
An Implicit Feedback-based Approach to the Evaluation
of Text Analysis Techniques for Software Engineering

Kostadin Damevski
Virginia State University

Petersburg, VA
kdamevski@vsu.edu

David Shepherd
ABB, Inc.

Raleigh, NC
david.shepherd@us.abb.com

Lori Pollock
University of Delaware

Newark, DE
pollock@cis.udel.edu

Abstract—One of the key challenges facing the community
of researchers in text-based analysis for software engineering
is evaluation of new techniques and tools that leverage those
techniques. In this paper, we explore the paired interleaving
approach, used to evaluate Internet search engines, as an alter-
native to creating annotated corpora for gold sets. In particular,
we examine this approach in the context of evaluating feature
location techniques, which collectively are a key software en-
gineering client application for text-based analysis of software
artifacts. This paper describes the paired interleaving approach
and presents the challenges in customizing this technique for
comparative evaluation of feature location techniques with
different underlying text analysis and preprocessing. Better
evaluations of text-based analyses and their ultimate client
tool applications would help remove the barriers to industry
adoption of text analysis in software tools.

Keywords-Evaluation, annotated corpora, feature location,
paired interleaving.

I. INTRODUCTION

A common challenge remains - comparative evaluation
of new text analysis techniques and their targeted client
applications to assess the relative effectiveness of different
strategies and inform future advancements [1], [2], [3].
Evaluation is hindered by the lack of annotated corpora for
many of the client applications and individual text analyses
of software. This is mostly due to the need to involve human
subjects to judge the output since software engineering is
an inherently human task. Most studies involve only a few
human subjects on a few examples because it is too costly
and time consuming to scale up these evaluations.

More concretely, we focus here on evaluation of feature
location techniques, FLTs, as client applications of text
analysis. Locating code related to a specific feature set
is often a software developer’s first step in performing a
software maintenance task [4]. Researchers have developed
Feature Location Techniques (FLTs), including static, dy-
namic, and hybrid approaches, using various forms of text
analysis, to help software engineers identify relevant code
that is often scattered across a large, complex software
system [1], [5], [6], [7]. Feature location is one of the key
software maintenance tasks used to evaluate the usefulness
of different text analysis techniques for software [8].

When they have been performed, comparative studies of
FLTs have compared each FLT’s “computed relevant set
of code units” against an expected “gold set of relevant
code units” [2], [1]. Effectiveness is measured in terms of
precision, recall and F -measure using the gold set of code
units as an oracle. The results of the comparative studies rely
heavily on the reliability of the gold set. Unfortunately, there
are several concerns with existing gold sets of relevant code
for FLT evaluation: (1) they fail to capture real developer
intent as they are typically generated post hoc; (2) they are
often produced by researchers, not actual developers, making
them one step farther from actual use case; (3) researchers
have observed that humans vary in their opinion of what
comprises the relevant code to a particular feature and thus
there is subjectivity [9]; (4) researchers have also found that
the relevant code to a particular feature might be dependent
on the maintenance task to be performed in relation to the
feature, implying the gold set is context dependent [9].

In this paper, we propose a novel approach to the eval-
uation of FLTs that enables comparison between FLTs as
software developers use a feature location tool during their
regular software maintenance process, and without explicitly
creating a gold set of relevant code. The key insight is to
leverage the paired interleaving technique used to evaluate
Internet search engines [10]. The comparative study design
is similar to sensory analysis, where the tastes of two
products are compared by asking the test subjects to express
a preference for a particular product, instead of rating each
of the products on an absolute (i.e., Likert) scale. Two
FLTs are implemented within the same feature location tool
interface, and results from the two FLTs are presented to the
user interleaved alternately unbeknownst to the user, as they
make queries. Users’ preferences for results from different
queries are collected and analyzed. Thus, implicit feedback
is gathered from actual developers in the context of their
normal software maintenance process, and large deployment
of the tool can enable significant data collection.

The main contributions of this paper are:
1) introducing a novel approach to evaluating text anal-

ysis techniques as applied to feature location, and
2) describing the challenges to instantiating the approach

for various FLT categories.
The paired interleaving approach has the potential to

eliminate the problems associated with explicit construction
of gold sets of relevant code and common measurements of
precision, recall and F-measure with respect to the gold set.

II. PAIRED INTERLEAVING FOR FLT COMPARISON

A. Overview

The key challenge in basing evaluation on usage data
instead of expert judgements is properly interpreting the
gathered data through carefully relating the observable statis-
tics to the quality of the techniques under evaluation [11].
When applied to evaluate Internet search engines, paired
interleaving achieves an online comparison of result sets
associated with different search engine techniques. The two
result sets, each from separate search engine technologies,
are merged into a single interleaved set, which is presented
to the user such that the observed user behavior, in the form
of clickthroughs, is indicative of a preference for a particular
search engine.

We believe that paired interleaving can also be applied
to evaluate the relative effectiveness of two FLTs, or FLTs
with different text analysis or preprocessing. The evaluation
is conducted by recording implicit feedback (clickthrough
data) during normal software developer interaction with a
feature location tool that embeds and interleaves the re-
sponses of different complete approaches to feature location.
The relative preference for one approach over another is
indicated by a preference for the results of one FLT over
another, in the span of a set of queries by a number of
developers.

A set of properties, initially discussed by Joachims [11],
are required for the paired interleaving process to be fair
and robust to bias. First, while the feature location tool’s
backend is augmented to produce results of two separate
FLTs for each developer query, the tool’s frontend and the
the developer’s search experience must remain unaltered.
Second, the two sets of FLT results, must be interleaved
fairly and presented to the developer as a unified list, with no
indication of the origin of each result. Thus configured, the
evaluation experiment can determine developer preference
for a specific FLT by counting developer clicks on its results.
A statistically significant difference in the number of clicks
is considered indicative of the relative effectiveness of a
particular FLT.

B. Balanced Interleaving

Consider the process of evaluating, via paired interleav-
ing, FLTA and FLTB , which produce result sets A =
{a1, a2, ..., an} and B = {b1, b2, ..., bn} for a particular
developer query q. A reasonable assumption here is that
each of the results sets are ranked in descending order of
relevance to q. The evaluation is performed using a set of
queries, q1, q2, ..., qm, where m is a sufficiently large to

Input: result lists A and B
1: I := {}; kA := 0; kB := 0;
2: N := A.length();
3: aFirst := RandomBit();
4: while kA + kB < N do
5: if kA < kB or (kA == Kb and aFirst == 1) then
6: if not I.contains(A[KA]) then
7: I.insert(A[kA]);
8: end if
9: kA := kA + 1;

10: else
11: if not I.contains(B[KA]) then
12: I.insert(B[kB]);
13: end if
14: kB := kB + 1;
15: end if
16: end while
Output: interleaved list I

Figure 1. Pseude-code of the Balanced Interleaving.

establish a statistically significant preference for a particular
FLT. Interleaving the two result sets A and B produces an
interleaved set I , also of size n, instead of twice that, in order
to ensure that the developer’s experience remains unaltered.

A commonly used algorithm for performing the inter-
leaving is Balanced Interleaving [11], whose pseudo-code
is given in Figure 1. This algorithm randomly determines
whether the interleaving begins with a result from FLTA

or FLTB , and then proceeds by inserting a non-duplicate
result from each FLT. Given two result sets A = {a, b, c, d}
and B = {e, f, g, h}, a Balanced Interleaving with FLTA

first would produce the interleaved set I = {a, e, b, f}, while
I = {e, a, f, b} if FLTB won the random coin toss. It can
be proved that a Balanced Interleaving always exists for two
sequences A and B of similar, non-zero size.

Balanced Interleaving scores each click on the interleaved
set I into three categories: the result set A (i.e. FLTA)
wins, the result set B (i.e. FLTB) wins, or neither wins
(tie). The per-click scores are aggregated into a per-query
preference using the same three categories, which, in turn,
are combined into a single metric that expressed the entire
paired interleaving experiment’s result.

To score each click, Balanced Interleaving considers only
the rank of the clicked result within the lists A and B.
In other words, clicks on results that appear higher in one
of the original result sets are considered as wins for the
corresponding FLT. We illustrate the Balanced Interleaving
scoring algorithm for one specific query, using pseudo code
in Figure 2. To aggregate the wins across a number of
queries, and determine a magnitude for the preference for
a particular FLT, the following equation (first proposed
in [10]) can be used. A positive value for ∆AB indicates
a preference for FLTA, a negative value a preference for
FLTB , while the magnitude of this metric is indicative of
the strength of the preference.

Input: result lists A and B, interleaved list I, list of click
indices C (into I)

1: Cmax := max(C); hA := 0; hB := 0;
2: pA := A.indexOf(I[Cmax]);
3: pB := B.indexOf(I[Cmax]);
4: p := min(pA,pB);
5: for i := 0 → C.length do
6: Ci := C[i];
7: qA := A.subList(0, p).indexOf(I[Ci]);
8: qB := B.subList(0, p).indexOf(I[Ci]);
9: if qA < qB then

10: hA := hA + 1;
11: else if qB < qA then
12: hB := hB + 1;
13: end if
14: end for
15: if hA > hB then
16: winner := A;
17: else if hB > hA then
18: winner := B;
19: else
20: winner := tie;
21: end if
Output: per-query winner (A, B, or tie)

Figure 2. Balanced Interleaving’s click scoring algorithm, aggregated per
query.

∆AB =
wins(A) + 1

2 ties(A,B)

wins(A) + wins(B) + ties(A,B)
− 0.5 (1)

Similar results in the FLTs under comparison can present
fairness problems to the Balanced Interleaving algorithm.
For instance, let’s consider a case where, for some query,
FLTA retrieves the result set A = {a, b, c, d}, while
FLTB produces B = {b, c, d, a}. If the Balanced Inter-
leaving’s random bit prefers FLTA then the interleaved
set I = {a, b, c, d}, while beginning with FLTB produces
I = {b, a, c, d}. A random click on either of these result sets
is more likely to prefer FLTB over FLTA. This introduced
bias in interleaving some similar result sets is a disadvantage
of Balanced Interleaving, which has been attempted to be
remedied by the proposal of new interleaving algorithms,
most notably Team-Draft Interleaving [12]. However, sim-
ulations and large scale experiments have shown that these
algorithms also have a tendency for bias in certain scenarios,
and that, in aggregate, Balanced Interleaving performs well
enough for paired interleaving evaluation [10].

In addition to producing a measurement for the preference
for a particular FLT (i.e. ∆AB in equation 1), it is useful
to have a confidence bound for this measurement. This
confidence bound can be useful in determining whether the
results of a paired interleaving experiment are statistically
significant as well as determine whether gathering more
samples could be beneficial. To determine the confidence
bound, without making assumptions about the distribution
of the data, bootstrapping estimators can be used. A more

detailed description on applying bootstrapping to Internet
search results can be found in Chapelle et al. [10].

C. Challenges

To our knowledge, paired interleaving has thus far only
been applied to traditional information retrieval (e.g. Internet
search). We expect the following challenges when applying
paired interleaving for evaluation of FLTs, and discuss each
of them, in turn.
Program navigation vs. maintenance. A significant chal-
lenge in using paired interleaving is that the FLT evaluation
is conducted with queries during user interaction with the
feature location tool, and usage scenarios thus may not
necessarily correspond to a specific maintenance task. For
example, some of the queries used during use of the tool may
be intended for some other purpose, for instance, project
navigation. On the other hand, “gold” sets, by selecting
query terms from text in maintenance issues, are more likely
to only contain maintenance related queries.
FLTs may return few or no results. Unlike Internet
search, there are many query terms that are a poor match
to all the elements of a specific project, and therefore it
is not uncommon for FLTs to retrieve few or no results.
Since paired interleaving requires that the number of items
displayed has to be consistent between queries, this may
disqualify a great number of queries from being used in
evaluation.
FLTs may produce heterogeneous result sets. Paired inter-
leaving has been shown to be effective when the results are
completely uniform in type, as in Internet search where all
the results are documents. However, FLTs often retrieve het-
erogeneous results, such as distinct program elements (e.g.,
comments, methods, classes, line numbers). The anonymity
of the FLTs under evaluation may be compromised if they
are easy to distinguish by the program elements they report
(e.g. an FLT that produces only method elements).
Evaluating FLTs that strongly rely on a specific visualiza-
tion technique. Developers may not be closely familiar with
the project under maintenance, and therefore, a visualization
of the feature location result set may be beneficial to
developers. A number of FLTs have proposed visualizations
to improve their effectiveness (e.g., [6]). Visualized result
sets cannot be interleaved without the developer recognizing
the FLT that originated each result, and therefore are a poor
fit for this evaluation technique.

D. Taking on the Challenges

This section proposes strategies for addressing the chal-
lenges specific to applying paired interleaving fairly in FLT
evaluation.

First, we argue that queries issued for the purpose of
program navigation vs. maintenance are unlikely to affect
the final evaluation outcome, as long as paired interleaving
is performed with a relatively large set of queries. A large

evaluation set is likely to overcome any noise that may be
present due to a mixed set of queries. In addition, a diverse
set of purposes for the queries may not be a disadvantage,
but rather a strength of paired interleaving as FLTs evaluated
with “real” queries and “real” usage scenarios are likely to
be a better fit to a developer’s needs.

Queries where one of the FLTs does not return any results
are excluded from paired interleaving evaluation, likely
extending the time required to perform the FLT comparison.
However, queries with few results are usable; as long as
each FLT returns at least one result, then paired interleaving
should be effective.

Scenarios where the two FLTs produce incompatible re-
sult sets present difficulties to paired interleaving evaluation,
requiring the transformation of one FLT’s result set to be
more like the other. For instance, using paired interleaving to
evaluate lexical search vs. Sando [3] requires the conversion
of the simple lines of text produced by lexical search into
program elements (e.g., method, comments, etc.), which are
akin to Sando’s result sets. The opposite conversion, of
program elements to lines of text, is equally reasonable.
These result set conversions, and their effect on specific
FLTs, require case-by-case consideration in order to main-
tain evaluation fairness by retaining the value of the original
result set.

III. RELATED WORK

There has been little work on improving the infrastructure
for evaluation of text analysis techniques and their client
software engineering tools. A recent comprehensive survey
of FLTs by Dit et al. [1] supports the motivation for this kind
of work, concluding that a major impediment to progress in
FLT research is the difficulty in comparing approaches.

The TraceLab [2] research environment’s goal is to facil-
itate rapid experimentation and evaluation of FLTs. Using
TraceLab, FLTs are rapidly constructed by composing a
set of TraceLab components, and evaluated using a set of
(five) provided gold sets. While TraceLab is efficient at
constructing and evaluating FLTs, we argue that it suffers
from limitations associated with using gold sets, such as
their limited size, subjectivity, and distance from actual
developers. However, due to TraceLab’s very rapid FLT
experiment design, we envision that future FLT evaluation
may combine both paired interleaving and TraceLab, by
starting with a TraceLab study as a proof-of-concept, fol-
lowed by a comprehensive comparative experiment using
paired interleaving.

Sando [3] is a research-extensible local code search tool,
which has also been proposed as a means to improve the
effectiveness of FLT research by improving evaluation and
dissemination. As Sando is a practical FLT tool intended
for developers, it could also be used as a platform for con-
ducting FLT evaluation via the paired interleaving approach
proposed in this paper.

IV. SUMMARY AND FUTURE WORK

This paper introduced an alternative to creating gold sets
for evaluation of text analysis of software artifacts and their
client software engineering tools. We are currently designing
and implementing several studies to validate and assess the
paired interleaving approach for comparing feature location
techniques under different text analysis configurations.

REFERENCES

[1] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature
location in source code: a taxonomy and survey,” Journal of
Soft. Maint. and Evolution: Research and Practice, 2011.

[2] B. Dit, E. Moritz, and D. Poshyvanyk, “A tracelab-based
solution for creating, conducting, and sharing feature location
experiments,” in IEEE Int. Conf. on Program Comprehension,
2011.

[3] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz, “Sando:
An extensible local code search framework,” in Proceedings
of the 20th Int. Symp. on the Foundations of Software Engi-
neering, 2012, Demo Track.

[4] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An
exploratory study of how developers seek, relate, and col-
lect relevant information during software maintenance tasks,”
IEEE Trans. on Soft. Eng., vol. 32, no. 12, pp. 971–987, 2006.

[5] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An
information retrieval approach to concept location in source
code,” in Working Conference on Reverse Engineering, 2004,
pp. 214–223.

[6] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and
C. Fu, “Portfolio: finding relevant functions and their usage,”
in Int. Conf. on Software Engineering (ICSE), 2011.

[7] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. V.
Shanker, “Using natural language program analysis to locate
and understand action-oriented concerns,” in Int. Conf. on
Aspect-Oriented Software Development, 2007.

[8] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can
better identifier splitting techniques help feature location?” in
19th IEEE Int. Conf. on Program Comprehension, 2011.

[9] E. Hill, “Integrating natural language and program structure
information to improve software search and exploration,”
Ph.D. dissertation, University of Delaware, August 2010.

[10] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue, “Large-
scale validation and analysis of interleaved search evaluation,”
ACM Trans. on Information Systems, vol. 30, no. 1, Mar.
2012.

[11] T. Joachims, “Evaluating retrieval performance using click-
through data,” in Text Mining, J. Franke, G. Nakhaeizadeh,
and I. Renz, Eds. Physica/Springer Verlag, 2003, pp. 79–96.

[12] F. Radlinski, M. Kurup, and T. Joachims, “How does click-
through data reflect retrieval quality?” in Proceedings of the
17th Conference on Information and Knowledge Manage-
ment, 2008, pp. 43–52.

