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Abstract. The problem of capturing provenance for computational tasks
has recently received significant attention, due to the new set of bene-
ficial uses (for optimization, debugging, etc.) of the recorded data. We
develop a provenance collection system aimed at scientific applications
that are based on the Common Component Architecture (CCA) that
alleviates scientists from the responsibility to manually instrument code
in order to collect provenance data. Our system collects provenance data
at the granularity of component instances, by automatically recording
all method invocations between them, including all input and output
parameters. By relying on asynchronous communication and using op-
timizations to handle large data arrays, the overhead of our system is
low-enough to allow continuous provenance collection.

1 Introduction

Provenance is a collection of intermediate data that explains in some level of de-
tail the transition from input data to output data in a scientific application. This
type of data collection also exists in many other computing domains, under dif-
ferent constrains and application requirements; provenance collection is similar
to logging in operating systems and to preservation of data lineage in databases.
The form and granularity of data provenance depends on the type of application
that is intended to consume this stored data. The collected data can be used for
purposes ranging from error detection and debugging, to optimization by remov-
ing redundant computations, and even to accountability of individual parts in
a multi-user system [1, 2]. In the scientific computing domain, provenance also
serves the role of a “paper-trail” , in concert with the source code, to document
the computational methods used to a particular scientific discovery.

In recent years, component technology has been a successful methodology for
large-scale commercial software development. Component technology encapsu-
lates a set of frequently used functions into a component and makes the imple-
mentation transparent to the users. Application developers typically use a group
of components, connecting them to create an executable application. Component
technology is becoming increasingly popular for large-scale scientific computing
in helping to tame the software complexity required in coupling multiple dis-
ciplines, multiple scales, and/or multiple physical phenomena. The Common
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Component Architecture (CCA) [3] is a component model that was designed to
fit the needs of the scientific computing community by imposing low overhead
and supporting parallel components. CCA has already been used in several sci-
entific domains, creating components for large simulations involving accelerator
design, climate modeling, combustion, and accidental fires and explosions [4].
These types of applications usually contain a large number of connected compo-
nents, each of them at the granularity of one numerical computation. As individ-
ual components are often contributed by separate teams and reused for several
applications, many of them are treated as black boxes. Applications based on
the CCA model can leverage data provenance to establish whether a partic-
ular component behaves properly and to localize bugs and inconsistencies in
application development. In addition, we can use the collected data to prune
computations that do not have side-effects when there is a match in the input
data, by supplying the already recorded output data. This strategy greatly im-
proves performance and it has been employed, outside of the component space,
by computational studies, which repeatedly execute the same application to ex-
plore its the parameter space [5]. We design a system to collect provenance data
in CCA applications with these uses of the data in mind.

In order to collect provenance data, one needs to instrument the application
by inserting invocations to a serialization routine. This can be a time-consuming
and repetitive task, and a perfect candidate for automation. Automatic instru-
mentation makes it easy to start collecting data for any CCA application, even
if the application consists of many individual component instances. We choose
to collect data at the boundary between components, capturing and recording
all communication flow between a pair of components, including method invo-
cations and associated input parameters, output parameters and return values.
The component boundary is an appropriate place to collect data for the majority
of CCA applications we have encountered because the collected data is usually
of acceptable granularity to be used together with the component instances in
order to enable provenance applications such as accountability, debugging, and
the removal of redundant computation (where the computation was previously
completed and its input and output data were recorded). It is also the only place
where automatic instrumentation is easily attainable. In this paper, we describe
our implementation of a method to automatically instrument CCA components
in order to collect provenance data. Our goals in designing our system for col-
lecting provenance are to: 1)capture all the provenance data that passes between
component instances and 2)impose low overhead so that provenance will be col-
lected continuously, even in deployment scenarios.

We organize the discussion of our provenance gathering system as follows.
Section 2 contains background and discussion of the problem. In Section 3 we
show a detailed view of our design and implementation of the CCA provenance
collection framework, while in Section 4 we discuss some of the preliminary
benchmarks we have taken of our system. Finally, we finish with conclusions
and future work of the project in Section 5.
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2 Background and Problem Specification

Provenance is a technique in wide use in both core computer science and com-
puter application domains. It can be most generally explained as the preserva-
tion of metadata regarding a specific data product. Simmhan et al.’s summary
of provenance in e-Science [6] establishes a taxonomy of provenance techniques
based on the following criteria: 1) application of provenance, 2) subject of prove-
nance, 3) representation of provenance, 4) provenance storage and 5) provenance
dissemination. These criteria provide a vehicle for examining a provenance sys-
tem, considering both provenance collection and provenance querying and use. In
our work we only consider the collection of provenance data, while dissemination
and use of this data is outside of the scope of this paper.

The CCA model consists of a framework and an expandable set of com-
ponents. The framework is a workbench for building, connecting and running
components. A component is the basic unit of an application. A CCA compo-
nent consists of one or more ports, and a port is a group of method-call based
interfaces. There are two types of ports: uses and provides. A provides port (or
callee) implements its interfaces and waits for other ports to call them. A uses
port (or caller) issues method calls that can be fulfilled by a type-compatible
provides port on a different component. A CCA port is represented by an in-
terface, which is specified through the Scientific Interface Definition Language
(SIDL). A SIDL specification is compiled into glue code that is later compiled
into an executable together with the user-provided implementation code. The
prevalent way of compiling SIDL is by using the Babel compiler [7]. Babel has
the capability of compiling SIDL to bindings for several popular programming
languages (C++, Java, Python, Fortran77 and Fortran95), which allows creat-
ing applications by combining components written in any of these languages.
Babel has a large and growing user community and has become a cornerstone
technology of the CCA component model.

Component technology is different in its approach compared to scientific
workflows and grids. Scientific workflows and grid services are intended to guide
an application from the highest level combining few complex tasks, while com-
ponent applications are decomposed into many finer-grain tasks. This makes
the demands of a provenance system applied to CCA unique, compared to ex-
isting approaches in other scientific software domains, in terms of quantities of
collected data and common usage scenarios.

Collecting provenance data imposes some overhead on the execution of an ap-
plication, and if this overhead is high, it may be tempting to turn off provenance
collection in order to “squeeze out” more performance from of the machine. One
of the principal goals of our system is to keep the overhead low in order to en-
able continuous provenance collection. In order to accomplish this goal, we need
to have the provenance collecting system work in the background throughout
the application runtime (as a daemon), and send data to it asynchronously. In
addition, scientific applications that are based on CCA often handle large pieces
of data; it is not uncommon for an application to have multidimensional arrays
that are hundreds of megabytes or even gigabytes in size. When designing prove-
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nance collection infrastructure, we need to be careful to avoid in-memory copies
of large data, and eliminate needless performance overhead.

3 System Design

We designed and implemented a provenance collection system for CCA appli-
cations. Our design provides automatic code instrumentation with provenance
calls that incur low application execution overhead. To automate the instru-
mentation process we need to add provenance collection code to the stub code
of each CCA component, and to accomplish this we add functionality to Ba-
bel. The inserted provenance collection code will execute before and after every
SIDL-defined method, gathering all the input parameters (in and inout) before
the method executes and all the output parameters (out, inout and method re-
turn parameters) post execution. For instance, a SIDL definition of a CCA port
containing only one method is given below. To properly collect the provenance
data of the component which provides the IntegratorPort, we need to capture
the two in parameters passed to integrate before the method executes, and the
return value (of type double) after the execution completes.

interface IntegratorPort extends gov.cca.Port {

double integrate(in double lowBound, in double upBound);

}

The SIDL language is relatively restrictive; it does not allow class variables
and forces everything to be expressed in terms of interfaces, classes and methods.
Therefore, the data types we are concerned in recording consist of: objects, SIDL-
defined base types and arrays of base types. We designed our system to record
each of these types, with differing levels of ease.

3.1 Automating Provenance Collection

Once properly modified, the Babel compiler creates special stubs for each method
of an instrumented CCA port. These stubs copy the input and output parameters
of a method, write them into a message which is later saved to disk as provenance.
Since SIDL base types can only be defined as parameters of methods in the
language, it is relatively straightforward to generate provenance collection code
for each allowable base type (e.g. int, long, float, double, fcomplex, dcomplex,
string, bool). On the other hand, this makes the serialization of objects passed as
method parameters difficult to automate. Our approach is to force objects that
can be serialized to implement a Serializable interface. Through this interface,
each object must define how it can be written to disk and also reconstructed from
its disk image. Our instrumented stubs detect whether an object implements
Serializable, and will only then invoke the proper serialization methods on the
object. Objects that do not know how to serialize themselves are ignored for
provenance collection.
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SIDL also defines an opaque type, typically used to represent a pointer to
memory. Babel defines opaque as a sequence of bits that are relayed exactly
between function caller and callee, which maps to a void* in C/C++. In order
for our system to capture the data to which this pointer points to, we require
an additional parameter defining the length of the data. Extra parameters can
be defined with SIDL and passed into the Babel compiler using the %attrib

keyword. We use this mechanism to specify the length of the data pointed to
by an opaque type in SIDL, and enable our provenance system to record it. For
instance, using our integrator example from before, we may have:

interface IntegratorPort extends gov.cca.Port {

void integrate(in opaque %attrib{length=20} data);

}

In the scientific domain, arrays are the predominant data type used to rep-
resent various data (e.g meshes, fields, matrices, etc.) Unlike opaque types, the
length of an array does not need to be externally specified because it is part
of each array’s “struct” in Babel, and is easily obtainable through method calls
available in the Babel runtime. Since arrays consist of sequences of SIDL base
types, they appear straightforward to handle by our provenance system. How-
ever, some arrays in this domain can grow to millions (or more) of elements, so
we need to be careful in designing our system to handle them. Below, we propose
some prescriptions and optimizations in provenance collecting large CCA arrays.

In order to gather all of the provenance data in one place, as well as pro-
vide a single location for querying of such data, which can happen even as it
is being written to disk, we need a provenance collection component. Such a
component would provide us with a well defined interface and encapsulation
for both provenance storage and query. To communicate data asynchronously
to the provenance collection component we use an event mechanism. This pub-
lish/subscribe asynchronous communication mode allows the provenance com-
ponent to subscribe to one or more topics in which running components can
deposit provenance information. Events decouple the provenance sending from
the provenance receiving, writing to disk (or database or other medium) across
space and time, enabling a low overhead design. To deliver data to the provenance
component, our instrumentation code serializes all the parameters going in and
out of a method into a message and publishes it. The provenance component
contains a daemon thread that periodically grabs all published messages and
writes them to disk. Fig. 1 illustrates an example of this type of communication
in our provenance gathering system.

3.2 Optimizations for Large Data

Arrays are often encountered in CCA applications, and some of them can grow
to contain a considerable amount of data. CCA components are most often at
the granularity of one task, and often a single application passes large arrays
to several components. In a shared address space, these arrays are passed by
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Fig. 1. Displays an example of two application components (Component1 and Compo-
nent2) and our provenance collection component. When Component1 invokes a method
on Component2, our system publishes the method’s input parameters using an event
message, which is later collected by the provenance collection component.

reference at very little performance cost, so a single method may be invoked
many times with a large array as a parameter. Our system is designed to capture
all data going in and out of a method invocation, serializing and pushing all this
data to disk. In the case of these large arrays, this may be a task that can badly
influence the performance and scalability of provenance collection.

One operation we need to avoid is in-memory copies of large arrays. If an
array is sufficiently large, an in-memory copy may exceed physical memory size
and may lead to OS thrashing. In order to record large arrays properly, we have
to circumvent our system’s default operation: copying of memory to construct
an event message. We add a synchronous way to directly communicate to the
provenance component in order to serialize large arrays directly to disk. We need
a synchronous call for this operation as we need to ensure that the array is not
modified by a component before our system finishes writing it for provenance. We
only rely on this mechanism if we detect that an array is too large to copy, leaving
unchanged the base system of asynchronously sending data via publish/subscribe
for smaller arrays.

Another scenario we want to avoid in the context of large arrays is needlessly
serializing the same array that may appear in multiple method invocations (to
the same method or a different one). For instance, a visualization component
may be invoked every n seconds passing to it the latest data, which may often
be unchanged, or a component may simply forward a received array to another
component which will do all the work. These are patterns in which our prove-
nance collection system would make several copies of a large data array, costing
us application performance and disk space. In order to avoid this scenario we
use a very fast hash function to compute a checksum that will enable us to
quickly and accurately compare two arrays and determine if they are the same.
If two SIDL arrays are in-fact the same array, then their resulting checksums will
match and we can avoid the space and time cost of storing one of them. Storing a
checksum requires a very small amount of space (usually between 8 and 128 bits),
however computing it requires that we perform an operation across the length
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of the array. We dismiss the option of computing a checksum using a portion of
the array, as it runs a risk of checksum collision. Obtaining the same checksum
for different arrays would cause our system not to store an array, which would
result in incorrect provenance data and is something we must avoid. Although
the cost of computing a checksum may take on the order of seconds for a large
array, it is still several fold less than the time needed to store such an array to
disk, while also not considering the aforementioned storage space savings.

4 Results

To show the feasibility of our approach, and not as an end in themselves, we per-
formed some experiments. These proof of concept scenarios explored the choices
of hash functions for the redundant copy avoidance optimization in large arrays
and explored the overhead of our provenance system for a simple application:
solving a boundary condition problem. All experiments were performed on a
single machine with an 2 GHz Intel Core 2 Duo processor and 1GB of RAM.
We made modifications to the Babel compiler provided for automatic insertion
of the instrumentation code, and used SCIJump [8], a research CCA component
framework that provides low overhead and support for parallel and distributed
computing, to conduct our experiment.

4.1 Hash Function Selection

In choosing a hash function to optimize the recording of large arrays we should
consider the tradeoff between its performance and the likelihood of collisions
in the resulting checksums. Since one of the purposes of this optimization is
to reduce overall application overhead, we have to consider the performance
cost of hash function computation for a large data array. We cannot afford
commonly used hash functions (such as MD5 or SHA) because of the enormous
computational load in computing a checksum based on the whole array. While
performance is very important, we cannot risk raising the probability of hash
function collisions. A strategy we adopt in order to reduce the likelihood of
collisions is to make the computed checksum itself larger; a larger checksum
reduces the likelihood of collisions by several-fold.

To locate a reasonable and fast hash function, we considered some of the per-
formance benchmarks of hash functions in the Crypto library [9], but concluded
that all of the functions in this commonly used library are too expensive. The
work of Maxino [10] evaluates and compares the speed and collision potential of
very fast hash function for embedded system design, and recommends one’s com-
plement addition (also know as the Internet Checksum) as the most reasonable
choice in fast hash functions, compared to commonly used XOR, and two’s com-
plement addition. To further reduce the likelihood of collision in the checksum,
while not greatly increasing computational time, we extended the one’s comple-
ment addition algorithm’s checksum size to 64-bits for our provenance system.
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Fig. 2. The heat distribution component application for which we collected data prove-
nance using our system. The Driver component communicates to and from each of the
component instances implementing computational tasks.

In this way, the checksum computation produces a small additional time over-
head in our system, while providing us with reasonable confidence that checksum
collisions will not occur.

4.2 Provenance Overhead in Applications

To validate our design and determine the overall overhead, we implemented our
provenance system and used it to collect the provenance of an application. The
application we chose solves the heat distribution problem over a small L-shaped
2D domain. It consists of several components, each of which computes a part of
the solution (see Fig. 2).

We measured that the provenance collection added less than 1% overhead
to the execution time of our application, which is in line with the goals we set
forth. We note that this application did not need any of the large data optimiza-
tions which we designed, due to the small size of its computational problem.
The application did, however, record data containing most SIDL-defined types,
resulting in approximately 1KB/method invocation of data logged.

It is possible to design applications where our kind of provenance collection
would incur a larger overhead; if the problem is decomposed into a very fine
grain resulting in frequent inter-component communication (method calls) that
do not spend much time computing. Each method call and its parameters would
be recorded by our system, raising the overhead percentage to a higher level
than we have encountered here. Although this is possible, it is not the usual way
that CCA (or components in general) is applied to a scientific problem.



Automated Provenance Collection for CCA Component Assemblies 9

5 Related Work

The need for data provenance has been widely acknowledged and is evident is
many computer domains. Here we intend to only review systems similar to our
provenance collection scheme for software components. The provenance survey
by Simmhan et al. [6], provides a good overview of provenance applications across
different domains. We direct the reader’s attention again to this survey for an
overview of provenance activities unrelated to scientific software architectures
(such as components, workflows, and web services).

The Karma framework [11] collects provenance in the context of web service
scientific applications. This provenance service is general and supports different
web service systems by using event (publish-subscribe) standards for web services
(WS-Eventing). This is the same communication mechanism, in the software
component rather than web service domain, that we chose to use in our system.
Our work extends Karma in providing an automated approach for provenance
collection. Karma further addresses provenance query and visualization, which
we do not attempt in our work so far.

Scientific workflows are a software architecture similar to components; work-
flows usually encompass a wider variety of tasks (such as database data col-
lection, batch job system control etc.) and decompose a problem in a coarser
grain than CCA. Altintas et al. present a provenance collection system [12] that
requires minimal user effort and a system for ”smart” re-runs which mine the
provenance information for repetitive data. The provenance data in their system
is collected by a special provenance recorder which listens and collects events
that are produced by the workflow by default. However, this mechanism does
not handle external data automatically, requiring special API calls. External
data is probably the majority of the interesting data in workflow applications.
Therefore, the provenance collection part of their work would likely require a
fair amount of non automatic instrumentation of applications.

6 Conclusions and Future Work

This paper presents a design for automated provenance collection in CCA com-
ponent applications that requires no user intervention and provides low overhead
(1̃% in the application we tested) in order to be useful in deployment scenarios.
We designed our provenance collecting system to record data being communi-
cated through each component instance’s ports and interfaces. Optimizations
were necessary in order to handle large data arrays and the way they are often
communicated between component instances. We posit that provenance data
collected in this way is usable for debugging, accountability of untrusted com-
ponent instances, as well as optimizations by removing computations for which
we have previously gathered the output.

The future work of this project is to explore techniques of even further re-
ducing the overhead that our system imposes on CCA applications in two ways:
1)by considering novel ways to overlap computation and collection of provenance
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data, and 2)by extending our approach to encompass new applications that may
have a different computation to communication ratios. Each of these advances
in our system is important in achieving broad applicability and acceptance in
the CCA and applications communities.
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