
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Automatically Identifying Valid API Versions for Software
Development Tutorials on the Web

Manziba Akanda Nishi*1 | Kostadin Damevski2

1Department of Computer Science, Virginia
Commonwealth University, Virginia, USA

2Department of Computer Science, Virginia
Commonwealth University, Virginia, USA

Correspondence
*Manziba Akanda Nishi, Department of
Computer Science, Virginia Commonwealth
University, Richmond, VA USA. Email:
nishima@vcu.edu

Present Address
Department of Computer Science, 601 West
Main Street, Richmond, VA, 23284, USA

Summary

Online tutorials are a valuable source of community created information used by
numerous developers to learn new APIs and techniques. Once written, tutorials are
rarely actively curated and can become dated over time. Tutorials often reference
APIs that change rapidly, and deprecated classes, methods and fields can render tuto-
rials inapplicable to newer releases of theAPI. Newer tutorials may not be compatible
with older APIs that are still in use.
In this paper, we first empirically study the tutorial versioning problem, confirming
its presence in popular tutorials on the Web. We subsequently propose a technique,
based on similar techniques in the literature, for automatically detecting the applica-
ble API version ranges of tutorials, given access to the official API documentation
they reference. The proposed technique identifies each API mention in a tutorial and
maps the mention to the corresponding API element in the official documentation.
The version of the tutorial is determined by combining the version ranges of all of
the constituent API mentions. Our technique’s precision varies from 61% to 89%
and recall varies from 42% to 84% based on different levels of granularity of API
mentions and different problem constraints. We observe API methods are the most
challenging to accurately disambiguate due to method overloading. As the API men-
tions in tutorials are often redundant, and each mention of a specific API element
commonly occurs several times in a tutorial, the distance of the predicted version
range from the true version range is low; 3.61 on average for the tutorials in our
sample.

KEYWORDS:
software development tutorials versioning, API versioning, API deprecation, software development
tutorials

1 INTRODUCTION

Software developers use various online resources like blogs, API documentation, mailing lists, tutorials, Q&A forums, e-books,
etc., so that they can quickly learn new skills and techniques, expand knowledgewhich they have already obtained, or refresh their
memory by remembering something they forgot1,2. They perform more than twenty software development related Web searches
every day3. Xia et al. broke down developers’Web search queries by development phase, observing that one of the more frequent
and difficult tasks for developers is to search for usage examples or guidance on how to use third-party libraries/services4.

2 Manziba Akanda Nishi ET AL

Online tutorials are a valuable source of knowledge for software developers who are learning to use development frameworks
and API libraries/services or want to master a specific development technique. Tutorials provide a step-by-step narrative inter-
twined with examples, and, relative to most other sources of software documentation on the Web, provide a larger quantity of
information that takes a significant amount of time to consume5. However, like other online software development documen-
tation, most tutorials do not explicitly specify their prerequisites, i.e. what version of an API or framework tutorial is valid for.
This causes problems both for very old tutorials (which may use outdated or deprecated APIs) and new tutorials (which use
APIs that are not available for the developer’s target platform).
In this paper, we posit that one of the problems with modern Web tutorials, among other similar documentation types, is that

they may not work with the developers’ target environment. We first motivate this problem by studying a corpus of tutorials
for the Android platform. We report how long each tutorial tends to be valid for and what is most likely to cause a tutorial to
become incompatible with new versions of a library or service. Next, we develop an automated technique to infer versions for
online tutorials based on API documentation.
The primary source of the versioning problem in tutorials are mentions of API elements that have been deprecated and

removed in the version of the library the developer is using, or mentions of API elements that have yet to appear. While APIs
have significantly improved software development productivity, they are continuously changed in order to add new functionality
or remove old and unnecessary functionality. In certain fast changing domains, APIs are modified quickly. For instance, each
month, an average of 115 Android APIs are updated6 and 3.6 APIs per month are deprecated7. Developers typically do not
adopt new APIs rapidly, which is understandable because it requires additional effort and resources. For example, developers
take a significant amount of time (almost 14 months on average) to update outdated APIs used in their software. Analyses show
that 28% of Android API calls are not compatible with the latest released version and have a median lag time to update of 16
months.6.
Although researchers have proposed approaches aimed at extracting the mentions of API elements from Web resources8,

all of these techniques fail to manage the existence of numerous API versions with removed or deprecated API elements9.
Researchers have proposed tools that automatically detect the compatible versions of a source code repository, but these tools
are not appropriate for detecting versions of documents like tutorials, which contain a combination of natural language text and
source code10. Moreover, the code segments available in tutorials are not complete, and are often not compilable like the code
segments present in a source code repository.
In this paper we propose a technique to determine the valid version range of the online tutorials. To the best of our knowledge,

this is the first such attempt to deal with the versioning problem as it applies to online tutorials. The contributions of our work
are following.

• empirical study of Android tutorials that confirms that version inadequacy is indeed a problem that exists for popular
tutorials;

• technique to automatically determine the valid ranges of the tutorials by versioning their API mentions;

• evaluation of the technique using several different formulations of the classification task.

The remainder of this paper is organized as follows. Section 2 introduces the tutorial versioning problem and presents empirical
results to support its existence. We describe our technique for automatically determining the valid version ranges of tutorials
in Section 3. We apply the technique to our dataset of manually annotated tutorials and provide an evaluation in Section 4. In
Section 5, we describe relevant related research and conclude this paper in Section 6.

2 MOTIVATION

Developers commonly use online tutorials to study new or unfamiliar APIs, spending considerable amount of time to follow a
tutorial step-by-step or to decide exactly which parts of a tutorial are relevant to their ongoing tasks11,12,13. Expert developers
share their procedural or "how to" knowledge, creating new tutorials that support various development activities. Tutorials
targeting software development can use various media, taking the form of written documents, interactive programs, or screen
recordings11. In this research we only consider written online tutorials available on the Web.
Researchers have studied the effects of API deprecation and removal in various development ecosystems, leveraging online

resources like Stack Overflow and GitHub14,15,16. For instance, researchers have examined why APIs change17 and how API

Manziba Akanda Nishi ET AL 3

changes affect developers18. Researchers studying whether changes in APIs trigger StackOverflow questions detected a strong
increase in the number of questions asked about frequently changedAPImethods19. Studies have also found that when developers
ask questions about new APIs they get more answers, but high quality answers take significant time to accumulate20. We were
not able to find any empirical studies of API deprecation or removal that examined the effect of this phenomenon specifically
in software development tutorials.
Software development tutorials commonly contain both natural language descriptions and code segments, which provide

examples to further clarify the narrative. Often, tutorials mention APIs in the description and in code segments. Typical code
segments consist of several lines of codes, in some cases consisting of complete or nearly complete classes or methods. When
tutorials mention one or more APIs that have been removed or deprecated, then the entire tutorial is no longer valid for the current
version of the API as many developers read these resources in their entirety. Such tutorials often can give incorrect information to
developers that use newer (or older) APIs leading to loss of development productivity. In most cases, tutorials do not specifically
express or warn about version compatibility. In APIs with poor forward and backward compatibility, tutorials quickly grow
outdated. The aim of our research is to automatically detect the API versions of tutorials, as it is very time consuming or even
impossible to manually check every API of the tutorial to determine their version compatibility.
Figure 1 shows a tutorial21 that discusses Android’s startActivityForResult API method, which is one of the

most commonly used API methods in Android app development. Although the tutorial authors inform their readers that
there are two variants of this method, there is no indication of the applicable API version number. In fact, the first
variant startActivityForResult (Intent intent, int requestCode) was added in API level 1, while the other
startActivityForResult (Intent intent, int requestCode, Bundle options) was added much later, in API
level 16. Both APIs are still in use. However, the tutorial reader can easily be confused by this discrepancy in the valid API
versions of these two similar methods, e.g. resulting in difficulties when maintaining legacy applications.
A complementary motivating example is in the tutorial in Figure 2, where the tutorial shows an example code segment that

utilizes the FloatMath class (on line 22). This class was deprecated in API level 22 and removed in level 23. While this class
is not the focal point of this tutorial, reusing the code snippet that references it can lead to difficulty and waste time looking
for alternative classes or tutorials. The tutorial prominently displays that it was written in 2013 and has not been updated since,
which is perhaps an indicator of dated information, but there are numerous cases where a tutorial’s age is not so easy to discern.
If the developers are informed of corresponding versions of APIs mentioned in tutorial and the version range in which the

tutorial is active or working, then they can make quick decisions whether the tutorials are worth reading and whether code seg-
ment examples of this tutorial are worth reusing. In some cases developers may be willing to adjust the API level of applications
to fit the tutorial, but perhaps in the majority of cases developers would search for a different resource to learn from. In yet other
cases, developers are specifically interested in learning which APIs have been removed or deprecated, information that would
also be available to readers if tutorials published their valid API levels.

2.1 Empirical Study
To understand the scope of the tutorial versioning problem, we conducted an empirical study using Android tutorials available
on theWeb.We selected Android as its APIs have exhibited a lot of churn in recent years. Table 1 shows the release dates of each
Android version. New releases are frequent and API changes, including additions, deprecations and removals, are considerable
between pairs of releases. New Android APIs are often added to support new features that are to be available in new types of
mobile devices or to support enhancements in the OS or runtime. However, as most devices available in the marketplace are
older, to reach the widest audience applications have to be able to support older version of the API.
The lifecycle of an API is shown in Figure 3. After a new API class method or field is added, it can go through three separate

lifecycle stages: an API can continue to be valid, be deprecated, or removed. Deprecation is a stage intended to warn developers
that an API element will be soon removed. Based on the lifecycle, for each API we can associate an added version, removed
version and depreciated version. To illustrate this point, Table 1 also shows the number of removed classes and number of
deprecated classes in each version of Android. In version 5.0-5.1.1, the highest number of classes (400) were deprecated and in
version 4.1-4.3.1 highest number of classes were removed. In this paper, we used the listing of Android APIs provided by the
Android Official Documentation23, Android API Differences Report24, and Android Support Library API Differences Report25.
The goal of our study is to determine if tutorials available on the Web may suffer from the problem of being only applicable

to specific versions of APIs. To measure this, we collected a large set of Android tutorials from several different sources using
stratified sampling based on 1) the source of the tutorial; and 2) the published year of the tutorial. We ended up with 13 tutorials

4 Manziba Akanda Nishi ET AL

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

FIGURE 1 Portion of a tutorial discussing the startActivityForResult Android API21

Code
Name

Version
Number

Initial
Release

API
Level

Number of
Removed
Classes

Number of
Deprecated
Classes

Base 1.0 10/2008 1 - -
Base 1.1 02/2009 2 - -
Cupcake 1.5 04/2009 3 0 5
Donut 1.6 09/2009 4 2 4
Eclair 2.0-2.1 10/2009 5-7 0 39
Froyo 2.2-2.2.3 05/2010 8 0 1
Gingerbread 2.3-2.3.7 12/2010 9-10 9 0
Honeycomb 3.0-3.2.6 02/2011 11-13 6 10
Ice Cream
Sandwich

4.0-4.0.4 10/2011 14-15 0 5

Jelly Bean 4.1-4.3.1 07/2012 16-18 38 43
KitKat 4.4-4.4.4 10/2013 19-20 0 2
Lollipop 5.0-5.1.1 11/2014 21-22 0 400
Marshmallow 6.0-6.0.1 10/2015 23 36 7
Nougat 7.0-7.1.2 08/2016 24-25 3 37
Oreo 8.0 08/2017 26-27 4 12
Android P[18] 9 07/2018 28 9 41

TABLE1The set of different Android versions, correspondingAPI levels, and number of removed and deprecated classes.26 23 24

that spanned 4 sources and 5 years (2013 - 2017). The year of publishing of the tutorial is usually reported by the tutorial itself.
We selected tutorials that had prominently displayed modification dates that appeared consistent. However, in one tutorial, we
still observed some minor errors in the reported dates, which we were able to manually correct based on related context.
The task of determining the valid API version for a specific tutorial can be reduced to determining the version of all the

API mentions in each tutorial. To this end, we created a list of tokens that contains all the API names (i.e. methods, classes,

Manziba Akanda Nishi ET AL 5

…

…

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

FIGURE 2 Portion of a tutorial utilizing the deprecated API android.util.FloatMath22.

fields, packages) by parsing the Android Official Documentation23. Using this list of Android API tokens we performed string
matching with all of the text (including source code and natural language) in the 13 tutorials in order to extract all of the potential
API mentions. We ignored the text fonts and formatting, as these were specific to each tutorial. The matched tokens contained
numerous false positives. Next, we manually annotated each matched mention in order to validate whether it is truly an Android
API that is being referred to, and, if so, determine its version.

2.1.1 Manual Annotation Procedure
For the task of determining, if potential API mentions in the 13 tutorials are valid and determining the exact API class, method,
or field, that is being referred to, we recruited two Ph.D. and two M.S. students, who had taken a course on Android and had
several years of Java experience. We instructed the annotators to begin by reading through the whole tutorial in order to get a
good grasp on the context. Following this, they were to examine each potential mention, focusing on the text and code context
surrounding it, and determine whether this is truly a mention or just a spurious match. For each validated mention the annotators
were to identify the specific API element, by identifying the corresponding URL in the latest Android documentation.
During the annotation, there were mentions where a method name or field name has different variants. For instance, multiple

methods with same name can have different parameters and return types, while mentions with same name can belong to different
classes or packages. The annotators were asked to pay special attention to these cases, and to carefully disambiguate them. Since
the annotators only used the latest version of the API, there were cases where they were not able to locate the appropriate API
for a mention in the tutorial. For these cases, after annotators completed the annotation procedure, the authors checked over the
difficult to disambiguate cases in order to confirm they were correctly annotated and corrected the errors.

6 Manziba Akanda Nishi ET AL

Tutorial Title & Source Website Year
Published

Ratio of
Valid
Mentions

Valid
Version
Range

Learning to Parse XML Data in Your Android App 6/7/2013 36% [1-28]
– sitepoint.com –
Navigation Drawer Android Example 10/16/2013 35% [22-27]
– stacktips.com –
How to Get all Registered Email Accounts in
Android

4/7/2014 40% [5-22]

– stacktips.com –
Scheduling Background Tasks in Android 4/30/2014 37% [3-28]
– sitepoint.com –
Android Lollipop Swipe to Refresh Example 1/27/2015 33% [22-28]
– stacktips.com –
Android Navigation Drawer for Sliding Menu /
Sidebar

12/15/2015 32% [25-28]

– androidtutorialpoint.com –
Building Android applications with Gradle -
Tutorial

4/18/2016 10% [1-28]

– vogella.com –
Android Facebook Login Tutorial – Integrating
Facebook SDK 4

5/2/2016 37% [26-28]

– androidtutorialpoint.com –
Using ViewPager to Create a Sliding Screen UI in
Android

8/31/2016 45% [25-28]

– sitepoint.com –
Retrofit, a Simple HTTPClient for Android and Java 1/11/2017 27% [25-28]
– sitepoint.com –
Convert Speech to Text in Android Application 1/30/2017 36% [26-28]
– stacktips.com –
Android Chat Bubble Layout with 9 patch Image
using ListView

3/22/2017 30% [25-28]

– androidtutorialpoint.com –
Understanding Androids Parcelable - Tutorial 4/20/2017 42% [1-28]
– vogella.com –

TABLE 2 Range of valid versions of the tutorials in our set.

API
Added or
Changed

API
Removed

API
Deprecated

FIGURE 3 Lifecycle of an API element.

2.1.2 Analysis of Findings
We present an overview of the findings of the empirical study, including the title, source, published data, ratio of valid mentions,
and the valid version range of the 13 tutorials in Table 2. We observe a variety of valid version ranges for the tutorials. There is
no observable consistency in the API-levels used in the tutorials based on the publication years, tutorial sources, or the topics
discussed in the tutorials. In 3/13 tutorials, the version range encompasses all currently known releases of the Android API, but
many others are significantly constrained; 8/13 lack full backward compatibility and 2/13 lack both full forward and full backward
compatibility. We also observe in Table 2 that the ratio of the valid mentions varies from 10% to 45%, never approaching high

Manziba Akanda Nishi ET AL 7

proportions for any of our tutorials. This indicates that finding out API names from tutorials is more challenging than simple
string matching because almost half of the tokens that are matched to API names are not actual API mentions.

2.1.3 Threats to Validity
Our empirical study suffers from several threats to its validity. One threat is in the correctness of the manual annotations. This
risk is mitigated by the fact that the annotators possess sufficient skills in Android and Java, as well as by the fact that the authors
manually re-checked the correctness of difficult annotations. Another threat to validity is in the selection of tutorials for the
study. We used stratified sampling based on two features. However, we only randomly sampled a single tutorial for a feature pair,
which could have lead to bias. There also may have been other relevant tutorial features that we did not consider in our sampling.

3 AUTOMATED VERSIONING OF SOFTWARE DEVELOPMENT TUTORIALS

By automatically determining the version of a tutorial, from a set of official documentation for the APIs that the tutorial is
describing, we could convey information that developers would be able to use to quickly determine whether a tutorial is compat-
ible with their environment. Each tutorial contains a set of terms, located in code examples and in the surrounding narrative, that
match API element names. Determining the version of these terms is required in order to determine the version of the tutorial.
However, some of these matches are spurious and should be ignored. For instance, a API method named run() would produce
a false positive match with a sentence in the tutorial narrative that uses the verb run. Therefore, extracting the range of versions
for a tutorial is a two step process:

1. Differentiate valid from spurious API mentions in the tutorial.

2. Uniquely map each valid API mention to its exact API element (i.e. class, field or method).

Once we disambiguate and resolve the valid API mentions, it is pretty straightforward to extract the corresponding API version
number of the mention and subsequently the entire tutorial. In this paper we apply natural language and machine learning based
methodology that can identify valid mentions of the tutorial as well as disambiguate among the multiple occurrences of the
APIs which have same name but have different signatures.

3.1 Versioning Workflow
Figure 4 shows the workflow of our approach for automated tutorial versioning. The input to our technique is (1) official API
documentation for each API version and a (2) tutorial whose version range we would like to determine. There is no standard way
to obtain API documentation, so we developed anAndroid specific parser that extracts API information from theAndroid Official
Documentation23, Android API Differences Report24, and the Android Support Library API Differences Report25 available on
the Web. Our parser extracts the signature and summary of all the added, removed and deprecated API elements. We store the
parsed documentation in the form of a database for convenient access.
In the next step of the workflow, we tokenize the tutorial using white spaces, remove all punctuation, and perform simple

string matching of the tutorial’s tokens to the API element names of the Android Official Documentation23. The matching
tokens constitute a list of candidate API mentions in the tutorial. For each of the candidate mentions we also obtain the context,
consisting of a bag of words representation of the surrounding lines of text in the tutorial. We use a threshold of one line before
and after the candidate mention, including the line where the candidate mention occurs.
Each candidate mention can have one or more potential API elements that it can be mapped to. Our task is to disambiguate

which API the mention truly refers to. However, it is also possible that the candidate mention is only spuriously matching an
API element - i.e. it is an invalid mention. For the disambiguation task, we compute a set of four features that highlight natural
language and source code aspects of each mention, and use these features as input to a classifier. Once the classifier maps the
candidate mention to its correct API, or marks it as not a valid mention, we aggregate the versions of all the mentions in a tutorial
to determine that tutorial’s valid API version range. To find out the valid version range of the tutorials, it is important to detect
whether tutorial contains APIs which are already removed or deprecated and its corresponding removed or deprecated versions.
To detect removed or deprecated APIs, we have used Android API Differences Report24, and Android Support Library API
Differences Report25.

8 Manziba Akanda Nishi ET AL

API
Docs

Tutorial

API
Dataset

List of
Candidate
Mentions

and Context
Features

Noun

Similarity

Text

Similarity

Structural

Similarity

Parameter

Similarity

Tutorial
Version
Range

Spurious
Mentions

Valid
Mentions

Classifier

FIGURE 4 Overview of our technique for automated versioning of software development tutorials.

To calculate the valid version range of a tutorial using all of the disambiguated mentions in the tutorial, we apply the following
rules:

1. If there are no mention of a removed or deprecated APIs in the tutorial, the valid version of the tutorial ranges from the
most recent version when all of the mentions were present in the API to the most recent available version of the API.

2. If there is only one removed or deprecated API mention in the tutorial, the valid version ranges from the most recent
version when all of the mentions were present in the API up to the version prior to the API removal.

3. If there are multiple removed or deprecated API mentions in the tutorial, the valid version ranges from the most recent
version when all of the mentions were present up to one version prior to the minimum of all the versions of the
removed/deprecated APIs that were mentioned.

3.2 Features
We selected four features to extract and uniquely characterize candidate API mentions that occur in tutorials. These are: (1) Noun
Similarity, computed between the candidate API mention’s context (from the tutorial) and an API element’s description (from
the API documentation), (2) Text Similarity, computed using a vector space model (i.e. tf-idf) of the mention’s context and API
document description, (3) Structural Similarity, computed between the mention’s context and structurally related members of
the API; and (4) Parameter Similarity, computed directly between the candidate mention and API element. In the following, we
discuss each of these features in more detail and use an example – a mention to API element pair from Figure 1 – to illustrate
each feature.

3.2.1 Noun Similarity
The motivation behind selecting the Noun Similarity metric is that the noun words in the surrounding context play an important
role in identifying tutorial mentions that describe a specific API8. To be clear, as nouns we also consider the names of classes,
packages, fields and methods. Our hypothesis is that nouns that occur in the description of the API in the Android Official
Documentation tend to appear more in surrounding context of corresponding mentions in Android tutorials. We calculate the
Noun Similarity measure using Jaccard similarity of the nouns in the bag of word context captured for each mention and the
nouns occurring in the description of the candidate APIs from the official documentation:

NounSimilarity(m,API) = |nouns(mcontext) ∩ nouns(APIdesc)|
|nouns(mcontext) ∪ nouns(APIdesc)|

Manziba Akanda Nishi ET AL 9

,where mcontext is the surrounding tokens of each mention (i.e. the context) and APIdesc is the descriptive text for each API
element that can be found in the official documentation.
As an example, consider the potential mention-API element pair of: 1) the startActivityForResult mention on line

1 of Figure 1 and 2) the API method startActivityForResult(Intent intent, int requestCode) in the Android
Official Documentation. The Noun Similarity measure computes the similarity in the nouns occurring in the mention’s context
in the tutorial, e.g., [’help’, ’android’, ’method’, ’result’, ’activity’, ’information’, ...] and the nouns
occurring in the description of this method in the API documentation, e.g., [[’Intent’, ’int’, ’Bundle’, ’options’].

3.2.2 Text Similarity
Noun Similarity focuses on one aspect of aligning the natural language context of an API mentioned in a tutorial and its textual
description in the official documentation. In order to capture the influence on any remaining, yet important, terms, we use the
Text Similarity metric, which first computes the term frequency - inverse document frequency (tf-idf) score of each matching
term, and then computes the sum, as follows:

T extSimilarity(m,API) =
∑

t∈ (terms(mcontext) ∩ terms(APIdesc))
tf (t) ∗ idf (t)

,where mcontext is the surrounding tokens of each mention (i.e. the context) and APIdesc is the descriptive text for each API
element that can be found in the official documentation.
For the potential mention-API pair of the startActivityForResult mention on line 1 of Figure 1 and

startActivityForResult(Intent intent, int requestCode) the Text Similarity measure computes the similar-
ity among all of the terms in the mention’s context (as can be observed in Figure 1) and the description of the
startActivityForResult(Intent intent, int requestCode) API method, which is as follows: "Same as calling
startActivityForResult(android.content.Intent, int, android.os.Bundle) with no options."

3.2.3 Structural Similarity
Some API elements have common names, increasing the number of potential APIs in the official documentation for each candi-
date mention in the tutorial. In order to help disambiguate these cases, we introduce a metric based on program structure, which
often works when tutorial authors include snippets of code. Using the code context of a mention, we can extract related package
and class names and try to match them in the API documentation.
For instance, in the tutorial shown in Figure 1, the android.app.Activity class is imported, which can provide a hint that

the startActivityForResult method belongs to android.app.Activity class. Although the effect of this metric can be
strong, there are many cases where sufficient hints are not available in the surrounding code.
To compute Structural Similarity, similar to Uddin et al.8, we use an island parser to process the surrounding code segments

of a mention in order to identify either fully qualified or unqualified names of variable types. Different from the other metrics,
here we look more broadly, using several lines in the tutorial text, for surrounding code snippets. In the found code snippets,
we extract the types using import statements, class declarations, and interfaces or extended classes. We use this list of types to
compare to related types in the official API documentation. For the API documentation we gather the entire type hierarchy of
the class (or of the containing class for a candidate field or method). A definition of Structural Similarity is as follows:

StructuralSimilarity(m,API) = |types(mbigcontext) ∩ types(API)|
|types(mbigcontext)|

,where mbigcontext is the larger set of surrounding tokens of each mention, while typesc are the set of type names in the API
hierarchy, as specified in the official documentation, or encountered in a code segment found in the tutorial mention’s surrounding
context.
Since the mention to startActivityForResult on line 1 of Figure 1 has no source code in its vicinity, this Structural

Similarity will be zero.

3.2.4 Parameter Similarity
Methods are the most common API element we encounter in tutorials. A method’s parameters can be a crucial feature in dis-
ambiguating multiple methods with same name. Method overloading is supported in many languages and is a common pattern

10 Manziba Akanda Nishi ET AL

found in many APIs. Considering again the mention of startActivityForResult in Figure 1 we observe that both variants
of this method are part of the Activity class. The different parameter number and types are the only aspect distinguishing the
two APIs being referred to by this mention, and for this purpose we introduce the Parameter Similarity feature.
Parameter Similarity is computed between the method parameters of a mention in the tutorial and those of the candidate APIs

in the official documentation. For efficiency, in matching, we first consider the number of parameters and then we attempt to
match their types, assuming that type information is available. The metric is binary, producing a value of 1 if the parameters of
the API in the two sources match, and 0 otherwise. A definition of this feature is as follows:

ParameterSimilarity(m,API) =

{

1, if types(parameters(mcontext)) = types(parameters(API))
0, otherwise

,where types(parametersc) specifies the types of the parameters found in method definitions in the API or method invocations
in the tutorial.
As for the Structural Similarity, when a mention has no source code in the surrounding text, as startActivityForResult

on line 1 of Figure 1, its Parameter Similarity is also zero.

4 EXPERIMENTAL STUDY

Each tutorial contains a number of potential API mentions. Each of these API mentions needs to be disambiguated and mapped
to the exact API member it corresponds to, or marked as a spurious match that is not a true mention. Subsequently, to find out the
range of versions of a tutorial we can compute the valid ranges for the constituent API mentions. The aim of our experimental
study are the following research questions:

• RQ 1: Does our technique for automatic versioning of software development-related tutorials accurately map mentions
to their corresponding APIs?

• RQ 2: Is our technique for automatic versioning of software development-related tutorials effective at determining valid
version ranges?

The effectiveness of our technique in RQ2 is dependent on achieving a reasonable accuracy on RQ1.

4.1 Experimental Setup
In this section we describe the method and metrics we use to evaluate the research questions. Our evaluation dataset is the one
constructed with the empirical study described in Section 2.1. It consists of 13 tutorials sampled via stratified sampling with
75879 potential API mentions and the Android API documentation scraped from official Web pages. From these, 1268 are actual
API mentions consisting of 744 classes, 54 fields and 470 methods. We used Python to implement our technique, leveraging
the popular natural language processing libraries NLTK27 and TextBlob28. For island parsing of the code snippets embedded
in tutorials we used the SrcML parser29.
The versions when API mentions in our tutorial dataset were initially introduced in Android follow the distribution shown

in Figure 5. A few Android releases (e.g. 1, 11, and 22) introduced popular API members that are commonly referenced in our
tutorials. However, many other Android releases mostly contributed additional or specialized functionality referenced by few
(or no) mentions in our tutorial set. Therefore, the problem of determining which API versions are supported by a tutorial is
skewed by commonly occurring API elements.
The constituent problem of matching a mention to an API element (i.e. a specific class, method or field) is naturally formulated

as binary classification. That is, for each potential mention in a tutorial we consider a binary decision of whether it belongs to
each, out of sometimes several, possible APIs with the same name. This task is also heavily skewed by common API names, for
which the classification task is significantly more difficult. For instance, the toString() API method occurs in 669 different
Android classes. On the other hand, the replacement() method occurs in only 2 different classes, CharsetEncoder and
CharsetDecoder. So some mentions in our dataset are very hard to disambiguate, while others are straightforward. To measure
our approach’s effectiveness and answer RQ1, we use metrics common in binary classification problems.

Manziba Akanda Nishi ET AL 11

Tutorial Name Precision Recall F1-score
Learning to Parse XML Data in Your Android App 41% 31% 35%
— Class 82% 74% 78%
— Field 100% 100% 100%
—Method 83% 24% 37%
Navigation Drawer Android Example 29% 48% 36%
— Class 58% 80% 67%
— Field – – –
— Method 66% 32% 43%
How to Get all Registered Email Accounts in
Android

85% 55% 67%

— Class 76% 100% 86%
— Field 100% 100% 100%
—Method 85% 50% 62%
Scheduling Background Tasks in Android 53% 32% 40%
— Class 84% 76% 80%
— Field 90% 60% 72%
—Method 100% 42% 60%
Android Lollipop Swipe to Refresh Example 17% 67% 27%
— Class 67% 89% 76%
— Field – – –
— Method 27% 61% 32%
Android Navigation Drawer – for Sliding Menu /
Sidebar

25% 44% 32%

— Class 58% 83% 68%
— Field 100% 100% 100%
—Method 80% 25% 38%
Building Android applications with Gradle -
Tutorial

12% 29% 17%

— Class 61% 100% 75%
— Field 100% 100% 100%
—Method 57% 88% 69%
Android Facebook Login Tutorial - Integrating
Facebook SDK 4

40% 26% 32%

— Class 69% 87% 77%
— Field 85% 100% 91%
—Method 34% 30% 32%
Using ViewPager to Create a Sliding Screen UI in
Android

54% 39% 45%

— Class 77% 100% 87%
— Field – – –
— Method 40% 20% 27%
Retrofit, a Simple HTTPClient for Android and Java 14% 28% 19%
— Class 75% 93% 83%
— Field 50% 66% 57%
—Method 29% 68% 41%
Convert Speech to Text in Android Application 12 % 19% 15%
— Class 80% 43% 56%
— Field 83% 83% 83%
—Method 66% 13% 22%
Android Chat Bubble Layout - with 9 patch Image
using ListView

70% 46% 55%

— Class 79% 84% 81%
— Field 100% 50% 66%
—Method 59% 39% 47%
Understanding Androids Parcelable - Tutorial 60% 40% 48%
— Class 95% 72% 82%
— Field – – –
— Method 76% 66% 71%
Average Combined 39% 38% 36%
— Average Class 74% 82% 76%
— Average Field 89% 84% 85%
— Average Method 61% 42% 44%

TABLE 3 Results using tutorials as units. (-These tutorials have no positive fields.)

• Precision – measures the ability of a classifier in labeling positive samples as positive and avoid labelling positive samples
as negative 30. High precision indicates that our technique does not misclassify mentions as wrong APIs, or classify
spurious mentions as mentions. In other words, precision is a good metric to evaluate a model when the cost for false

12 Manziba Akanda Nishi ET AL

1 3 5 11 14 16 21 22 24 25 26
API Version Added

100

101

102

103

Nu
m

be
r o

f
Oc

cu
rre

nc
es

FIGURE 5 The distribution of the added versions across all the tutorial (log scale).

positives is high.31. Downstream, low precision could result in our technique selecting an overly restrictive version range
for a tutorial.

• Recall – measures a classifier’s ability to find all the positive samples30. High recall is indicative of our technique’s ability
to recognize all of the API mentions in a tutorial, missing few or none. Recall is used to evaluate a model when the cost of
false negatives is high31. Downstream, low recall could result in our technique not being restrictive enough in versioning
tutorials.

• F1-Score (binary) – is a popular metric that combines precision and recall. We compute the binary F1-score, which is
applicable in problems like ours when the predicted or target class is binary32.

For RQ2, we require a metric that contrasts the true version range of a tutorial, as determined using manual annotation, from
the set of versions of the set of disambiguated mentions in that tutorial. Therefore, for comparing two version ranges we use the
following metric:

• Manhattan Distance – measures the distance between two points as the sum of the absolute differences of their Cartesian
coordinates33. We use the Manhattan Distance to assess the difference between the predicted and actual version range of
a tutorial, as the measure follows intuitive notions of a distance between two version ranges. For instance, it penalizes
errors in underestimating and overestimating the range equally.

For this supervised learning problem, we explore two different train-test split strategies: (1) using mentions as a unit; and (2)
using tutorials as a unit. In the first strategy a randomly chosen portion of mentions is used in the training set and the remainder
constitutes the test set. Likely this results in some portion of the mentions of each tutorial (from our set of 13) to be placed in each
set. In the second strategy, we examine using all of the mentions from a portion of the tutorials as the training set, leaving the
remaining whole tutorials as the test set. The second strategy is meant to convey a more realistic deployment of our technique,
where the trained classifier has not seen any of the mentions of the new, previously unseen, tutorial whose version it determines.

ClassificationAlgorithms. For the binary classification problemwe choose the RandomForest Classifier, which has been shown
to produce good results on a variety of problems34. We use the default settings for the Random Forest Classifier: numTrees =
1500. In addition, in order to better address the problematic popular mentions, where numerous possible API matches exist (e.g.
toString()) for a mention in a tutorial, we reformulate the classification task as multi-instance classification. In multi-instance
classification35, there are multiple instances that are grouped together in a bag, and the algorithm’s task is to predict the label of
the bag taking into account all of the instances that comprise it. That is, the classifier first predicts whether a bag corresponds to
a spurious vs. non-spurious mention. Subsequently, if it is a real mention, the highest expressed instance within the bag should
correspond to the specific API we map the mention to.
To make this clearer, consider a case where the candidate mentions in the tutorial are denoted as m1, m2, m3, ..., mn.

Each of these mentions has a set of potential candidate APIs c1, c2, c3, ..., ck, extracted from the official API documenta-
tion. In our classification task, we consider a mention-candidate pair as an instance, (m1, c1), (m1, c2), (m1, c3), ..., (m1, ck),
(m2, c1), (m2, c2), (m2, c3), ..., (m2, ck), (mn, c1), (mn, c2), (mn, c3), ..., (mn, ck). If we consider the classification problem as binary

Manziba Akanda Nishi ET AL 13

classification then each instance is independent and a positive prediction means that a mention is mapped to a specific API ele-
ment. If none of the mention’s APIs match, then we consider the mention to be spurious. In multi-instance classification, all of
the instances that belong to a particular mention m form a bag. The number of bags is equal to the number of mentions, while
the number of instances in each bag is equal to the number of API candidates of this particular mention. The classification task
marks a bag as positive if it contains an instance (m, cj) that maps to an API. We identify this to be the instance with the high-
est sum of the normalized features within the positive bag. On the other hand, if a bag is predicted as negative, it is a spurious
match and all of its instances are negative. As an implementation of a multi-instance classifier, we use the multi-instance Support
Vector Machines (mi-SVM)36, with its default settings (i.e. kernel=linear and maximum iterations=5000).

4.2 Results
We first present our results evaluatingRQ1with mentions as units. The evaluation uses the Random Forest classifier and 10-fold
cross validation and a training set consisting of the same type of API element (i.e. method, class, field or combined). Table 4
shows the results split across different types of API elements, classes (or interfaces), methods, and fields. For a combination of
API elements our technique shows higher precision (79%), lower recall (62%), with F1 score of 69%. Considering the different
types of API elements, our technique performs best on fields, followed by classes, with methods performing the poorest, with
an F1-score of 58%.

API Elements Precision Recall F1 score
Class 87% 74% 80%
Field 94% 78% 84%

Method 69% 50% 58%
Combined 79% 62% 69%

TABLE 4 Results using mentions as units.

Bag Level Instance Level
API Elements Precision Recall F1

Score
Precision Recall F1

Score
Class 73% 100% 84% 99% 73% 84%
Field – – – – – –

Method 83% 79% 79% 56% 48% 51%
Combined 79 % 29% 42% 60% 50% 54%

TABLE 5 Results of multi instance classification.

We also evaluate our technique using tutorials as units, where we use mentions of a specific API type from 12 of the 13
tutorials as a training set and use the final tutorial as the test set.
The results of this evaluation are shown in Table 3. Again, we present the classifier’s output divided into different types of

API elements and combined. We observe high effectiveness on classes and fields, but much low values for method (average
F1-score of 44%) or combined (average F1-score of 36%).
The low values on method across both of the evaluations motivate the formulation of the problem as multi-instance clas-

sification, which groups instances belonging to the same mention instead of treating them separately as in the previous
formulations.
Using bags to represent each unique mention in the tutorial and instances to represent each mention - API element pair, the

results for multi-instance classification are shown in Table 5.
For train test splits, we use the tutorials as units. The number of fields in the dataset was insufficient to produce results using

this method so these results are omitted. Using this formulation of the problem we observe reasonable results at the bag level for
methods and classes and at the instance level for classes. The per instance method results and the combined results were weaker

14 Manziba Akanda Nishi ET AL

than class or field, as in the binary classification. However, compared to the binary classification we observe slight improvements
in the results on methods, with F1-score of 51% ,and on the combination of all API elements, with an F1-score of 54%.

Tutorial Name Version
Range

Predicted
Version
Range

Manhattan
Distance

Learning to Parse XML Data in Your
Android App

[1-28] [26-28] 25

Navigation Drawer Android Example [22-27] [25-27] 3
How to Get all Registered Email
Accounts in Android

[5-22] [5-22] 0

Scheduling Background Tasks in
Android

[3-28] [1-21] 9

Android Lollipop Swipe to Refresh
Example

[22-28] [24-28] 2

Android Navigation Drawer - for
Sliding Menu / Sidebar

[25-28] [24-28] 1

Building Android applications with
Gradle - Tutorial

[1-28] [1-28] 0

Android Facebook Login Tutorial -
Integrating Facebook SDK 4

[26-28] [25-27] 2

Using ViewPager to Create a Sliding
Screen UI in Android

[25-28] [25-26] 2

Retrofit, a Simple HTTP Client for
Android and Java

[25-28] [26-28] 1

Convert Speech to Text in Android
Application

[26-28] [25-28] 1

Android Chat Bubble Layout - with 9
patch Image using ListView

[25-28] [26-28] 1

Understanding Androids Parcelable -
Tutorial

[1-28] [1-28] 0

Average Distance 3.61

TABLE 6 Comparison of the true and predicted version ranges of tutorials.

Based on these results, we cannot answerRQ1 strongly in the affirmative for all API elements.While the results are sufficiently
strong for fields and classes, the results for methods and for a combined mix of all API elements still miss a large set of mentions.
Next, forRQ2, we examine how the technique performs in determining the version ranges of the tutorials in our experimental

set. While RQ1 is a prerequisite for RQ2, we observe a high redundancy in mention types in a tutorial, which makes it possible
to have reasonable results on RQ2 even with subpar results on RQ1. For instance, startActivityForResult is mentioned
numerous times in the tutorial listed in Figure 1.
The results for RQ2 are shown in Table 6. Our method predicts the correct version ranges for three of the thirteen tutorials.

For the ones whose versions are incorrectly predicted, the majority, ten out of twelve, are missed with very small margins of
1 or 2 versions. For two of the tutorials the predicted versions are significantly distant from the true ranges. This shows that
even though some individual API mentions and their corresponding API-levels are incorrectly predicted by our technique, due
to redundancy of mentions inherent in the tutorials, the upper and lower bound of the predicted version ranges are quite similar
to the corresponding true version ranges. Tiny variances in the predicted version ranges are unlikely to significantly hinder the
use of our technique.

Error Analysis.We qualitatively examined the results of our technique, focusing specifically on instances where our technique
performed poorly. The tutorial Learning to Parse XML Data in Your Android App is one where we misclassify the version by
a large margin, predicting 26 where the true minimum version of the APIs mentioned in this tutorial is 1. Examining all the
potential mentions of this tutorial we observe that in the following textual segment of the tutorial, the word write is considered
a potential mention.

[...] With the help of these APIs you can easily incorporate XML into your Android app. The XML parsers do
the tedious work of parsing the XML and we have to just write the code to fetch the appropriate information from
it and store it for further processing. [...]

Manziba Akanda Nishi ET AL 15

In this case, the mention to write clearly does not refer to an API, however, it is misclassified as the call the Android write API
method:

void AsynchronousSocketChannel.write(ByteBuffer src, A attachment,
CompletionHandler<Integer, ? super A> handler)

This occurs because there are tokens in the method’s API description text that match tokens in the context of this mention in
the tutorial, providing a positive value for the Text Similarity feature. With this value for this feature, and the remaining features
as zero, the classifier produces a false positive. As thewritemethod is introduced in Android API 26, this results in a large error
for this tutorial. Mitigating errors like the one described here likely requires introducing additional features as improvements to
the classifier seem unlikely to be helpful, since many true positive mentions have the same feature values. This specific error
persisted for both of the classifiers we applied in this paper. One additional feature that can be explored to improve this error is
using word embeddings computed on a large external corpus, e.g. on Stack Overflow, to enrich the text of the API documentation
with additional terms and improve the quality of the matching. Too often, we found that the Android API descriptions were very
brief which made resulted in zeros for many of the features, as was the case here.

5 RELATEDWORK

To our knowledge, there is no prior research that focuses specifically on the validity of tutorials with respect to versions of APIs
they reference. However, more broadly, we can divide the related research into two categories: 1) studies of API deprecation and
versioning of APIs referenced in various contexts; and 2) techniques for extracting API mentions from different types of formal
and informal documentation. We discuss each of these categories in turn.
Many studies of API deprecation focus on source code. Leveraging data in software repositories, a recent tool called APIDIFF

detects the API changes between two versions of Java libraries37. APIDIFF serves as a warning system for client applications that
rely on these libraries. The tool extracts syntactic changes in the evolution of a software repository, reporting a set of predefined
breaking and non-breaking changes in API types, methods, and fields. Targeting Android application binaries distributed via
the app store, the MAD-API framework detects API misuses, using a reverse engineering toolchain10. MAD-API detects API
misuses based on a gold set of Android APIs, including per-version removals, deprecations, and additions. The APIs in the
binary that are misused are detected and reported. Both of these tools focus on detecting API versioning problems in source
code, a very different domain from versioning software development tutorials that consist of a combination of source code and
natural language text.
The recently proposed framework DEPRECATION WATCHER 9 detects deprecated APIs in the source code snippets of Stack-

Overflow posts. Since StackOverflow posts are concise and focus on a single topic38,9, a lightweight tool like DEPRECATION
WATCHER can be effective in detecting deprecated API while disregarding the natural language context of the post. However,
researchers have pointed out that the content of the surrounding text is especially important in high quality answers on Stack-
Overflow38. Our technique focuses on API versioning of tutorials, which are significantly more complex, often weaving together
multiple related topics. The code segments in tutorials are also much more complex, which makes the regular expression based
technique in DEPRECATION WATCHER potentially inadequate. However, more importantly, the natural language context in
tutorials is much larger than StackOverflow posts and ignoring it is likely to lead to poor results.
Detecting API mentions in informal documentation is an active area of research, as, once detected, the API mentions can be

used to improve documentation lookup efficiency or serve as the basis for a variety of recommendation systems. For instance,
Ye et al. proposed a technique for detecting API mentions, despite difficulties introduced by polysemy and sentence-format
variations in the informal documentation39. Ye et al. also utilized a conditional random fields classifier to detect the fully
qualified names of API mentions, obtaining high precision and recall40. However, the chosen approach relies heavily on hints
that are specific to the Q&A conversations in StackOverflow, such as the question title, StackOverflow tags (used to eliminate
non-relevant candidates), as well as tags embedded in HTML to find out types (class and interface). These techniques are too
specific to StackOverflow and therefore are not completely applicable to our problem.
A recently proposed tool also targeting StackOverflow mentions, named ANACE 8, leverages a number of generic features

that could be applied to any informal documentation source. We modeled our features on some of the features shown to be
effective by ANACE, however, our workflow is significantly simpler relative to this tool. Finally, we also differ from ANACE
in targeting versioning of tutorials, rather than just API mention detection in StackOverflow posts.

16 Manziba Akanda Nishi ET AL

Techniques for extracting API mentions from informal documentation are similar to the main technique we use for tutorial
versioning. However, many of them extract API mentions for the purpose of generating documentation, so they do not assume
access to the official API documentation as we do. RECODOC is a tool proposed to extract code-like terms in documents that
describe API elements. The tool is based on a number of filtering heuristics41, and relies on a parser to identify code-like terms,
which can miss terms with formatting inconsistencies and result in false positives on similar terms (e.g URLs). ACE is a tool
that uses local context extracted from a single document and global context extracted from the corpus to discover code-like terms
in informal documentation42. The tool relies on tags to filter out those posts that do not represent APIs of interest and introduce
noise8. ACE also uses an island parser and relies on a set of regular expressions which can be language or source specific.
RECODOC was later applied in finding relevant tutorial segments for a given API element43,44. Both of these approaches only
consider class and interface level granularity, but not method or field.
An unsupervised approach FRAPT 45 has recently been proposed to recommend relevant tutorial fragments of APIs. FRAPT

relies on HTML tags and special keywords to identify API names, which can be unreliable for APIs that use common names.
FRAPT does not aim to resolve the ambiguity in common API names. FRAPT 45 was later used to implement a framework
named SOTU 46 that aims to find answers to API related natural language questions by utilizing fragments of API tutorials and
StackOverflow.
Zhang et al. devised a technique that links API official documentation to the API related questions in StackOverflow, which

utilizes the lexical similarity between StackOverflow questions and API description and the history of prior answered questions
on StackOverflow47. An API recommendation technique called RACK 48 has been proposed to discover appropriate APIs for
a given natural language query by utilizing crowdsourced knowledge mined from StackOverflow in the form of keyword-api
association. While utilizing API mention discovery in their workflow, both of these techniques target Stack Overflow and aim
at completely different software engineering problems than the tutorial versioning problem that is the focus of this paper.

6 CONCLUSION AND FUTUREWORK

In this paper we propose a novel idea for inferring the version compatibility of informal software documentation, focusing
specifically on written tutorials available on the Web. Many tutorials are read by numerous developers, especially by novices,
and a system that can warn developers of version incompatibilities is likely to improve productivity by reducing the time spent
struggling to learn a difficult development-related concept.
We perform a motivational study producing a manually-annotated corpus of 13 Android tutorials, obtained using stratified

sampling that considers the source and year of publishing. Our study finds several tutorials with limited Android API ver-
sion compatibility, including both dated tutorials that are not compatible with recent API releases and newer tutorials that are
incompatible with older APIs.
We then focus on a developing a workflow that automates the task of versioning tutorials given (versioned) official API

documentation. We decompose this task into two subtasks, one of determining whether a term that matches an API element
(class, field, or method) is an actual API mention and the second of disambiguating a overloaded API name to the specific
element it refers to. For these two tasks, we express a set of features and experimentally study different classification algorithms
and problem setups to understand their effect on this problem.We find that classes and fields are straightforward to disambiguate,
but that common API method names can be very challenging. However, we also find that tutorials possess sufficient redundancy
in their API mentions and even with imperfect per-mention classification, the overall tutorial version can often be accurately
recognized. Therefore, we observed that our approach is effective at determining the final valid version ranges of many of the
Android tutorials we examined.
In the future, we plan to extend our research by exploring additional features that reflect the popularity of a particular API, as

developers often mention popular APIs without much additional context. We also plan to experiment on larger and more diverse
collections of tutorials. We also plan on exploring how version hints can be integrated into development environments and how
developers perceive such suggestions.

7 ACKNOWLEDGMENT

The authors acknowledge support for this work from the US National Science Foundation, under award number 1812968.

Manziba Akanda Nishi ET AL 17

References

1. Brandt J, Guo PJ, Lewenstein J, Dontcheva M, Klemmer SR. Two Studies of Opportunistic Programming: InterleavingWeb
Foraging, Learning, and Writing Code. In: CHI ’09. ACM; 2009; New York, NY, USA: 1589–1598

2. Chatterjee P, Nishi MA, Damevski K, Augustine V, Pollock L, Kraft NA. What information about code snippets is available
in different software-related documents? an exploratory study. In: SANER 2017. IEEE; 2017; Washington, DC, USA: 382–
386

3. Bao L, Xing Z, Wang X, Zhou B. Tracking and Analyzing Cross-Cutting Activities in Developers’ Daily Work (N). In: ASE
’15. IEEE Computer Society; 2015; Washington, DC, USA: 277–282

4. Xia X, Bao L, Lo D, Kochhar PS, Hassan AE, Xing Z.What Do Developers Search for on theWeb?. Empirical Softw. Engg.
2017; 22(6): 3149–3185. doi: 10.1007/s10664-017-9514-4

5. Ponzanelli L, Bavota G, Mocci A, et al. Too Long; Didn’T Watch!: Extracting Relevant Fragments from Software
Development Video Tutorials. In: ICSE ’16. ACM; 2016; New York, NY, USA: 261–272

6. McDonnell T, Ray B, Kim M. An empirical study of api stability and adoption in the android ecosystem. In: ICSM ’13.
IEEE; 2013; Washington, DC, USA: 70–79

7. Ko D, Ma K, Park S, Kim S, Kim D, Le Traon Y. API document quality for resolving deprecated APIs. In: APSEC ’14.
IEEE; 2014; Piscataway, NJ, USA: 27–30

8. Uddin G, Robillard MP. Resolving API Mentions in Informal Documents. CoRR 2017; abs/1709.02396.

9. Zhou J, Walker RJ. API Deprecation: A Retrospective Analysis and Detection Method for Code Examples on the Web. In:
FSE 2016. ACM; 2016; New York, NY, USA: 266–277

10. Luo T, Wu J, Yang M, Zhao S, Wu Y, Wang Y. MAD-API: Detection, Correction and Explanation of API Misuses in
Distributed Android Applications. In: Springer International Publishing; 2018; Cham: 123–140

11. Tiarks R, Maalej W. How Does a Typical Tutorial for Mobile Development Look Like?. In: MSR 2014. ACM; 2014; New
York, NY, USA: 272–281

12. KoAJ, DeLine R, Venolia G. Information Needs in Collocated Software Development Teams. In: ICSE ’07. IEEEComputer
Society; 2007; Washington, DC, USA: 344–353

13. Singer J, Lethbridge T, Vinson N, Anquetil N. An Examination of Software Engineering Work Practices. In: CASCON ’10.
IBM Corp.; 2010; Riverton, NJ, USA: 174–188

14. Hora A, Robbes R, Anquetil N, Etien A, Ducasse S, Valente MT. How do developers react to API evolution? The Pharo
ecosystem case. In: ICSME ’15. IEEE; 2015; Washington, DC, USA: 251-260

15. Espinha T, Zaidman A, Gross HG.Web API growing pains: Stories from client developers and their code. In: CSMR-WCRE
’14. IEEE; 2014; Washington, DC, USA: 84–93

16. Sawant AA, Robbes R, Bacchelli A. On the reaction to deprecation of 25,357 clients of 4+ 1 popular Java APIs. In: ICSME
’16. IEEE; 2016; Washington, DC, USA: 400-410

17. Hou D, Yao X. Exploring the Intent behind API Evolution: A Case Study. In: . 00. ; 2011: 131-140

18. Venkatesh PK, Wang S, Zhang F, Zou Y, Hassan AE. What Do Client Developers Concern When Using Web APIs? An
Empirical Study on Developer Forums and Stack Overflow. In: ICWS’ 16. IEEE Computer Society; 2016; Washington, DC,
USA: 131-138

19. Linares-Vásquez M, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D. How Do API Changes Trigger Stack Overflow
Discussions? A Study on the Android SDK. In: ICPC 2014. ACM; 2014; New York, NY, USA: 83–94

http://dx.doi.org/10.1007/s10664-017-9514-4

18 Manziba Akanda Nishi ET AL

20. Kavaler D, Filkov V. Determinants of quality, latency, and amount of Stack Overflow answers about recent Android APIs.
In: . 13. Public Library of Science; 2018; California, US: e0194139

21. Android StartActivityForResult Example. https://www.javatpoint.com/android-startactivityforresult-example; 2018.

22. MCREYNOLDS J. Android Tutorial: Implement A Shake Listener. http://jasonmcreynolds.com/?p=388; 2013.

23. Android Official Documentation. https://developer.android.com/reference/; 2018.

24. Android API Differences Report. https://developer.android.com/sdk/api_diff/../changes; 2018.

25. Android API Differences Report For Support Library. https://developer.android.com/sdk/support_api_diff/.../changes;
2018.

26. Android Version History. https://en.wikipedia.org/wiki/Android_version_history; 2018.

27. NLTK 3.3 Documentation. https://www.nltk.org/; 2018.

28. TextBlob: Simplified Text Processing. https://textblob.readthedocs.io/en/dev/; 2018.

29. SrcML Tool Documentation. https://www.srcml.org/; 2018.

30. Sklearn Metrics Precision Recall Fscore Support. http://scikit-learn.org/stable/modules/generated/sklearn.metrics.
precision_recall_fscore_support.html; 2018.

31. Accuracy, Precision, Recall or F1?. https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9; 2018.

32. Sklearn Metrics Precision Recall F1score. http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html/;
2018.

33. Taxicab Geometry. https://en.wikipedia.org/wiki/Taxicab_geometry; 2018.

34. RandomForest Classifier. http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html;
2018.

35. Multi Instance Classifier. https://github.com/garydoranjr/misvm; 2018.

36. Andrews S, Hofmann T, Tsochantaridis I. Multiple Instance Learning with Generalized Support Vector Machines. In:
American Association for Artificial Intelligence; 2002; Menlo Park, CA, USA: 943–944.

37. Brito A, Xavier L, Hora A, ValenteMT. APIDiff: Detecting API breaking changes. In: SANER ’18. IEEEComputer Society;
2018; Washington, DC, USA: 507-511

38. Nasehi S, Sillito J, Maurer F, Burns C.What makes a good code example?: A study of programming Q&A in StackOverflow.
In: ICSM 2012. IEEE; 2012; Washington, DC, USA: 25–34

39. Ye D, Xing Z, Foo CY, Li J, Kapre N. Learning to extract api mentions from informal natural language discussions. In:
ICSME 2016. IEEE; 2016; Washington DC, USA: 389–399

40. Ye D, Bao L, Xing Z, Lin SW. APIReal: an API recognition and linking approach for online developer forums. In: Springer;
2018; New York, NY, USA: 1–32

41. Dagenais B, Robillard MP. Recovering Traceability Links Between an API and Its Learning Resources. In: ICSE ’12. IEEE
Press; 2012; Piscataway, NJ, USA: 47–57

42. Rigby PC, Robillard MP. Discovering Essential Code Elements in Informal Documentation. In: ICSE ’13. IEEE Press;
2013; Piscataway, NJ, USA: 832–841

43. Petrosyan G, Robillard MP, DeMori R. Discovering Information Explaining API Types Using Text Classification. In: ICSE
’15. IEEE Press; 2015; Piscataway, NJ, USA: 869–879

https://www.javatpoint.com/android-startactivityforresult-example
http://jasonmcreynolds.com/?p=388
https://developer.android.com/reference/
https://developer.android.com/sdk/api_diff/../changes
https://developer.android.com/sdk/support_api_diff/.../changes
https://en.wikipedia.org/wiki/Android_version_history
https://www.nltk.org/
https://textblob.readthedocs.io/en/dev/
https://www.srcml.org/
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html/
https://en.wikipedia.org/wiki/Taxicab_geometry
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://github.com/garydoranjr/misvm

Manziba Akanda Nishi ET AL 19

44. Rigby PC, Robillard MP. A more accurate model for finding tutorial segments explaining APIs. In: SANER ’16. IEEE
Press; 2016; Piscataway, NJ, USA: 157-167

45. Jiang H, Zhang J, Ren Z, Zhang T. An Unsupervised Approach for Discovering Relevant Tutorial Fragments for APIs. In:
ICSE ’17. IEEE Press; 2017; Piscataway, NJ, USA: 38–48

46. Wu D, Jing XY, Chen H, et al. Automatically Answering API-related Questions. In: ICSE ’18. ACM; 2018; New York, NY,
USA: 270–271

47. Zhang J, Jiang H, Ren Z, Chen X. Recommending APIs for API Related Questions in Stack Overflow. In: IEEE ’13. IEEE;
2013; Piscataway, NJ, USA: 6205-6219

48. RahmanMM, Roy CK, Lo D. Rack: Automatic api recommendation using crowdsourced knowledge. In: SANER ’16. IEEE
Press; 2016; Piscataway, NJ, USA: 349-359

	Automatically Identifying Valid API Versions for Software Development Tutorials on the Web
	Abstract
	Introduction
	Motivation
	Empirical Study
	Manual Annotation Procedure
	Analysis of Findings
	Threats to Validity

	Automated Versioning of Software Development Tutorials
	Versioning Workflow
	Features
	Noun Similarity
	Text Similarity
	Structural Similarity
	Parameter Similarity

	Experimental Study
	Experimental Setup
	Results

	Related Work
	Conclusion and Future Work
	Acknowledgment
	References

