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Abstract—Considerable recent attention has been given to
the problem of porting existing code to heterogeneous comput-
ing architectures, such as GPUs. In this paper, we describe
a novel, interactive refactoring tool that allows for quick
and easy transformation of affine loops to execute on GPUs.
Compared to previous approaches, our refactoring approach
interactively combines the user’s knowledge with that of an
automated parallelizer to produce parallel CUDA GPU code.
The generated code retains the structure of the original loop
in order to remain maintainable. The refactoring tool also
computes and displays profitability metrics, intended to advise
the user of the performance potential of the generated code.
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I. INTRODUCTION

Refactoring is a software engineering technique, whereby
a program’s structure is modified without any change to its
function. Common refactoring techniques, such as extracting
or inlining a method, or renaming a field, have been in prac-
tical use for a number of years with the aim of improving
software quality [1]. Integrated Development Environments
(IDEs) (e.g. Eclipse, NetBeans) host rich sets of refactoring
utilities, however their use within the HPC community is
not widespread. Several new projects, such as the Eclipse
Parallel Tools Platform (PTP) [2] have recently made strides
to adapt IDEs to the needs of High-Performance Computing
(HPC) developers.

In IDEs, refactoring is performed interactively, where
the programmer selects the refactoring target, changes the
configuration parameters of the transformation, and is shown
an overview of the changes that will take place to the
original program. The programmer is also allowed to undo
the refactoring and revert the program state at the click
of a button. Interactivity and tight integration with an IDE
can significantly improve the refactoring success, leading to
higher usability of a refactoring tool [3].

This paper applies interactive refactoring to the problem
of parallelizing loops with affine iteration and array access
patterns to use NVIDIA’s Compute Unified Device Archi-
tecture (CUDA) programming model. Our novel refactoring,
called EXTRACT KERNEL, is implemented as a plugin to
the broadly used Eclipse development environment. The
tool performs automatic parallelization and alleviates the
programmer from writing dozens of lines of low-level,
tedious, and error prone code.

In the scientific and high-performance computing do-
mains, porting to new platforms has been shown to be one of
the largest barriers to high programmer productivity. Several
studies cite the difficulty and time overhead in porting
scientific code to the latest class of supercomputers [4], [5],
[6]; time that could have been spent in developing new func-
tionality and speeding the path to new scientific discoveries
in a number of disciplines. Our tool targets programmers like
these, who are familiar enough with CUDA to understand
and maintain the refactored code, but could use the help
of a tool to quickly transform a larger body of code. To
support these programmers, EXTRACT KERNEL’S priority
is to generate code similar to human-written CUDA code
in which the programmer can easily recognize the original
loop body.

Automatically parallelizing compilers have long ago es-
tablished the theory and practice for parallelizing affine
loops, a process performed without the involvement of the
programmer. However, the programmer’s domain knowledge
is often required in order to provide a more effective par-
allelization, based on the particular problem and usage sce-
nario. Interactive parallelization tools, such as ParaScope [7]
and SUIF Explorer [8], take a complimentary approach
in integrating the parallelizing compiler with the user’s
knowledge of the problem. We extend the work of these
interactive approaches in providing a program refactoring
that aids the programmer to arrive to a parallel program that
executes on a GPU.

This paper makes the following contributions:

o Description of the problem of transforming sequential
C loops into CUDA parallel code that does not obfus-
cate the original loop body.

o An transformation algorithm implemented in the EX-
TRACT KERNEL tool and distributed as an Eclipse
plugin.

o A technique, based on arithmetic intensity, to advise
programmers about loops which will perform poorly
on a GPU.

« Evaluation of the transformation and performance ad-
visor, based on the design goals, is performed.

II. MOTIVATING EXAMPLE

In this section we give an overview of refactoring loops
into CUDA kernels by using a simple loop that performs a



1. _ global__ void gpu_axpy(float a, float *x, float *y)
2. {
3. int idx = blockIdx.x * blockDim.x + threadIdx.x;
4. if(idx < N)
5. y[idx] = a * x[idx] + y[idx];
6. }
7.
8. int main()
1. #define N 1000 9. {
2. 10. float x[N], y[N], a;
3. int main() 11.
4. { 12. float *x_d;
ER float x[N], y[N], a; 13. cudaMalloc((void **) &x_d, sizeof(float)*N);
6. 14 cudaMemcpy(x_d, x, sizeof(float)*N, cudaMemcpyHostToDevice);
7. for(int i=0; i < N; i++) { 15. float *y d;
8. y[i] = a*x[i] + y[i]; 16. cudaMalloc((void **) &y d, sizeof(float)*N);
9. } 3 17. cudaMemcpy(y d, y, sizeof(float)*N, cudaMemcpyHostToDevice);
10. 18
(a) 19. int numThreadsPerBlock = 256;
20. int numBlocks = N / numThreadsPerBlock + 1;
21. gpu_axpy<<<numBlocks,numThreadsPerBlock>>>(a, x_d, y_d);
22.
23. cudaMemcpy(x, x_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
24. cudaFree(x_d);
25. cudaMemcpy(y, y_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
26. cudaFree(y_d);
27.%

Figure 1.

AXPY (Alpha X Plus Y), ax + y, operation on two vectors
of equivalent size N, x and y (see Figure 1(a)).
CUDA introduces a minor extension of the C language
and a set of libraries exposed through conventional API calls.
To a CUDA programmer, a program consists of two parts:
one that executes on the CPU (or host) and one that executes
on the GPU (or device). The GPU part of the code consists
mainly of data-parallel functions, called kernels. To use the
GPU, CUDA code follows the following workflow:
1) Allocate and copy necessary data into the GPU mem-
ory (Figure 1(b), lines 12-17).

2) Specify the number of threads and launch the kernel
(Figure 1(b), lines 19-21).

3) Execute the kernel function, placing the results in
globally accessible memory (Figure 1(b), lines 1-6).

4) Copy results back to the CPU memory and free
memory on the GPU (Figure 1(b), lines 23-26).

The EXTRACT KERNEL refactoring analyzes sequential
loop code and transforms it into equivalent parallel CUDA
kernel (i.e. Figure 1(a) to Figure 1(b)). The workflow of this
refactoring is depicted in Figure 2. The refactoring begins
when the user concurrently selects a loop (e.g. lines 7-9
in Figure 1(a)) and chooses the “Extract to CUDA Kernel”
menu option in the Eclipse environment. The selected loop is
extensively analysed to determine whether it passes a set of
preconditions specific to this refactoring. If the preconditions

(b)

AXPY kernel in C (part a) and CUDA (part b).

are met, an initial screen is presented to the user that enables
the selection of the kernel name, and the tuning of GPU
platform parameters (e.g. the maximum number of threads
per block). This is followed by a refactoring preview screen
that clearly and in graphical form outlines the modifications
to the original code. Once the user gives his or her final
approval, the refactoring takes place. All refactorings in
Eclipse are easily reversible if the user is not satisfied with
the end result. Also, if a candidate loop fails to pass one of
the preconditions, the user is presented with an informative
error message detailing the reason for rejecting the loop (e.g.
the loop contains a data dependence on a specific variable).
Once the user fixes this problem, the refactoring can be
reinitiated.

III. EXTRACT KERNEL REFACTORING

In this section we present the design of the EXTRACT
KERNEL refactoring, which transforms sequential C loops
into parallel CUDA code. EXTRACT KERNEL strives to
achieve high usability by providing an interactive approach
to refactoring, in contrast to most other program transforma-
tion tools for parallel and distributed computing, which often
rely on scripts or annotations to the source code [9], [10]. In
addition, we anticipate that the user of this refactoring will
maintain and modify the generated CUDA code. Therefore,
EXTRACT KERNEL’s philosophy is to generate code that
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closely follows the code style of a human CUDA developer.
To accomplish this. we require that the generated code,
within the CUDA kernel, follows the contents of the original
loop, and avoid any transformations that obfuscate the orig-
inal loop’s contents. In following this design principle, we
consciously refuse to perform loop transformation that may
improve performance ! or remove data dependencies. To
the same end, EXTRACT KERNEL parallelizes the outermost
loop of a nest, keeping the inner loops the same when
executing on the GPU 2. While the outermost loop is the
only one refactored, the dependence testing still takes notice
of nested loops to assure the transformation is safe.

Below we discuss some of the challenging static analysis
tasks required by EXTRACT KERNEL, followed by the
set of preconditions a candidate loop must satisfy before
refactoring. A number of design choices, with various trade-
offs, exist in generating the CUDA code. These choices,
coupled with the decisions we made in EXTRACT KERNEL
are discussed in the last part of this section.

A. Analysis

Determining whether a loop is parallelizable. First,
the proposed refactoring must determine whether the can-
didate loop contains data dependencies constraining its
parallelization. Loop-carried dependencies, where a data
dependence exists between separate iterations of the loop,

"Loop transformations (e.g. loop tiling, unrolling, etc.) are not guaran-
teed to improve performance, and may in fact have the opposite effect.
Determining the optimal sequence of transformations to apply is an active
area of research.

2 Alternatively, it is possible to replace the entire loop nest with a CUDA
thread block, and add a cudaThreadSynchronize invocation between
the inner and outer loop threads.

Check pass | = ') Modify Refactoring Approve
Preconditions e i Parameters Refactoring ||
no yes
fail Reason for ..
> St ¥ Original Source Refactored Source

The refactoring workflow follows a set of tasks through configuration and preview screens, which are common to most Eclipse refactorings.

require analysis of the interplay between loop induction
variables and array subscripts. Algorithms for detecting
loop-carried dependencies (e.g. GCD test, Banerjee test)
have been established by previous research in automatically
parallelizing compilers [11], and can generally be applied to
this refactoring.

Understanding the data structure and size. In order
to generate code that copies the data structures between
CPU and GPU memories, the structure of the data must
be extracted, a process that can be very challenging for
deeply nested or aliased structures. A related challenge in
the proposed refactoring is determining the size of the data
that should be transferred, which is required by the calls to
cudaMalloc and cudaMemcpy. If the data size is not
available as a literal, the refactoring can generate code that
uses a symbolic representation for the size. In certain loops,
however, complicated interprocedural dataflow analysis may
be required to determine the size of a particular variable, and
the general case reduces to Turing’s halting problem and is
undecidable.

Mapping loop iteration space to GPU thread space. In
parallelizing a loop, the number of loop iterations, extracted
in the form of a literal, symbol or simple expression, is
mapped to the number of parallel threads. Typical CUDA
programs create very large numbers of threads, and there-
fore, a one-to-one mapping between loop iterations and
threads is reasonable for EXTRACT KERNEL. However, hard
limits for the number of threads imposed by the GPU
hardware should not be exceeded by the refactored code.
In CUDA, these architectural limits are available via an
invocation to the CudaGetDeviceProperties method.
In similar fashion, limits for the maximum allowable threads



per thread block may be used to allocate threads into blocks,
as in lines 19-20 of Figure 1(b).

B. Refactoring Preconditions

EXTRACT KERNEL evaluates candidate loops to deter-
mine whether they satisfy its preconditions. Only the loops
that satisfy these preconditions can be safely refactored,
resulting in code that is guaranteed to perform the same
task as the original loop, in parallel and on the GPU. The
necessary preconditions are the following:

o The loop has affine iterations and affine array access
patterns.

o The number of loop iterations can be statically deter-
mined.

o The referenced data elements do not overlap in memory
or alias each other.

e Nobreak or return statements in the candidate loop
body.

o No method calls in the candidate loop body.

o The loop does not contain data dependencies inhibiting
its parallelization.

Affine loops are based on loop iterations and array ac-
cesses that are affine functions of surrounding loop variables,
constants, and program parameters. Such loops are com-
monly encountered in practice. Affine loops are frequently
normalized (cannonicalized) into a standard form that is
easier to parse and analyse by compilers and program
transformation tools.

Certain loops may contain statements that make the
estimation of the number of loop iterations difficult or
impossible to perform statically. For instance, a loop body
that dynamically changes the loop induction variable using
a process that depends on variables that change at runtime.
This type of loops are not parallelizable, as it is very difficult
or impossible to correctly determine the data dependence, or
to map the iteration space of the loop to GPU threads.

Accesses to deeply nested or aliased data structure are
difficult to follow, and difficult to test for data dependence.
Static analysis of such structures in permissive languages
such as C is an area of research and development. A
refactoring tool could, in the future, rely on a state-of-the-art
static analysis toolkit that would allow greater flexibility in
analysing data structures.

The return statement cannot be safely moved into a new
function, such as a GPU kernel. Refactoring this statement
into a new method would result in code that does not
follow the original execution path. This is also a correctness
check performed by the standard EXTRACT METHOD [1]
(EXTRACT FUNCTION) refactoring. The break statement
causes a similar problem to parallelization as dynamically
changing the loop iteration pattern: it is impossible to undo
the work that parallel threads have already completed upon
encountering a break statement.

CUDA kernels are not permitted to invoke any CPU
functions, so EXTRACT KERNEL simply disallows the exis-
tence of method calls in the candidate loop body. This has
the added effect of making the analysis that the EXTRACT
KERNEL tool has to perform a lot simpler - by not having
to follow the call hierarchy. Within Eclipse, the user can
attempt to use the INLINE METHOD [1] refactoring before
retrying EXTRACT KERNEL.

The analysis of whether the loop contains data depen-
dencies is necessary for its parallelization. Intuitively, paral-
lelism reorders the operations executed in the original loop,
which is permissible only if such reordering does not affect
the loop’s output. Data dependence testing is undecidable
for any general loop. However, for the class of affine loops,
data dependence algorithms have been established based
on finding solutions to linear diophantine equations. In
EXTRACT KERNEL we initially rely on the GCD (Greatest
Common Divisor) test to conclusively determine that no
dependence exists. If this test cannot prove independence,
we use approaches from integer linear programming that
culminate with a branch-and-bound algorithm for solving
general integer linear programming problems. This depen-
dency testing approach follows general approaches common
in parallelizing compiliers [12]. Minor differences in the
algorithm implementations are due to EXTRACT KERNEL
parallelizing only the outermost loop, instead of the entire
loop nest.

IV. CUDA CODE GENERATION

EXTRACT KERNEL gives priority to producing code
which does not modify the structure of the original loop.
In other words, the refactoring attempts to simply move the
contents of the loop into the CUDA kernel, while making
few changes, and allowing the programmer to easily recog-
nize his or her original intent. However, this is not easily
accomplished in a complex refactoring, such as EXTRACT
KERNEL, in which the loop body needs to be parallelized
and written in CUDA. Several code generation trade-offs
exist, where the simplest code may not be the most efficient
in terms of resource utilization or performance. Apart from
the parallel kernel, the refactoring generates blocks of code
to transfer data to and from the GPU, code to calculate the
number of threads and blocks, and to launch the kernel.

A. Kernel Generation

Refactoring a loop into a parallel kernel function requires
that the loop statement is removed, while the body of the
loop becomes the body of the function. Within this new
kernel function, the loop index variable is replaced by
the threadID, as each loop iteration is allocated to an
individual thread. This design decision is consistent with
getting good performance on a GPU, as array accesses that
are a simple affine function of the loop index variable can
be coalesced. Coalesced memory accesses, where adjacent



threads within a GPU half-warp access memory that is
aligned to 4,8 or 16 bytes, can be optimized by the hardware
to experience much lower memory access latency [13].

Another modification to the original loop’s body is the
replacement of continue statements in the loop with
return statements in the resulting parallel function. This is
consistent with the expected semantics of loops, whereby an
iteration is terminated by the continue statement, which
corresponds to a thread returning from the execution of a
parallel kernel.

Loops that contain an increment greater than 1 can be
mapped into thread space in two different ways: 1) by
tightly mapping each loop iteration into a thread and adding
code that normalizes references to loop index variable (i.e.
threadID); or 2) by loosely mapping and launching some
threads that will perform no actual work. Option 1 produces
better resource usage at the cost of modifying the code in the
loop (kernel) body, which is against EXTRACT KERNEL’s
design principle. Option 2 keeps the loop body code clean,
but can be extremely inefficient with respect to thread usage.
EXTRACT KERNEL can generate code according to either of
these two options, allowing the programmer to be the final
arbiter. The programmer is presented with this choice via a
check box in the configuration screen.

To illustrate the difference between the two kernel genera-
tion options, consider the simple loop below, whose iteration
space is defined by the first, last and stride variables. The
loop body references a one-dimensional array A.

__global___ void loose_pack (float =A)
{

int idx = blockIdx.x % blockDim.x

+ threadIdx.x;
idx = idx + first;
if (idx % stride == 0) {
Alidx]++;
}

for (int i=first; i<last; i+=stride)

{
A[i]++;
}

The first kernel generation option, where the generated
kernel has an efficient utilization of its threads, takes the
following form:

__global__ void tight_pack (float =*A)
{
int idx = blockIdx.x * blockDim.x
+ threadIdx.x;
idx = idx + first;
Alidx * stride]++;
}

This kernel is invoked with number of threads equivalent
to the number of loop iterations: (last — first)/stride. On
the other hand, the generated code for the loosely-packed
(second) option is invoked with last — first threads. The
generated code of the loosely-packed kernel follows:

The second option does not complicate the array subscript
expression, but is likely to result with many threads failing
to enter the body of the conditional statement, and perform-
ing no work. This does not have significant performance
implications, but it can result in certain loops too rapidly
reaching the architectural ceiling on the number of threads.

B. Data Transfer Code Generation

Data transfer to the GPU and back requires invocations
to the cudaMalloc, cudaFree and cudaMemcpy func-
tions. These functions follow the structure of their relatives
in the C standard library, with the difference that they pro-
duce pointers to GPU memory. Dereferencing these pointers
from the CPU would have adverse effects. In transferring
multidimensional arrays to GPU memory, we create an array
of pointers to GPU memory. Pointers to this array cannot
be dereferenced in order to allocate space for the subarrays
that will contain the actual data. Rather, data has to carefully
be copied into this array. This is a careful process known
to skilled CUDA programmers, but one that generally tricks
novices and where EXTRACT KERNEL’s code generation can
be helpful to programmers.

1) Inferring Unavailable Array Size: One of the key
pieces on information necessary in generating correct invo-
cations to cudaMalloc and cudaMemcpy is the size of an
array. However, in practice, we rarely encounter statically-
allocated arrays that are located in a recent stack frame,
whose size can easily be inferred via static analysis of the
program. Instead, we often see arrays passed into the current
function as pointers, where simple program analysis cannot
easily find the line on which the array was defined and
allocated.

In many of these cases, analysis of the loop iteration
and array subscript expression(s) can shed enough light on
the size of the array for EXTRACT KERNEL’S purposes.
For simple array subscript expressions, which involve only
constant factors of the loop induction variable, the bounds of
the array accesses can be inferred via the loop bounds. The
loop bounds, in turn, are determined via projections to one
axis in the polyhedral loop model, and may be computed
via Fourier-Motzkin elimination. Based on such analysis of
the loop, EXTRACT KERNEL can determine that an array is
at least as big as the part that is referenced inside the loop.
Using this assumption, EXTRACT KERNEL can proceed with
the generation of appropriate memory transfer function calls.




This approach can even be seen as an optimization over
blindly transferring the entire array, in cases where only part
of the array is accessed inside the loop.

C. Kernel Launch Code Generation

The number of threads launched by EXTRACT KERNELS
equals the number of iterations of the refactored loop.
Hard limits on the number of threads for a particular GPU
architecture have to be obided by, or the kernel cannot
be launched. Instead of inserting runtime invocations to
cudaGetDeviceProperties, the programmer is al-
lowed to enter the number of threads in the configuration
screen of the refactoring, while a reasonable default value
is already present. Entering this hardware configuration
constant once for the entire use of a particular GPU is a
reasonable requirement to ask of a programmer.

The programmer is also asked to enter a constant for
the maximum number of threads per block. EXTRACT
KERNEL’s block mapping is simple, and fills up each block
to the maximum number of threads before proceeding to
the next one. As the tool only refactors a single loop, the
outermost in a loop nest, it cannot easily complicate the way
work in a loop nest is allocated to blocks of threads.

V. PERFORMANCE ADVISOR

Many examples exist where parallel GPU code does not
execute faster than sequential CPU code, often due to the
significant GPU memory transfer cost. To help the pro-
grammer decide whether refactoring a particular loop would
be profitable, EXTRACT KERNEL provides a refactoring
advisor based on two related, statically-computed metrics:
arithmetic intensity and amount of work. These metrics,
coupled with information regarding their interpretation, are
displayed within EXTRACT KERNEL’s refactoring workflow.

The amount of work of a loop/kernel is its number of
arithmetic operations. Arithmetic intensity is the number
of arithmetic operations (i.e. amount of work) versus the
cost of transferring the necessary data to and from the
device [14]. Intuitively, the higher the arithmetic intensity
and amount of work, the more likely that a particular loop
will perform well on the GPU. To validate the relationship
of these metrics to the speedup obtained by executing on
the GPU, we performed an experiment, whose results are
shown in Figure 3. The experiment is based on a synthetic
loop/kernel that was executed on an Intel Xeon quad-core
CPU and a NVIDIA Quadro 2000 GPU.

The experimental results show that relatively high levels
in both of the two metrics are necessary to achieve speedup.
The reason for this is that, first, the arithmetic intensity needs
to be significant enough to overcome the memory transfer
cost. Second, the amount of work needs to be large enough
to hide the cost of starting the kernel, and to accumulate a
performance benefit compared to serial CPU execution. This
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Figure 3. Experiment of arithmetic intensity using a synthetic kernel/loop.
A combination of significant arithmetic intensity and number of operations
is needed to achieve a reasonable speedup in the GPU vs. the CPU.

conclusion is consistent with early work on the performance
of GPU for general purpose processing [15].

EXTRACT KERNEL uses the following equations to cal-
culate arithmetic intensity and amount of work, using inputs
acquired via static analysis of the candidate loop:

n [
amt.work = E ops; * H iters;
i=1 j=1
amt.work

arith.intensity = Talasize i o
atasize *

In the above, n is the number of nested loops, iters; is
the number of iterations in loop ¢, assuming that loops
in a loop nest are ordered from outermost to innermost.
The number of arithmetic operations in loop ¢, that do not
also belong to any loop that is inner to ¢, are denoted as
ops;. The datasize is the number of elements of all the
variables that are referenced in the loop nest; a value that
is already necessary and computed by the core aspects of
the EXTRACT KERNEL refactoring. The ops; can easily be
extracted for simple loops. On the other hand, loops that
contain more than one control-flow path require that each
path is considered in isolation. In such cases, instead of
presenting the performance metrics for each control-flow
path, we opt to show only the maximum and minimum
values, assuming that the range is sufficient in providing
a performance estimate of the refactored code. For certain
complex loops that integrate several conditional and iteration
constructs, it may be difficult to ascertain the minimum and
maximum ops;, amount of work, and arithmetic intensity.
For those loops EXTRACT KERNEL offers no performance
advice, as the computed metrics may confuse or seriously
mislead the user.

Further, in EXTRACT KERNEL, as only static program
information is available, it is often impossible to calculate
arithmetic intensity and amount of work exactly (i.e. as a lit-
eral value). Information about the number of loop iterations
and the number of data elements is very often in symbolic



(variable) form. Despite this, we believe that the arithmetic
intensity expressed a combination of symbolics and literals
can be of use to the programmer in deciding whether to
refactor. The programmer can often understand the meaning
of a simple function, involving symbolic variable names
taken from a program he or she is familiar with, as long as
the function does not contain a large number of unknowns.

Apart from the above, an additional set of simplifying
assumptions exist in the design of the performance advisor,
such as, for example, treating floating point and integer oper-
ations as equivalent, or ignoring the mapping of thread block
to processing units. Despite the seemingly large number
of assumptions, we find the performance advisor to be a
useful part of EXTRACT KERNEL, especially in cases where
it presents overwhelming evidence not to, or to refactor.

VI. RESULTS

In evaluating this refactoring we would like to answer the
following set of questions:

1) Is EXTRACT KERNEL applicable?

2) Does the performance advisor produce accurate and
interpretable refactoring profitability estimates?

3) Is EXTRACT KERNEL useful in improving the perfor-
mance of the refactored application?

To determine whether EXTRACT KERNEL can be applied
to practical problems, we applied it to a large number of
loops in well-known applications from the scientific and
high performance computing domain, the GNU Scientific
Library (GSL) and the LAMMPS Molecular Dynamics
Simulator 3. Table I shows the results of this experiment.
While approximately one third of all of the affine loops
were processable by EXTRACT KERNEL, a few avenues of
improvement are apparent.

A large percentage of loops were rejected because of a
function call in the loop body. One way of improving on
this is for the user (or some automated facility) to apply the
INLINE FUNCTION refactoring before applying EXTRACT
KERNEL. Another approach can be to transform the called
function to execute on the GPU as well.

A significant portion of the affine loops are not process-
able by EXTRACT KERNEL due to the inability to determine
the size of one or more variables referenced in loop body.
This metric includes the assumption/optimization of using
loop iterations to determine the sizes of certain arrays.
Enhancements to program analysis techniques utilized by
EXTRACT KERNEL (e.g. interprocedural dataflow analysis)
is likely to yield a reduction in the number of rejected
loops due to unknown data size. Bridging fully featured
compiler middle-ends to Eclipse, such as those in Rose [16]
or LLVM [17], is likely the easiest path to availing sophis-
ticated static program analysis algorithms.

3LAMMPS already contains some CUDA code. Our experiments were
performed on other portions of its substantial code base.

GSL LAMMPS

Total Source LOC 170338 207195
# Compilation Units 999 668
# For Loops 3303 5760

Loops rejected b/c function call
Affine Loops

2084 (63%)
606 (18%)

1291 (22%)
3078 (53%)

Loops with data dependence 319 (53%) 1517 (49%)
Loops with unknown data size 99 (16%) 426 (14%)
Loops satisfying all preconditions 188 (31%) 1135 (37%)
Avg. variables in arith.intensity 1.44 0.53

Table I
STUDY OF LOOPS FOUND IN TWO SCIENTIFIC APPLICATIONS. WE
COUNTED THE NUMBER OF FOR LOOPS, THOSE THAT WE WERE ABLE TO
SUCCESSFULLY PARSE BECAUSE THEY WERE AFFINE, AND THOSE THAT
WERE ALSO PARALLELIZABLE AND FULLY PROCESSABLE BY EXTRACT
KERNEL. WE ALSO SHOW THE NUMBER OF LOOPS REJECTED DUE TO A
FUNCTION CALL IN THE LOOP BODY AND DUE TO UNKNOWN DATASIZE.

GSL Loop Arithmetic Intensity
. 3x(n+1)
histogram i 1.5
. kEvents ~
randdist Ok Buents 13172~ 0.25
S5xdim ~
ode Tdim+353 ~ 0.625
Zxnmaz ~
specfunc Tmast6)s ~ 1
Table II
THE ARITHMETIC INTENSITY OF THE LOOPS BENCHMARKED IN
FIGURE 4

To assess the interpretability of EXTRACT KERNEL'’S per-
formance advice, we determined the average number of vari-
ables present in the arithmetic intensity metric when com-
puted on the refactorable loops in the GSL and LAMMPS
code bases. A large number of variables hurts interpretability
by increasing the difficulty in deciding whether or not to
refactor. The results of this experiment are shown in the bot-
tom of Table I, and the indication is that the average number
of variables was reasonably low in both GSL and LAMMPS.
In addition, those cases where more than one variable was
present in the arithmetic intensity metric, the variables were
overwhelmingly clustered in the bottom (datasize) part of
the arithmetic intensity equation. Compared to variables on
both sides of the equation, such arithmetic intensity can be
somewhat easier to interpret.

The final experiment had the aim of determining the
accuracy of the performance advisor and, also, validating
the proposition that refactored code can achieve a perfor-
mance improvement. To show this, we sampled five loops
in the GSL, ranging in the type of function they performed
(computing ordinary differential equations, probability, spec-
tral methods etc.), and refactored them using EXTRACT
KERNEL. The speedup achieved, compared to the original,
unrefactored code is reported in Figure 4, for different input
data sizes.
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Figure 4.  Speedup of refactored GPU code, compared to original CPU
code, for a few selected GSL loops.

VII. RELATED WORK

In this paper, we propose a refactoring technique to help
address the porting difficulties in HPC software develop-
ment. Porting code to a new platform does not change its
observable runtime behavior, and therefore fits well within
the definition of refactoring. Kjolstad et al. [18] foresee the
widespread use of IDEs by HPC programmers, and propose
of a number of new refactoring techniques targeted for this
community.

Relooper is an interactive tool that parallelizes Java loops
by refactoring them to use the new Java ParallelArray
construct. A number of ReLooper’s ideas are followed in the
design of EXTRACT KERNEL. However, several other differ-
ences between the two tools exist. For instance, ReL.ooper
is required to follow the method call path of the refactored
code, while our tool does not as GPU code can not make
method calls to other CPU methods, allowing us to simply
reject those refactoring candidates. In addition, ReLooper
ensures that a loop is sequential, which is not a constraint
in CUDA.

A number of high-level abstractions have recently been
proposed to reduce developer effort in writing CUDA pro-
grams [19], [20], [21] and improve program portability to a
wider range of parallel platforms. While having the potential
to improve productivity in programming hybrid architec-
tures, these approaches do not address legacy code. To use
these tools existing code must be rewritten, which requires
extra effort and rarely gains significant momentum in the
developer community. EXTRACT KERNEL is appropriate for
development based on a legacy code base, and, unlike the
other approaches, it also ensures a degree of safety in the
resulting parallel program.

Aspect-Oriented Programming (AOP) was proposed by
Wang and Parashar [22] as a generative method of abstract-
ing some of the details in CUDA programs. While this
approach succeeds at greatly simplifying the development of
CUDA programs, it again requires that the user learns a new
set of higher-level primitives before he or she can become
productive. A few other tools, aimed at porting legacy code
bases to use the GPU, have also been proposed [9], [10].

While these tools have similar goals as EXTRACT KERNEL,
they attempt to achieve them in different ways.

Both interactive parallelization and automated porting to
GPUs have been attempted before (e.g. ReLooper, CUDA-
Lite). However, we are not aware of any other interactive
approach to GPU parallelization, such as the one presented
in this paper.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents the EXTRACT KERNEL interactive
refactoring and Eclipse plugin, which transforms affine
loops into GPU kernels and their associated memory copy
and invocation code. EXTRACT KERNEL can increase the
productivity of a programmer in transforming existing serial
code to use NVIDIA’s CUDA parallel programing environ-
ment. The refactoring is aimed as an aid to programmers
that are familiar with CUDA, as it attempts to generate
readable code and offers no support for maintaining the
generated code. The performance advisor, which is part
of EXTRACT KERNEL, computes and displays statically
computed performance metrics that indicate the profitability
of the refactoring. The refactoring is evaluated and our
results indicate that it achieves a set of relevant goals.

A few improvements of EXTRACT KERNEL are in our
sight, as the future work of this project. We intend to produce
the opposite refactoring that would inline a GPU kernel as
a serial CPU loop. Also, we intend to enhance EXTRACT
KERNEL to handle function calls in the loop body, by
producing a separate GPU kernel for each invoked function.
Finally, we would like to enhance the applicability of the tool
by including more sophisticated static analysis algorithms,
such as interprocedural control flow analysis.
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