CCALoop: Scalable Design of a Distributed Component
Framework

Kostadin Damevski, Ashwin Deepak Swaminathan, and Steven Parker
Scientific Computing and Imaging Institute
University of Utah, Salt Lake City, Utah 84112, USA
{damevski,ashwinds,sparker}@sci.utah.edu

Categoriesand Subject Descriptors

D.4.7 [Software Operating Systems]: Organization and
Design— Distributed systems

General Terms
Design, Management, Reliability

1. INTRODUCTION

In recent years, component technology has been a success-
ful methodology for large-scale commercial software devel-
opment. Component technology encapsulates a set of fre-
quently used functions into a component and makes the
implementation transparent to the users. Application de-
velopers typically use a group of components, connecting
them to create an executable application. The components
are managed by a component framework that exists on each
computing node where components may be instantiated or
executed. A component framework provides a set of services
to components: locating other components in the system, in-
stantiating, connecting, executing, reporting error messages
or results, etc. It can also provide a user interface, often
a Graphical User Interface (GUI), to compose, execute and
monitor components. In order to manage a large component
application that uses many components and utilizes sets of
distributed computing resources, one or more component
frameworks have to exist on each separate computing re-
source. This requires that multiple frameworks cooperate
in some fashion to manage and monitor a large component
application.

Component technology is becoming increasingly popular
for large-scale scientific computing in helping to tame the
software complexity required in coupling multiple disciplines,
multiple scales, and/or multiple physical phenomena. The
Common Component Architecture (CCA) [2] is a compo-
nent model that was designed to fit the needs of the scien-
tific computing community by imposing low overhead and
supporting parallel components. The CCA standard also
provides for the inclusion of Single Program Multiple Data
(SPMD) parallel components. These components exists in
several address spaces and are internally managed by mes-
sage passing (e.g. Message Passing Interface (MPI)). A com-
pliant framework needs to provide the facilities to instan-
tiate, manage, and execute this novel type of component.

Copyright is held by the author/owner(s).
HPDC' 07, June 25-29, 2007, Monterey, California, USA.
ACM 978-1-59593-673-8/07/0006.

The CCA model selects a lightweight component framework
that optimizes execution efficiency. Several software frame-
works are targeted at the CCA component model, including
SCIRun2 [7], CCAFFEINE [1], XCAT [4] and others. Sci-
entific computing frameworks not based on CCA are also
popular and have relatively similar structure. All of these
systems enable creation of complex high-performance simu-
lations through the assembly of software components. Com-
ponent frameworks aimed at scientific computing need to
support a growing trend in this domain toward larger sim-
ulations that produce more encompassing and accurate re-
sults. The CCA component model has already been used in
several domains, creating components for large simulations
involving accelerator design, climate modeling, combustion,
and accidental fires and explosions [5]. These simulations
are often targeted to execute on sets of distributed mem-
ory machines spanning several computational and organiza-
tional domains. To address this computational paradigm a
collection of component frameworks that are able to coop-
erate to manage a large, long-running scientific simulation
containing many components are necessary.

A component framework’s data is queried and modified
by a user (through a GUI) and by executing components.
In both cases it is imperative that the framework provides
quick responses under heavy loads and high-availability to
long running applications. The goal of our work is to present
a solution to several key issues is distributed component
framework design. The system described in this paper is ar-
chitected to: (1) scale to a large number of nodes and compo-
nents, (2) maintain framework availability when framework
nodes are joining and leaving the system and be able to
handle complete node failures, (3) facilitate multiple human
users of the framework, (4) support the execution and in-
stantiation of SPMD parallel components. Our distributed
component framework, CCALoop, is self-organizing and uses
an approach that partitions the load of managing the com-
ponents to all of the participating distributed frameworks.
The responsibility for managing framework data is divided
among framework nodes by using a technique called Dis-
tributed Hash Tables (DHT) [3]. CCALoop uses a hash
function available at each framework node that maps a spe-
cific component type to a framework node in a randomly
distributed fashion. This operation of mapping each com-
ponent to a node is equally available at all nodes in the
system. Framework queries or commands require only one-
hop routing in CCALoop. To provide one-hop lookup of
framework data we keep perfect information about other
nodes in the system, all the while allowing a moderate node



joining/leaving schedule and not impacting scalability. We
accommodate the possibility that a framework node may fail
or otherwise leave the system by creating redundant infor-
mation and replicating this information onto other frame-
works.

2. DESIGN OVERVIEW

Current distributed framework design is inappropriate in
accommodating component applications with numerous com-
ponents that use many computing resources. We imple-
mented a CCA-compliant distributed component framework
called CCALoop that prototypes our design for increased
framework scalability and fault tolerance. CCALoop scales
by dividing framework data storage and lookup responsi-
bilities among its nodes. It is designed to provide fault-
tolerance and uninterrupted services on limited framework
failure. CCALoop also provides the ability to connect mul-
tiple GUISs in order for users to monitor an application from
multiple points. While providing these capabilities CCALoop
does not add overwhelming overhead or cost to the user and
satisfies framework queries with low latency. In this section
we will examine the parts that form the structure of this
framework. We begin by looking more closely at the tasks
and roles of a CCA-compliant component framework.

hash values
25-50

hash values
50 -75

hash values
0-25

hash values
75 - 100(0)

(LinearSolver)

hash(“LinearSolver”) = 56

Figure 1: The data responsibilities of the CCALoop
framework with four nodes.

The main purpose of a component framework is to man-
age and disseminate data. Some frameworks are more in-
volved but in this work we focus on the ones in the style of
CORBA [6] that do not interfere with the execution of every
component. This kind of a component framework performs
several important tasks in the staging of an application, but
gets out of the way of the actual execution. Executing com-
ponents may access the framework to obtain data or to man-
age other components if they choose to, but it is not usu-
ally necessary. CCA-compliant frameworks also follow this
paradigm as it means low overhead and better performance.

CCA-compliant frameworks store two types of data: static
and dynamic. The majority of the data is dynamic, which
means that it changes as the application changes. The
relatively small amount of static data describes the avail-

able components in the system. In a distributed setting,
static data consists of the available components on each dis-
tributed framework node. The dynamic data ranges from
information on instantiated components and ports to results
and error messages. A significant amount of dynamic data
is usually displayed to the user via a GUI. In our design,
we distribute management of framework data without relo-
cating components or forcing the user to instantiate compo-
nents on a specific resource. The user is allowed to make his
or her own decisions regarding application resource usage.

One of the principal design goals of CCALoop is to bal-
ance the load of managing component data and answering
queries to all participating frameworks. This is done by us-
ing a DHT mechanism where each node in the system is
assigned a unique identifier in a particular identifier space.
This identifier is chosen to ensure an even distribution of the
framework identifiers across the identifier space. We provide
an operation that hashes each component type to a number
in the identifier space. All metadata for a given component
is stored at the framework node whose identifier is the suc-
cessor of the component hash as shown in Figure 1. Given
a random hash function the component data is distributed
evenly across the framework nodes. The lookup mechanism
is similar to the storage one: to get information about a
component, we compute its hash and query the succeeding
framework node.

CCALoop’s framework nodes are organized in a ring struc-
ture in topological order by their identifier numbers. Each
framework node has a pointer to its successor and predeces-
sor, allowing the ring to span the identifier space regardless
of how the system may change or how many nodes exists
in a given time. CCALoop also facilitates a straightforward
way of recovering from node failure, by naturally involving
the successor of the failed node to become new successor to
the queried identifier.

??I B.a%ﬁa‘ElR{ENQrES%rong, A. P. Wolfe, J. Ray, D. E.

Bernholdt, and J. A. Kohl. The CCA core specification in a
distributed memory SPMD framework. Concurrency and
Computation: Practice and Ezperience, 14(5):323-345, 2002.

[2] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,

L. Mclnnes, S. Parker, and B. Smolinski. Toward a common
component architecture for high-performance scientific
computing. In Proceedings of the 8th IEEE International
Symposium on High Performance Distributed Computation
(HPDC), August 1999.

[3] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable,
distributed data structures for Internet service construction. In
Proceedings of the Symposium on Operating Systems Design
and Implementation, 2000.

[4] S. Krishnan and D. Gannon. XCAT3: A framework for CCA
components as OGSA services. In Proceedings of The 9th
International Workshop on High-Level Parallel Programming
Models and Supportive Environments, April 2004.

[5] L. C. McInnes, B. A. Allan, R. Armstrong, S. J. Benson, D. E.
Bernholdt, T. L. Dahlgren, L. F. Diachin, M. Krishnan, J. A.
Kohl, J. W. Larson, S. Lefantzi, J. Nieplocha, B. Norris, S. G.
Parker, J. Ray, and S. Zhou. Parallel PDE-based simulations
using the Common Component Architecture. In A. M. Bruaset
and A. Tveito, editors, Numerical Solution of PDEs on Parallel
Computers, volume 51 of Lecture Notes in Computational
Science and Engineering (LNCSE), pages 327—384.
Springer-Verlag, 2006.

[6] OMG. The Common Object Request Broker: Architecture and
Specification. Revision 2.0, June 1995.

[7] K. Zhang, K. Damevski, V. Venkatachalapathy, and S. Parker.
SCIRun2: A CCA framework for high performance computing.
In Proceedings of The 9th International Workshop on
High-Level Parallel Programming Models and Supportive
Environments, April 2004.



