents to create the LDA model.
Windows in the online interaction stream of a developer are
used to create predictions and update the model.

The session break serves as a sanity threshold that will
avoid placing interactions that were perfomed hours apart
into the same window. Therefore, a value that corresponds
to a time interval where we can reasonably assume that
the developer has stopped working is appropriate. Previous
work has used values in the range of 1 to 5 minutes [11],
[21].

We examined how the prediction accuracy is affected
by longer sessions, showing the result for Visual Studio
in Figure 6. Linear regression analysis of this data found
that with high confidence (> 99%) the prediction accuracy,
measured as cosine similarity between the predicted and
ground truth topics, improves with longer sessions, reflect-
ing the property of the interaction data that more stability
and predictability occurs in longer sequences.

The size of the window affects two aspects of Temporal
LDA: the temporal locality of the LDA model and the
responsiveness of the prediction. For temporal locality, we
mean that smaller windows are likely to isolate messages
occuring close temporally to each other, forming LDA topics
that reflect this assumption. Larger windows would result in
broader topics. As for the responsiveness of the prediction,
it is clear that smaller windows would enable us to produce
faster, but short-term predictions, while larger windows
would produce less frequent but more far-reaching predic-
tions. Naturally, the latter predictions would also be more
error prone. Figure 6, as well as Table 2, show the effect
of window size on the prediction accuracy. We observe
that the average accuracy improves with larger windows,
likely because larger windows have a smoothing effect
over abrupt harder-to-predict commands or events in the
interaction trace.

1000 2000 3000 4000 5000 6000 7000 8000
Session Length in Messages

0.5

0.6

0.7

0.8

0.9

Co
sin

e
Si

m
ila

rit
y

Window Size = 25
Window Size = 50
Window Size = 100
Window Size = 150
Window Size = 200

Fig. 6. Cosine similarity between predicted and observed topic distribu-
tions for different session lengths in messages for Visual Studio.

7.2 Effect of Model Parameters

Key parameters for the Temporal LDA model are the num-
ber of LDA topics and values for the two hyperparameters
constraining the generative process of the LDA model, α
and η.

While the number of topics can affect the granularity and
interpretability of the model, it should not affect the quality
of the prediction, if isolated from these other concerns.
Wallach et al. [32] studied the quality of LDA when the
number of topics is overestimated, finding that the model
was relatively resilient, producing accurate inferences, and
maintaining relatively correct relationships between the
constituent words and topics.

The two parameters α and η affect the tendency of
developer interactions to be influenced by fewer or greater
numbers of topics (increasing or decreasing the sparsity of
the topics in developer interaction sequences) and the ten-
dency of topics to be influenced by fewer or greater numbers
of messages (increasing or decreasing the sparsity of the
messages in topics). In this work, we chose an asymmetric
Dirichlet Dir(α) to draw topic proportions for a developer
interaction sequence, where α = (α1, α2, . . . , αK) is a
vector with K elements where K is the number of topics.
If we have prior knowledge of which topics should be
weighted more than others, we can boost those topics by
setting a larger value of their corresponding elements in α,
which will likely lead to a better LDA and Temporal LDA
model, and in turn better predictions. However, if we lack
solid prior knowledge on how developers’ intentions are
exhibited in their interaction messages with the IDEs, we
can treat α as a latent variable and learn it from the training
data.

We performed an experiment where we trained a set of
LDA models on the Visual Studio dataset, and examined the
distribution of α values learned by these models. We found
that, for example, at window size 50 and 10 trainings, α1

is determined as 0.025± 0.017 while α4 0.214± 0.218. The
difference in the range of these values provides evidence
that prior knowledge of the topics could indeed improve
the model by providing proper α. Also, in general, the
asymmetric Dirichlet prior for α is an appropriate choice
for this model, rather than the symmetric one.

Another parameter of the model is the size and compo-
sition of the training data to construct both the LDA model

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTEMBER 2017 11

and the Temporal LDA matrix T. One could examine, for
instance, if training the model using only the dataset of a
single developer may yield more accurate, or more reliable,
predictions. Another possibility is to use different settings
in training LDA from training Temporal LDA, with the goal
of producing a highly localized LDA model with a small
window size, while maintaining larger window sizes for
prediction in order to maximize its time period of utility.
We consider these studies of training data as future work of
this paper, along with the examination of larger and more
heterogeneous datasets that include other popular IDEs.

8 CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach to dimensionality
reduction and future task context prediction for IDE in-
teraction datasets using a time-sensitive variant of Latent
Dirichlet Allocation (LDA). The presented Temporal LDA
algorithm extracts interpretable topics from noisy interac-
tion datasets, and predicts the topic of the next set of inter-
actions that will be performed by the developer with high
accuracy. The evaluation indicates that applying natural lan-
guage modeling techniques to interaction trace datasets in
software engineering is a promising approach to analyzing
such data for recommendation systems.

The future work of this paper is multipronged, consist-
ing of using larger and more heterogeneous datasets with
Temporal LDA, exploring different training set configura-
tions for the Temporal LDA model, and investigating the
applicability of other natural language modeling techniques
to IDE interaction data.

REFERENCES

[1] B. Reeves and C. Nass, “The media equation: How people respond
to computers, television, and new media like real people and
places.” 1996.

[2] J. Matejka, W. Li, T. Grossman, and G. Fitzmaurice, “Communi-
tycommands: command recommendations for software applica-
tions,” in Proceedings of the 22nd annual ACM symposium on User
interface software and technology. ACM, 2009, pp. 193–202.

[3] T. Grossman, W. Li, J. Matejka, and G. Fitzmaurice, “Deploying
communitycommands: A software command recommender sys-
tem case study,” pp. 2922–2929, 2014.

[4] G. C. Murphy, M. Kersten, and L. Findlater, “How are Java
software developers using the Elipse IDE?” IEEE software, vol. 23,
no. 4, pp. 76–83, 2006.

[5] K. Damevski, D. Shepherd, and L. Pollock, “A field study of
how developers locate features in source code,” Empirical Software
Engineering, vol. 21, no. 2, pp. 724–747, 2015, selected as a journal-
first publication presented at ICSE’16.

[6] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg, “The bluej
system and its pedagogy,” Computer Science Education, vol. 13,
no. 4, pp. 249–268, 2003.

[7] B. Johnson, R. Pandita, E. Murphy-Hill, and S. Heckman, “Bespoke
Tools: Adapted to the Concepts Developers Know,” in Proceedings
of Foundations of Software Engineering, New and Emerging Results
Track, 2015.

[8] A. Chis, O. Nierstrasz, and T. Gırba, “Towards moldable devel-
opment tools,” Proc. Intl Evaluation and Usability of Programming
Languages and Tools (PLATEAU). ACM Press, 2015.

[9] E. Murphy-Hill, R. Jiresal, and G. C. Murphy, “Improving software
developers’ fluency by recommending development environment
commands,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, 2012, pp.
42:1–42:11.

[10] Z. Soh, T. Drioul, P. A. Rappe, F. Khomh, Y. G. Gueheneuc, and
N. Habra, “Noises in interaction traces data and their impact on
previous research studies,” in 2015 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM),
Oct 2015, pp. 1–10.

[11] K. Damevski, D. Shepherd, J. Schneider, and L. Pollock, “Mining
sequences of developer interactions in visual studio for usage
smells,” IEEE Transactions on Software Engineering, vol. PP, no. 99,
pp. 1–1, 2016.

[12] G. Khodabandelou, C. Hug, R. Deneckère, and C. Salinesi,
“Unsupervised discovery of intentional process models from
event logs,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, ser. MSR 2014. ACM, 2014, pp. 282–291.
[Online]. Available: http://doi.acm.org/10.1145/2597073.2597101

[13] K. Damevski, H. Chen, D. Shepherd, and L. Pollock, “Interactive
exploration of developer interaction traces using a hidden Markov
model,” in Proceedings of the 13th International Workshop on Mining
Software Repositories. ACM, 2016, pp. 126–136.

[14] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 2012, pp. 837–847.

[15] E. Erosheva, S. Fienberg, and J. Lafferty, “Mixed-membership
models of scientific publications,” Proceedings of the National
Academy of Sciences, vol. 101, no. suppl 1, pp. 5220–5227, 2004.

[16] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[17] J. K. Pritchard, M. Stephens, and P. Donnelly, “Inference
of population structure using multilocus genotype data,”
Genetics, vol. 155, no. 2, pp. 945–959, 2000. [Online]. Available:
http://www.genetics.org/content/155/2/945

[18] Y. Yoon and B. A. Myers, “Capturing and analyzing low-level
events from the code editor,” in Proceedings of the 3rd ACM SIG-
PLAN workshop on Evaluation and usability of programming languages
and tools. ACM, 2011, pp. 25–30.

[19] S. Amann, S. Proksch, and S. Nadi, “Feedbag: An interaction
tracker for visual studio,” in Proceedings of the 24th International
Conference on Program Comprehension, 2016.

[20] R. Minelli and M. Lanza, “Dflow–towards the understanding of
the workflow of developers,” in SATToSE 2013 (6th Seminar Series
on Advanced Techniques & Tools for Software Evolution), 2013.

[21] R. Minelli, A. Mocci, and M. Lanza, “I know what you
did last summer: An investigation of how developers spend
their time,” in Proceedings of the 2015 IEEE 23rd International
Conference on Program Comprehension, ser. ICPC ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 25–35. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2820282.2820289

[22] E. Murphy-Hill, C. Parnin, and A. P. Black, “How We
Refactor, and How We Know It,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 5–18, Jan 2012.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6112738

[23] A. T. T. Ying and M. P. Robillard, “The influence of the task on
programmer behaviour,” in 2011 IEEE 19th International Conference
on Program Comprehension, June 2011, pp. 31–40.

[24] S. Negara, M. Codoban, D. Dig, and R. E. Johnson, “Mining fine-
grained code changes to detect unknown change patterns,” in Pro-
ceedings of the 36th International Conference on Software Engineering.
ACM, 2014, pp. 803–813.

[25] M. Vakilian and R. E. Johnson, “Alternate refactoring paths reveal
usability problems,” in Proceedings of the 36th International Confer-
ence on Software Engineering. ACM, 2014, pp. 1106–1116.

[26] W. Van Der Aalst, Process mining: discovery, conformance and en-
hancement of business processes. Springer Science & Business Media,
2011.

[27] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan, “Web usage
mining: Discovery and applications of usage patterns from web
data,” Acm Sigkdd Explorations Newsletter, vol. 1, no. 2, pp. 12–23,
2000.

[28] Z. M. Jiang, A. E. Hassan, P. Flora, and G. Hamann, “Abstracting
execution logs to execution events for enterprise applications
(short paper),” in Proceedings of the 2008 The Eighth International
Conference on Quality Software, ser. QSIC ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 181–186. [Online].
Available: http://dx.doi.org/10.1109/QSIC.2008.50

[29] S. T. Iqbal and B. P. Bailey, “Understanding and developing
models for detecting and differentiating breakpoints during

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, SEPTEMBER 2017 12

interactive tasks,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ser. CHI ’07. New
York, NY, USA: ACM, 2007, pp. 697–706. [Online]. Available:
http://doi.acm.org/10.1145/1240624.1240732

[30] W. Maalej, T. Fritz, and R. Robbes, “Collecting and processing
interaction data for recommendation systems,” in Recommendation
Systems in Software Engineering. Springer, 2014, pp. 173–197.

[31] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model
for IDEs,” in Proceedings of the 4th international conference on Aspect-
oriented software development. ACM, 2005, pp. 159–168.

[32] H. M. Wallach, D. M. Mimno, and A. McCallum, “Rethinking
LDA: Why priors matter,” in Advances in Neural Information
Processing Systems 22, Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, Eds. Curran Associates, Inc.,
2009, pp. 1973–1981. [Online]. Available: http://papers.nips.cc/
paper/3854-rethinking-lda-why-priors-matter.pdf

[33] Y. Wang, E. Agichtein, and M. Benzi, “TM-LDA: Efficient
online modeling of latent topic transitions in social media,”
in Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’12. New
York, NY, USA: ACM, 2012, pp. 123–131. [Online]. Available:
http://doi.acm.org/10.1145/2339530.2339552

Kostadin Damevski is an Assistant Professor at
the Deparment of Computer Science at Virginia
Commonwealth University. Prior to that he was
a faculty member at the Department of Com-
puter Science at Virginia State University and a
postdoctoral research assistant at the Scientific
Computing and Imaging institute at the Univer-
sity of Utah. His research focuses on information
retrieval techniques and recommendation sys-
tems for software maintenance. Dr. Damevski
received a Ph.D. in Computer Science from the

University of Utah in Salt Lake City.

Hui Chen is an Assistant Professor at the De-
partment of Computer and Information Science,
Brooklyn College of the City University of New
York. Before that, he was a computer science
faculty member at Virginia State University. He
engaged in geophysical research and worked as
a software developer in industry. His research in
computer science has been primarily on mobility
management in wireless networks, caching for
wireless systems, coverage problem of wireless
sensor networks, accountable systems and net-

works, as well as understanding developers’ interactions with Integrated
Developing Environments. He served on various computer science and
computer communications conference technical program committees
and as reviewers for journals. He received a Ph.D. in computer science
from the University of Memphis in Memphis, Tennessee.

David C. Shepherd is a Senior Principal Sci-
entist with ABB Corporate Research where he
leads a group focused on improving developer
productivity and increasing software quality. His
background, including becoming employee num-
ber nine at a successful software tools spinoff
and working extensively on popular open source
projects, has focused his research on bridging
the gap between academic ideas and viable in-
dustrial tools. His main research interests to date
have centered on software tools that improve

developers search and navigation behavior.

Nicholas A. Kraft is a software researcher at
ABB Corporate Research in Raleigh, North Car-
olina. Previously, he was an associate professor
in the Department of Computer Science at The
University of Alabama. He received the Ph.D.
degree in computer science from Clemson Uni-
versity in 2007. His research interests are in soft-
ware evolution, with an emphasis on techniques
and tools to support developers in understanding
evolving software and to support managers in
understanding software evolution processes. Dr.

Kraft’s research has been funded by grants from the NSF, DARPA, and
ED. He currently serves on the editorial board of IEEE Software and
on the steering committee of the IEEE International Conference on
Software Maintenance and Evolution (ICSME). He is a senior member
of the ACM and the IEEE.

Lori Pollock is Alumni Distinguished Profes-
sor in Computer and Information Sciences at
the University of Delaware and ACM Distin-
guished Scientist. Her research focuses on soft-
ware artifact analyses for easing software main-
tenance, testing, and developing energy-efficient
software, code optimization, and computer sci-
ence education. She leads a team to integrate
CS into K-12 through teacher professional devel-
opment in the CS10K national efforts. She was
awarded the ACM SIGSOFT Influential Educator

award 2016 and University of Delaware’s Excellence in Teaching Award,
E.A. Trabant Award for Women’s Equity in 2004. She serves on the
Executive Board of the Computing Research of Women in Computing
(CRA-W).

