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Abstract 
 

     Components can be a useful tool in software de-
velopment, including the development of scientific 
computing applications.  Many scientific applications 
require parallel execution, but commodity component 
models based on Remote Method Invocation (RMI) do 
not directly support the notion of parallel compo-
nents.  Parallel components raise questions about the 
semantics of method invocations and the mechanics of 
parallel data redistribution involving these compo-
nents. 
    Allowing parallel components to exist within a 
component framework comes at very little extra cost 
to the framework designer. However, the interaction 
semantics (i.e. method invocations) between two par-
allel components or between a parallel and non-
parallel component can be complex and should re-
quire support from the underlying runtime system. 
    The parallel data redistribution problem comes 
about when in order to increase efficiency, data is 
subdivided among cooperating parallel tasks within 
one component. When two or more components of this 
type are required to perform a separate computation 
on the same data, this data distribution must be de-
coded and mapped from the first component to the 
second component's specification. 
    We demonstrate a method to handle parallel 
method invocation and perform automatic data redis-
tribution using the code generation process of an 
interface definition language (IDL) compiler.  The 
generated code and runtime system accomplish the 
necessary data transfers and provide consistent be-
havior to method invocation.  We describe the imple-
mentation of and semantics of Parallel Remote 
Method Invocation (PRMI).  We describe how collec-
tive method calls can be used to provide coherent 

interactions between multiple components. Prelimi-
nary results and benchmarks are discussed. 
 
1. Introduction and related work 
 
     Component technology is an important and widely 
used tool in software development. However, com-
modity component implementations do not support 
the needs of high performance scientific computing. 
To remedy this, the CCA (Common Component Ar-
chitecture) [1] Forum was formed among various 
universities and research institutions, including the 
University of Utah, Indiana University, various De-
partment of Energy research laboratories, and others. 
The group's goal is to add the functionality of compo-
nents to existing scientific computing code while pre-
serving the speed required by these applications. 
     Parallelism is a tool that is consistently leveraged 
by many scientific programmers in order to increase 
performance. As a result, the ability to support paral-
lel components is crucial when trying to provide 
components for scientific computing. The choice of 
parallel programming model for this purpose is 
SPMD (Single Program Multiple Data). Parallel com-
ponents can be based on MPI (Message Passing Inter-
face), PVM (Parallel Virtual Machine) or any other 
product that facilitates this very common type of par-
allel programming. Allowing parallel components to 
exist within a component framework comes at very 
little extra cost to the framework designer. However, 
the interaction semantics (i.e. communication) be-
tween two parallel components and between a parallel 
and non-parallel component is not obvious and may 
benefit support from the component framework. This 
is especially true when the number of processes differ 
between the two interacting components. 
     Many component models rely upon an underlying 
object model that provides Remote Method Invoca-



tion (RMI).  RMI provides method call functionality 
over a network, typically through a network proxy 
that is juxtaposed between two components, the caller 
and callee.  RMI enables a component to interact with 
another without requiring knowledge of its internal 
structure.  Extending this to the parallel component 
case is termed PRMI (Parallel Remote Method Invo-
cation). Possible ways of defining PRMI can be seen 
in the work of Maasen et al. [7], however there is no 
evidence to date of a definite decision on the optimal 
semantics of PRMI. From a practical standpoint, a 
policy that will describe expected behavior when util-
izing PRMI is required. 
     M-by-N data redistribution is also an important 
piece of the high performance scientific components 
puzzle. The M-by-N problem comes about when in 
order to increase efficiency, data is subdivided among 
M cooperating parallel tasks within one component, 
and N parallel tasks in a different component, where 
M and N are both positive integers. When two or 
more components of this type are required to perform 
a separate computation on the same data, this data 
distribution has to be decoded and mapped from the 
first component to the second component's specifica-
tion. Since each component can require a different 
data distribution this problem can get complicated. 
Also, since components can be dynamically com-
posed at runtime their distribution requirements may 
not be known prior. Therefore, data transfer schedules 
must be computed on the fly.  
     The M-by-N problem has been discussed among 
scientific computing researchers for a substantial pe-
riod of time and systems such as PAWS [2], 
CUMULVS [3] and others have been developed 
which solve this problem for the limited case of multi-
dimensional arrays. All of these systems are based on 
a specific data transfer API (Application Program-
ming Interface). The data transfer API is separate 
from the actual method invocations or other control 
flow. These systems have created a general solution to 
the M-by-N problem. However, each of them has a 
unique API and has taken a different approach to data 
representation and the timing, locking, and synchroni-
zation of the data transfer. The emergence of the CCA 
group has created a unique opportunity to attempt to 
create a component framework standard for each of 
these issues.  
     In addition, some of the M-by-N work suggests 
that in order to achieve maximum flexibility in the 
design, a specific M-by-N redistribution component 
needs to be in place [6]. This M-by-N redistribution 

component will stand between two components which 
require a data distribution and perform this distribu-
tion for them. We recognize the flexibility of this 
design, however, we argue against it because of its 
inherent inefficiency for many problems, and because 
of semantic differences between parallel and non-
parallel interactions. We believe that this inefficiency 
stems from the fact that this component would make 
unnecessary copies of data to its address space in a 
distributed component environment. The semantic 
differences stem from the fact that RMI is used be-
tween non-parallel components, yet parallel-to-
parallel interactions are performed using this alternate 
mechanism.  
    In another approach, we based our M-by-N redis-
tribution mechanism on PRMI, treating distributed 
data as another method call argument in a PRMI in-
vocation. Naturally, this choice led us to placing all of 
the necessary pieces to perform data redistribution in 
the Interface Definition Language (IDL) compiler and 
the stub/skeleton code it generates. This decision was 
similar to the design of PARDIS [5], which uses the 
CORBA IDL to express distributed arguments in a 
component environment. However, in order to pro-
vide some necessary flexibility in the design, our sys-
tem also relies on two methods to describe the data 
distribution at runtime. The primary contribution of 
this work is providing parallel remote invocation se-
mantics that would maximize the expressiveness of 
parallel components. By placing a useful tool such as 
M-by-N data redistribution on top of these parallel 
method invocation semantics we show that parallel 
remote method invocation and automatic data redis-
tribution mechanisms can be combined with the help 
of an interface definition language compiler, resulting 
in a tool that can benefit a scientific software pro-
grammer.  Moreover, this mechanism preserves the 
fundamental features of components, namely that a 
component should not be required to expose imple-
mentation details, in this case the details of internal 
data decomposition. 
     The design of the PRMI and M-by-N data redistri-
bution has been implemented within the SCIRun2 
component framework, a Problem Solving Environ-
ment (PSE) designed for large-scale parallel computa-
tion. This framework is compliant to the Common 
Component Architecture (CCA) framework specifica-
tion. Specifically, the compiler upon which our design 
is based uses CCA’s interface language, the SIDL 
(Scientific IDL). The PRMI and M-by-N data redis-



tribution are solely implemented through the SIDL 
compiler and its runtime support library.  
     The discussion that follows will assume a distrib-
uted environment.  The text is organized as follows: 
Chapter 2 gives an overview of our PRMI approach. 
The M-by-N data redistribution mechanism is dis-
cussed in chapter 3. Chapter 4 gives an overview of 
our array representation and the data redistribution 
schedule calculation. In chapter 5 we show several 
preliminary performance results. Finally, chapter 6 
and 7 explains conclusions and future work of this 
project.  
 
2. Parallel Remote Method Invocation  
 
     Parallel Remote Method Invocation occurs when a 
request is made for a method invocation on a parallel 
component or when a parallel component itself makes 
such a request. Since many options exist in PRMI 
design and it is not reasonable to provide them all, the 
ultimate goal in the design of the PRMI semantics 
was to cover most of the reasonable programming 
decisions in the design of parallel components. In 
order to accomplish this we recognized two types of 
PRMI behavior: collective and independent. We have 
extended the SIDL to use the keywords collective and 
independent as descriptors for each method. By de-
fault, methods are independent. 
 
2.1. Collective PRMI  
 
     Collective components are defined as a collabora-
tion of multiple processes that represent one computa-
tion [6]. A method invocation between components of 
this type can be inferred as one that requires the in-
volvement of each parallel process/thread on the 
component, typically in unison. Examples of such 
behavior include all cases where collaboration (intra-
component communication through MPI or some 
other library) is required between the component's 
parallel processes in order to solve a task. Many clas-
sic parallel algorithms fit this programming approach.     
Several cases are possible within the collective PRMI. 
These are: M=N, M>N, and M<N where M is the 
number of parallel processes on the caller component 
and N is the number of parallel processes on the callee 
component. Figure 1 describes the behavior of our 

system under each case, while ensuring the desired 
semantics. 
     Collective calls are required to be invoked on all 
caller processes, and are guaranteed to be invoked 
only once every callee component. These calls are 
synchronous and non-overtaking. Their conception 
was motivated by the need to perform M-by-N data 
redistribution. In fact, the collective calls and data 
redistribution usually appear in unison. Within a col-
lective invocation, there is no guarantee in place that 
determines which caller process communicates with 
which callee process. This suggests that all input and 
output data between each process of the method invo-
cation should be the same, which is standard practice 
for collective operations using a SPMD programming 
model. Complex communication patterns can be ex-
pressed more effectively using M-by-N data redistri-
bution. Synchronization primitives are in place to 
make successive calls non-overtaking. However, there 
is no implicit barrier primitive between the processes 
on the caller or on the callee when the method is in-
voked. This allows a degree of asynchronous behavior 
that increases efficiency. However, aspects of M-by-N 
data redistribution involve additional synchronization. 
These will be discussed later. 
 
2.2. Independent PRMI 
 
We recognized the need to provide some support for 
cases not involving invocations made on every par-
ticipating process. We name these independent calls. 
The independent invocation suggests that any compo-
nent process can and will satisfy the request. The 
assumption is that all of the parallel processes provide 
the same functionality to the user. One example of 
this is a parallel component implementing a getRan-
domNumber() method. All processes of this compo-
nent have the functionality of producing a random 
number. Whenever this method is invoked we care 
only that a component produces a random number. 
We are not concerned which of the parallel process 
satisfy this request. The sole support we provided for 
the independent invocation is the ability to turn off the 
collective mechanism and direct the independent call 
as a regular method call to a component's parallel 
process. 

 



 

       
 

 
 

Figure 1.  Scenarios for interaction between two parallel components.  M is the number of processors in the caller, 
and N is the number in the callee.  (top-right) M = N. The whole lines represent method invocations, while the dashed 
represent return values. (top-left) M < N. The whole lines represent method invocations, while the dashed represent 
return values. The grey lines stand for invocations which take place without the knowledge of the process out of which 
they were initiated. (bottom) M > N. The whole lines represent method invocations, while the dashed represent return 
values. The dotted lines stand for invocations that are special reply requests. 
 
  
3. M-by-N Data Redistribution 
 
     M-by-N data redistribution builds upon PRMI, 
where the data is redistributed automatically when the 
invocation is made. We limited the M-by-N problem 
to the case of multi-dimensional arrays on any number 
of dimensions. Furthermore, the approach we took in 
solving the M-by-N problem was in treating the redis-
tribution data as another parameter in the parallel 
method invocation. In order to express this, we ex-
tended the CCA's SIDL specification to provide a 
distribution array type. This defined type is used in 
method signatures to represent a distribution array of 
a certain type and dimension. We chose to define a 
distribution array type separate from usual method 
and class definitions. This definition was chosen in 
order to limit the need to declare a distribution array, 
its dimensions and type for each use of the array. Fur-

thermore, we have bound this type to a specific distri-
bution and allow reuse of specific distributions and 
calculated data redistribution schedules using this 
mechanism. Redistribution schedule calculation is 
expensive in terms of communication so we wanted to 
allow mechanisms for its reuse. The type definition 
follows the expected scoping rules so that it is only 
valid in the scope it is defined and any nested scopes. 
The distribution array type can be included in more 
than one method declaration and would signify a dis-
tribution array as a parameter to a particular method. 
An example of the changes to the SIDL can be seen 
below. 
 
package PingPong { 
  distribution array D <int, 1>;  
  interface PingPong { 
    collective int pingpong(in D test);  
  }; 
}; 
 



This is a pingpong example of the modified SIDL that 
represents M-by-N distribution types. The type “D" is 
defined as a one-dimensional distributed array of in-
tegers that is bound to a particular distribution sched-
ule. In this example, the collective keyword is not 
strictly necessary, as the compiler will assume that 
methods containing a distribution type are always 
collective. 
     As we compiled the IDL code that contained a 
distributed array type, the stub/skeleton code changed 
significantly by adding the necessary code to perform 
the data redistribution. When executed, this code per-
forms the necessary distributions. By doing this, we 
have alleviated the component programmer from any 
responsibility of redistributing the data. The distribu-
tion is done on a point to point basis in such a way 
that a data transfer link is established directly between 
two processes that require transfer of data. Synchroni-
zation primitives are in place so that the method does 
not execute until all of the data is completely trans-
ferred, even when the data is sent from multiple 
sources. The current system provides a data redistri-
bution mechanism for in, out and inout arguments as 
well as return values. 
     In addition to the IDL modifications, two methods 
were provided in order to express and exchange the 
data distribution from each process' perspective at 
runtime: 
 
setCalleeDistribution( 

DistributionHandle dist_handle, 
MxNArrayRep array_representation); 

 
setCallerDistribution( 

DistributionHandle dist_handle, 
MxNArrayRep array_representation); 

 
     Each of these methods was designed to be called 
collectively by all of the callee and caller parallel 
processes respectively. Their end purpose is to make 
the infrastructure aware of the data distribution that 
the caller has and the distribution that the caller 
wants. Both of them expect the same group of argu-
ments: a handle for the distribution parameter in ques-
tion and a description of the array distribution that a 
particular process contains. Our implementation of the 
M-by-N data redistribution does not require the user 
to report the dimensions of the global array. The sys-
tem infers this information. The array representation 
will be described in more detail below. 
     The immediate action of the setCalleeDistribution 
method is to establish the fact that a particular com-

ponent is a callee in respect to a particular distribu-
tion. Also, the proper distribution objects are created 
and the callee waits to receive the distribution meta-
data from all of its callers. The setCallerDistribution 
method, on the other hand, performs a scatter/gather 
to all of the callee processes exchanging the appropri-
ate metadata. 
     When the setCallerDistribution method is com-
plete in all of the participating processes, both the 
callee and caller processes have the necessary meta-
data and the necessary objects instantiated that will 
perform the data distribution. We have chosen to re-
port distributions at runtime since this provides more 
flexibility to the component writer. A lot of data dis-
tributions depend on the number of processes under 
which they are executed, therefore making it much 
more convenient for users of our system to support 
the reporting of distributions at runtime. A disadvan-
tage of this particular decision is that it requires the 
redistribution schedule to be calculated at runtime. 
 
4. Array Representation and Transfer Schedule 
 
     To represent the array distribution we use the 
PAWS [2] data model. It consists of the first element 
of the array, the last element of the array, and a stride 
denoting the number of array spaces in between two 
elements. For instance, the data representation (first = 
0, last = 100, stride = 2) for an array named arr would 
represent the array starting at arr0, ending at arr100, 
and taking every second element in between (i.e. arr0, 
arr2, arr4, arr6 … arr100). Using some of PAWS's 
terminology we call this description an index, and we 
use one index to describe each dimension of the array 
in question. 
     A distribution schedule is expressed through a 
collection of intersecting indices. These indices, 
which are obtained by intersecting two of the regular 
data representation indices, describe the exact data 
that needs to be transferred between a given callee 
and caller process. The intersection of indices is in 
fact the calculation of the redistribution schedule. The 
intersection is of two indices at a time, so that indices 
are intersected for the same dimension of the two 
processes' array representations. The intersection al-
gorithm rests upon Euclid’s theorem [11]: 
 
(Thm.): There exists i, j in Z such that 
a*i+b = c*j+d if and only if b-d=0 mod 
gcd(a,c) 
 



This theorem directly motivates the following algo-
rithm for the intersection of array indices (in pseudo 
C/C++): 
 
//Calculate lcm and gcd of the strides: 
int lcm_stride = lcm(stride1,stride2); 
int gcd_stride = gcd(stride1,stride2); 
 
//Find first and stride of intersection 
intersectionIndex->stride = lcm_stride; 
if (first1 % gcd_stride) ==  
    (first2 % gcd_stride) { 
 
  extended_euclid(stride1,stride2, 
                  &m,&n);  
  I = first1 - (stride1*m* 
     (first1-first2))/gcd_stride; 
  J = I + lcm_stride * ceil( 
      (max(first1,first2) -I) 
      /lcm_stride); 
  intersectionIndex->first = J; 
  //Find the last 
  intersectionIndex->last =  
              min(last1,last2); 
} 
else { 
 
  //No Intersection 
  intersectionIndex->first = 0; 
  intersectionIndex->last = 0; 
  intersectionIndex->stride = 0; 
} 
 
     The index intersection pseudo-code uses helper 
functions for lcm (Least Common Multiple), gcd 
(Greatest Common Divisor) and the the extended 
Euclid's algorithm. The extended Euclid’s algorithm 
finds the greatest common divisor, g, of two positive 
integers, a and b, and coefficients, m and n, such that 
g = ma + nb. 
     This algorithm provides us with an efficient 
method of calculating the redistribution schedule that 
is able to adapt to all possible combinations of first, 
last and stride. The algorithm can also adapt to nega-
tive strides. To our knowledge, this fully general algo-
rithm has not been published previously.        
 
5. Preliminary Results 
 
     A series of experiments have been performed and 
their results will be discussed in this chapter. The 
intention of these experiments was to demonstrate the 
functional capabilities of our system and to quantify 
the invocation overhead of the PRMI, with and with-
out data redistribution. The purpose of this work was 
to facilitate high-performance component implemen-
tations, and not to develop them. Therefore, these 

results supply a validation to the design of our system, 
but are not intended to be ends by themselves.  
     The following tests were performed on a 256 node 
Dell PowerEdge 2650 cluster. Each node in this clus-
ter contains two Inter P4 Xeon 2.4 GHz CPUs. The 
nodes run version 8.0 of Red Hat Linux and 100 
Megabit Ethernet was used as the network intercon-
nect. 
     The system we developed can be used by a variety 
of applications. In order to demonstrate this, we im-
plemented a few “classic” parallel algorithms, includ-
ing LU matrix factorization, Jacobi’s solution to the 
LaPlace heat equation, and odd-even merge sort. Each 
of these applications provides a different data redistri-
bution pattern to exercise the system and show that all 
of them can be expressed. These examples ranged 
between 2 and 3 components. We experimented with 
different numbers of processes per each parallel com-
ponent. Figure 2 shows a component implementation 
of the odd-even merge sort algorithm. This sorting 
algorithm was particularly easy to implement using 
the data redistribution capability that our system pro-
vides. The implementation relies on 3 components: 
sorter, splitter and starter. The started component 
manages the execution of the problem. The splitter 
component requires no internal implementation, as its 
purpose is only to act as a data redistributing proxy 
which splits and combines the even and odd elements 
of the array to be sorted. The sorter component im-
plements a simple merge sort algorithm. This imple-
mentation of odd-even sort relies heavily on the M-
by-N data redistribution mechanism to perform as-
pects of the algorithm itself. It is also important to 
note that this implementation is not recursive and due 
to that requires a number of parallel processes per 
each component corresponding to the number of ar-
rays to be merged. This is a weakness of this algo-
rithm design, not the underlying array redistribution 
mechanism. 
     The following tables express the execution times 
our system exhibited while executing the characteris-
tic applications we implemented. To fully stress the 
system, all applications were executed so that each 
parallel process was located on a separate cluster node 
(all times are in microseconds). 
 
 
 
 
 
 



LaPlace Heat Equation 
Matrix Rank Time  

10 0.023293 
50 0.73736 

100 8.37276 
150 32.7804 
200 43.4538 
250 78.431 
300 131.924 

Experiment used a 1 to 4 M-by-N distribution. 
 

LU Factorization 
Matrix 
Rank Time  

40 0.035614266 
100 0.14665567 
160 0.473564593 
200 0.676691 
320 1.14721401 
600 5.68645942 

2000 60.994763 
Experiment used a 2 to 6 M-by-N distribution. 

 

Odd-Even Merge Sort 
Matrix Rank Time  

500 0.010483 
1000 0.011189 
2000 0.016644 
5000 0.032934 
10000 0.063244 
50000 0.148052 

100000 3.003914 
Experiment used a 1 to 2 to 2 M-by-N distribution. 

 

 
Figure 2: Components implementing the odd-even 
merge sort algorithm. Circles within components repre-
sent number of parallel processes. 

 
5.1. Overhead Analysis 
 
     To be useful for scientific applications, this system 
must achieve high performance.  Our system is a pro-
totype and still requires several optimizations, but 
demonstrates that these mechanisms can be effective 
in parallel to parallel data transfer. This analysis of the 
overhead our system imposes on the execution of an 
application has the intention of providing us with a 
clear picture of our system, therefore allowing im-
provements to minimize the overhead. We used the 
applications we designed to run a series of experi-
ments, noting the exact time required to accomplish 
the PRMI and M-by-N data redistribution from the 
perspective of one participating process. One experi-
ment had the intention of partitioning and analyzing 
the data redistribution on one caller process. The 
benchmark was made on an application that was solv-
ing a 2000 by 2000 matrix using LU Factorization. 
The results of this experiment are provided in Figure 
3.  
     The experiment shows that data marshaling is the 
most expensive task in the redistribution from the 
caller perspective. The data are marshaled element by 
element, constantly requiring the underlying commu-
nication library to be invoked. Currently, SCIRun2 
relies on the Nexus communication library from the 
Globus Toolkit [12, 13, 14] for this purpose. The data 
marshaling is a task whose time share grows as the 
data grow larger and will be considered as a prime 
candidate in system optimization. Most notably, the 
Nexus API does not facilitate marshaling of strided 
data, and therefore requires a separate functional cal 
for each data element. Another interesting aspect of 
this experiment was the relatively brief time (0.23% 
of total redistribution time) it took for the system to 
calculate the redistribution schedule. The total time 
the caller process took to redistribute the data was 
4.74 seconds. We measured 2.66 seconds for a repre-
sentative callee process to receive and assemble the 
data in the same application. 
     As an additional method of determining the over-
head imposed by the PRMI and M-by-N data redistri-
bution we measured method call times of different 
types of invocations. We measured the invocation 
time (time to execute a method which does nothing) 
of all the invocation types our system supports. The 
experiment was executed so that every process had a 
specific node to execute on, making all invocations 
distributed. The parallel component cases used one 

SSTTAARRTTEERR  

SSPPLLIITTTTEERR  

SSOORRTTEERR  



process for the caller and four callee component proc-
esses. The chart in Figure 5 shows preliminary results 
of this experiment. For the method invocations in-
volving data redistribution, the callee requires a cyclic 
distribution, so the caller component must marshal 
and send every 4th array element (4 byte integers) to 
each of the callees. Figure 4 illustrates this benchmark 
setup. 
    This experiment requires data to be sent from the 
caller to each of the 4 callees.  The collective invoca-
tion is able to mask the call latencies so that the col-
lective call is only 2.8 times as long as a serial 
invocation.  This is an improvement over the factor of 
4 that you would expect if the caller performed these 
calls in sequence, and this ratio improves as more 
processors are added.  Data redistribution (shown by 
the last two bars of Figure 4) was considerably more 
costly than a collective invocation.  This is due to 
inefficiencies in our implementation of data packing 
and unpacking mechanisms rather than with PRMI 
itself. We also have not yet implemented reuse of 
communication schedules, so the schedule must be 
computed and communicated on every call. We be-
lieve that future optimizations, largely targeted to the 
underlying communication infrastructure, will dra-
matically increase the performance of our system. 
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Figure 3: Overhead breakdown of the data redistribu-
tion of a 2000-by-2000 matrix. 
 
6. Conclusions 
 
     This paper described an approach in building 
automatic M-by-N data redistribution through an In-
terface Definition Language (IDL). In order to ac-
complish this, we described a method for Parallel 
Remote Method Invocation (PRMI). Our goal was to  

 
Figure 4: Benchmark setup where a single caller proc-
ess splits a contiguous array into 4 strided sections.  
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Figure 5: Comparison of invocation types supported by 
the SCIRun2 system. 
 
illustrate a way of handling PRMI that would be sim-
ple and would encompass most invocation scenarios. 
We described our extensions to the Scientific IDL 
(SIDL), as well as the two methods we provided to 
report a component’s distribution at runtime. Finally, 
we showed initial performance results of our system 
while executing a characteristic application. 
    Using a combination of an IDL and runtime array 
distribution API to perform these tasks is a novel ap-
proach in handling complex data distributions and 
PRMI. It allows a programmer to redistribute data 
from one component to another automatically, while 
allowing a significant degree of freedom for the 



prgrammer to have direct control over the redistribu-
tion process. 
 
7. Future Work 
 
    A feature that we value as very important to the 
success of out project is the ability to express subsets 
of processes upon which we can leverage the PRMI 
and M-by-N data redistribution. For instance, a set of 
parallel processes on the caller and callee component 
could be specified as ones that should participate in a 
collective call, therefore relaxing the requirement of 
all processes to be involved in the invocation. This 
will increase flexibility as well as allow for our sys-
tem to accommodate an even larger array of applica-
tion. 
     The future work of this project also involves per-
meating our M-by-N and PRMI infrastructure through 
the component framework and GUI (Graphical User 
Interface) of our system. Another interesting feature 
we plan on adding are less restrictive distribution 
descriptions. Through this we can allow a process to 
specify, for instance, that it only requires a stride of 
two for its array and is not concerned with the size of 
the array it receives. This would make our redistribu-
tion system more powerful and usable.  This feature 
may also be interesting in optimizing the system to 
various architectures. Finally, we plan to improve the 
performance of the system. 
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