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ABSTRACT

Components can be a useful tool in software development, including the development

of scientific computing applications. Many scientific applications require parallel exe-

cution, but commodity component models based on Remote Method Invocation (RMI)

do not directly support the notion of parallel components. Parallel components raise

questions about the semantics of method invocations and the mechanics of parallel data

redistribution involving these components.

Allowing parallel components to exist within a component framework comes at very

little extra cost to the framework designer. However, the interaction semantics (i.e.,

method invocations) between two parallel components or between a parallel and non-

parallel component can be complex and should require support from the underlying

runtime system.

The parallel data redistribution problem comes about when in order to increase

efficiency, data are subdivided among cooperating parallel tasks within one component.

When two or more components of this type are required to perform a separate compu-

tation on the same data, this data distribution must be decoded and mapped from the

first component to the second component’s specification.

We demonstrate a method to handle parallel method invocation and perform auto-

matic data redistribution using the code generation process of an interface definition

language (IDL) compiler. The generated code and runtime system accomplish the neces-

sary data transfers and provide consistent behavior to method invocation. We describe

the implementation of and semantics of Parallel Remote Method Invocation (PRMI). We

describe how collective method calls can be used to provide coherent interactions between

multiple components. Preliminary results and benchmarks are discussed.
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CHAPTER 1

INTRODUCTION

The goal of this work is to propose a simple method to handle parallel method

invocations and a way to build data redistribution on top of these invocations. One way

of developing such a system is by utilizing the code generation process of an interface

definition language (IDL) compiler to perform the necessary data manipulations and

provide a consistent behavior in parallel component method invocations. This thesis

will describe such a system; one that is reliant mainly on specifications provided at the

interface level to provide the necessary data redistribution and limited to the case of

multidimensional arrays.

Component technology is an important and widely used tool in software development.

However, commodity component implementations do not support the needs of high

performance scientific computing. To remedy this, the CCA (Common Component

Architecture) [1] group was formed among various universities and research institutions,

including the University of Utah, Indiana University, Department of Energy research

laboratories, and others. The group’s goal is to add the functionality of components to

existing scientific computing code while preserving the natural speed and efficiency that

this code contains.

Parallelism is a tool that is consistently leveraged by many scientific programmers in

order to increase performance. As a result, the ability to support parallel components

is crucial when trying to provide components for scientific computing. The choice of

parallel programming model for this purpose is SPMD (Single Program Multiple Data).

Parallel components can be based on MPI (Message Passing Interface), PVM (Parallel

Virtual Machine) or any other product that facilitates this very common type of parallel

programming. Allowing parallel components to exist within a component framework

comes at very little extra cost to the framework designer. However, the interaction

semantics (i.e., method invocations) between two parallel components and between a

parallel and nonparallel component is not clear and does require support from the com-
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ponent framework. This is especially true when the number of processes differ between

the caller and callee components. When we factor in the possibility of having distributed

components, we use the term PRMI (Parallel Remote Method Invocation) to describe

this type of a method invocation. Possible ways of defining PRMI can be seen in the

work of Maasen et al. [15]; however there is no evidence to date of a definite decision on

the specific semantics of PRMI. From a practical standpoint, a policy that will describe

expected behavior when utilizing PRMI is required.

M-by-N data redistribution is also an important piece of the high performance scien-

tific components puzzle. The M-by-N problem comes about when, in order to increase

efficiency, data are subdivided among M cooperating parallel tasks within one component.

When two or more components of this type are required to perform a separate compu-

tation on the same data, this data distribution has to be decoded and mapped from

the first component to the second component’s specification. Because each component

can require a different data distribution to a separate number of parallel tasks, this

problem can get complicated. Also, since components can be connected at runtime, their

distribution requirements are not known a priori. Therefore, data transfer schedules have

to be computed ad hoc.

The M-by-N problem has been discussed among scientific computing researchers for a

substantial period of time and systems such as PAWS [2], CUMULVS [8] and others have

been developed that solve this problem for the limited case of multidimensional arrays.

All of these systems are based on a specific data transfer API (Application Programming

Interface). The data transfer API is separate from the actual method invocations. These

systems have created a general solution to the M-by-N problem. However, each of

them has taken a different approach to data representation and the timing, locking,

and synchronization of the data transfer. The emergence of the CCA group has created

a unique opportinuty to attempt to create a component framework standard for each of

these issues. In addition, some of the M-by-N work suggests that in order to achieve

maximum flexibility in the design, a specific M-by-N interface component needs to be

in place [12]. This redistribution component will stand between two components that

require a data distribution and perform this distribution for them. We recognize the

added flexibility of this design; however we argue against it simply because of its inherent

inefficiency.

By choosing to base our M-by-N distribution mechanism on the PRMI, we decided to
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treat the distribution data as another method argument in a PRMI invocation. Naturally,

this choice led us to placing all of the necessary pieces to perform a data redistribution

from M to N processes in the Interface Definition Language (IDL) compiler and the

stub/skeleton code it generates. In addition to this, in order to provide the user with a

degree of necessary flexibility in the system, we provided a few methods to describe the

data distribution in detail.

The primary research contribution of this thesis is providing parallel remote invocation

semantics that would maximize the expressiveness of parallel components. Placing a

useful tool such as M-by-N data redistribution on top of this parallel method invocation

semantics further shows that parallel remote method invocation and a data redistribution

mechanism performed automatically with the help of an Interface Definition Language

compiler are a tool that can benefit a scientific software programmer.

This thesis is organized as follows: Chapter 2 provides a component tutorial and

discusses the elements of a CCA component framework. Chapter 3 gives an overview

of the PRMI and data redistribution mechanism. The implementation details of these

functionalities are discussed in Chapter 4. In Chapter 5 some performance characteristics

of the system will be shown and analyzed. Finally, Chapter 6 explains the future work

of this project.



CHAPTER 2

COMPONENT FRAMEWORK TUTORIAL

The purpose of this section is to provide a general overview of two underlying areas

of importance to this thesis. The first is a very short introduction to components and the

language that describes them through their interfaces (IDL). The second section focuses

on several parts of the work done by the CCA forum. More specifically, it describes

various aspects that are essential to a CCA-compliant framework.

2.1 Components and IDL Basics

A component is a unit of software development that promotes reuse. Logically, a

component consists of a group or a framework of objects that are ready for deployment.

Component programming makes a clear separation between a producer (server) and a

consumer (client). In fact, this separation is such that it is clearly and strictly defined by

an interface agreement. This interface agreement, in turn, is defined by a special language

known as Interface Definition Language (IDL). An interface describes the services a

producer component provides to the world, and also serves as a contract when a consumer

asks for these services. A typical IDL interface description consists of class and method

declarations. In addition, each argument is predicated by the keywords in, out, or inout.

These keywords are necessary in order to provide support for distributed components

and they are present in most IDLs. In results with the argument being sent into the

method implementation, out causes the method implementation to return the argument,

and inout performs both of these actions. Here is an example of the OMG IDL which is

used by the CORBA component standard [9]:

module Example {

struct Date {

unsigned short Day;

unsigned short Month;

unsigned short Year;
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}

interface UFO {

void reportSighting(in Date date_seen, in int num_contacts, out long ID);

}

}

The reportSighting method description above requires three parameters. The date of

the UFO sighting and the number of contacts should be meaningful parameters to the

method. However, the ID argument has pass-by-reference semantics. The method will

place this argument in the buffer provided during its execution and return it to the calling

code.

When compiled using the IDL compiler, two corresponding parts are produced from

the IDL specification: the stub and the skeleton. These represent the “wiring” which

needs to be in place for two components to interact. The stub is associated with the client

code and the skeleton is coupled with the server implementation. The stub and skeleton

code act as proxies for the method invocations from the consumer to the appropriate

implementation routines of the producer. Figure 2.1 shows how everything fits together

when there is only one client and one server component.

IDL

Stub
Client

Request

(Method Invocation)

Object

Implementation

IDL

Skeleton

Figure 2.1. A Remote Method Invocation (RMI) of two components.
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One important goal of component oriented programming is to support distributed

objects on any platform using any OS. To achieve this, the stub and skeleton are coupled

with all of the necessary marshaling/unmarshaling and networking code. The work

by Szyperski [22] gives an excellent overview of components and various commodity

component models.

2.2 SCIRun2 Framework

Our system builds on the initial SCIRun [18, 11, 10, 19, 20] work and carries the appro-

priate name SCIRun2. The original SCIRun is a framework in which large scale computer

simulations can be composed, executed, controlled and tuned interactively. Composing

the simulation is accomplished via a visual programming interface to a dataflow network.

To execute the program, one specifies parameters with a graphical user interface rather

than with the traditional text-based datafile. Using this ”computational workbench,”

a scientist can design and modify simulations interactively via a dataflow programming

model. Figure 2.2 gives an example of a simulation using SCIRun.

Figure 2.2. A simulation performed using the original SCIRun framework.
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SCIRun is currently implemented in C++, using TCL/TK for a user interface and

scripting language, and OpenGL for 3D graphics. SCIRun is multithreaded: each module

can run on a separate processor in a multiprocessor system. In addition, each module

can be parallelized internally to take maximum advantage of multiprocessor resources.

The multithreaded design allows SCIRun to respond to user input, even while lengthy

computations are in progress.

The purpose of SCIRun’s successor, the SCIRun2 framework, is to create, instantiate,

manage, connect and execute software components. The framework contains the capabil-

ity of instantiating and composing components into an application. It also provides each

component with a standard set of services which allow the component to communicate

with the framework. The SCIRun2 framework includes the possibility of having both

distributed and parallel SPMD (Single Program Multiple Data) components. These are

very important in high-performance computing applications. In comparison to exist-

ing industry component frameworks, our framework is designed to minimize overhead.

Specifically, we pay special attention to the overhead that could arise when copying large

data sets in a distributed component environment.

The SCIRun2 framework conforms to the standards drafted by the CCA (Common

Component Architecture) [1] forum. A CCA framework has the goal of providing com-

ponent functionality to the scientific programmer. The CCA standard specifies two levels

of interoperability: framework-level and component-level. The component-level indicates

that a CCA-compliant component is able to be participate in any CCA-compliant frame-

work. The framework-level specifies that two frameworks should be able to interoperate

through some standardized protocol (e.g., inter-ORB communication via CORBA IIOP).

In order to accomplish these tasks, the CCA standard provides standardized methods

that address various aspects of managing components. At the time of this writing, the

CCA standard has not yet evolved complete framework-level interoperability, so we will

discuss only aspects of component-level interoperability.

Each component defines its interface through the SIDL (Scientific Interface Definition

Language). The definitions are stored by the framework into a repository. The repository

is mostly referenced in order to retrieve a specific interface. It is is accessed through a

special CCA repository API (Application Programming Interface). The repository API

defines methods to search the repository as well as to insert and remove component

interfaces.



8

Component interaction is accomplished through specialized interfaces called CCA

Ports. A CCA Port can either provide or use a certain interface. Provides Ports can

be attached to a component that implements the interface’s routines. A Uses Port can

appear in a component intending to invoke the routines of the interface. A connection

is established between two components by connecting appropriate Uses and Provides

ports. Only two ports that use/provide the same interface can be connected. A special

Collective port is defined by the CCA standard to enable the connection between parallel

components. The Collective port is defined generally, so that it supports connection

between parallel components with separate numbers of parallel process/threads.

CCA Services are a framework abstraction that represent a way for the component to

interact with the framework. Each component upon instantiation is coupled with its own

CCA Services object. The basic functionality of the CCA Services object is to manage

the connection of the CCA Ports. The CCA Services object’s definition is an integral

part of the CCA specification. A CCA compliant framework has to implement the CCA

Services’s method signatures.

The relationships between these and other aspects of a CCA framework are shown

in Figure 2.3 [1]. The elements with a gray background are framework implementation

specific, while the elements with white background represent the CCA standards which

are necessary for component-level interoperability. The work of this thesis corresponds

to the proxy generator element in the figure.
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CCA Ports Part of CCA Ports specific to the framework

Abstract Configuration APIRepository API

Any CCA Compliant Framework

CCA Services

Component 1 Component 2

proxy
generator

Builder

Repository

Scientific IDL

Figure 2.3. Elements of a CCA-compliant framework.



CHAPTER 3

PRMI AND DATA REDISTRIBUTION

SYSTEM OVERVIEW

Our system can be divided into two layers. The bottom layer is the Parallel Remote

Method Invocation (PRMI) layer, whereas the top layer is the M-by-N data redistribution.

The PRMI provides an approach to handle intercomponent interactions involving parallel

components. The M-by-N data redistribution builds on this to provide the component

programmer with an automatic way of transferring distributed data between components.

This chapter will discuss each of these pieces.

3.1 PRMI

PRMI occurs when a request is made for a method invocation on a parallel component

or when a parallel component itself makes such a request. This request or RMI can have

different semantics. For instance, the request can be made to all or from all of the

processes on the parallel component or it can involve only one representative process.

The return value can be discarded, reduced, or copied to each process participating in

the invocation. The number of options regarding parallel invocations is significant and

there is no single expected behavior. Due to this, we were reluctant to provide only

one specific option in the design of our system. On the other hand, we did not want to

instantiate too many possibilities and create a state of confusion. We chose to provide two

types of parallel RMI semantics: collective and independent. Both cases are blocking to

the processes on the caller component that make the invocation. It is our belief that these

cover most of the reasonable programming decisions in the design of parallel components.

A specifier to each method in the IDL is used to distinguish between the two types of

calls. The specifiers (collective and independent) are placed at the start of the method

signature in the IDL. When neither of these specifiers exist we assume the independent

case. This provides an option to the component programmer to use whichever semantic

choice is more fitting. However, the ability to support M-by-N data redistribution is
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limited to the collective case, as this is the only scenario under which it makes sense to

redistribute data.

3.1.1 Collective

Collective components are defined as a collaboration of multiple processes that repre-

sent one computation [12]. A method invocation between components of this type can be

inferred as one that requires the involvement of each parallel process/thread on the caller

component. Examples of such behavior include all cases where collaboration is required

between the component’s parallel processes in order to solve a task. By collaboration we

mean that the parallel processes will subdivide the problem space among themselves and

work independently or through some level of communication to solve the problem. Most

classic parallel algorithms fit this level of programming. Through scientific code example

and our personal opinion of the expected behavior, we designed our system while making

some choices in the PRMI design and, more specifically, in the behavior of the collective

invocations. The examples below will outline our PRMI decisions in a clearer way. For

the purpose of this example we will limit our discussion to the parallel-to-parallel PRMI

case. The cases when dealing with a nonparallel component follow the examples below

intuitively.

Let M be the number of parallel processes on the caller component, and let N be

the number of callee parallel processes. We will examine three different scenarios for the

collective PRMI:

1) M = N

The most intuitive case is when the number of processes match on the caller and callee

component. In such a situation we create a one-to-one correspondence between a caller

and a callee process. Each caller process calls its assigned callee, transfers the arguments

of the call and waits for the return results to be sent back. Figure 3.1 shows the method

invocations and return values of the M = N collective case. The whole lines represent

method invocations, and the dashed represent return values.

2) M > N

Our PRMI implementation is centered around making the difficult interaction cases

(where M 6= N) as transparent as possible for both of the caller and callee. In this

particular case, we define more than one interaction paradigm between two parallel

component processes. One of these paradigms is a regular method invocation such as

the one described in the M = N case. This type of interaction is reserved for the first N
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Figure 3.1. M = N collective PRMI diagram.

callers. Each process in this group marshals its arguments and sends a remote method

invocation message to a corresponding callee process. The rest of callers that do not

match up with a callee send a special reply request to a chosen callee. A callee is chosen

through a simple distribution calculation, so that the requests are distributed equally

among the callees present. In response to this special reply request, the callee relays back

the return values of the past method invocation. In practice, the reply request that asks

for the return value is constructed in the stub code, without the knowledge of the caller

process. In fact, from the perspective of all of the caller processes, a method was invoked

in response to each process’ invocation. In Figure 3.2 we have represented the M > N

scenario. The whole lines represent method invocations, and the dashed represent return

values. The dotted lines stand for invocations that are special reply requests.

It is expected under the collective operations using an SPMD programming model

that each parallel invocation is the same with regard to the parameters passed into and

returned from the method (with the exception of the data redistribution discussed in the

next section). This collective operations model has allowed the invocation mechanism we

modeled in this case.

3) M < N

When a situation arises in which there are more callees than callers, we make as many
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Figure 3.2. M > N collective PRMI diagram.

calls as necessary in order for each callee to be called once. Similarly to the M > N case,

we make sure that each caller is under the illusion that it has made only one invocation.

Only one return value is considered as valid. As described above, the collective interaction

model requires each caller to supply similar method parameters and each callee to return

the same reply. Scenarios such as these – when there is a chain of execution that follows

the callee of our above discussion – usually warrant the type of behavior we have modeled

in this case. In Figure 3.3, which better explains the behavior of the M < N case, the

whole lines represent method invocations, and the dashed represent return values. The

gray lines stand for invocations and take place without the involvement of the process

out of which they were initiated.

The semantic purpose of the collective calls is that they allow a straightforward way

of involving all processes on both the caller and callee in a specific invocation. This allows

the callee processes to collaborate in solving a specific problem. It also allows each of

the caller processes to receive a return value from the invocation they made and be able

to continue their collaborative execution. The real value of the collective calls appears

when they are coupled with a data redistribution mechanism that allows for data to be

transferred back and forth between components in an organized manner that involves all

of the parallel processes.
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Figure 3.3. M < N collective PRMI diagram.

3.1.2 Independent

The previous section described our implementation choices when the call was made in

a collective manner. We recognize the need to provide some support for cases not involving

invocations made on every participating process. We name these independent calls. The

independent invocation suggests that any callee process can and will satisfy the request.

The assumption is that all of the parallel processes provide the same functionality to the

user. One example of this is a parallel component implementing a getRandomNumber()

method. All processes of this component have the functionality of producing a random

number. In every instant that this method is invoked we typically care only that some

process in the component implementation hands us a random number. We are not

concerned which parallel process satisfies this invocation. We have provided support

for the independent invocation through the ability to turn off the collective mechanism

and provide a regular method call to a component’s parallel process.

3.2 M-by-N Data Redistribution

The M-by-N data redistribution builds upon the PRMI as the data are redistributed

when the invocation is made. Our choices of PRMI behavior were also influenced by the

need to provide the right kind of data redistribution behavior. In retrospect, we feel that
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the PRMI we implemented fits the data redistribution purposes well. We limited the

M-by-N problem to the case of multidimensional arrays on any number of dimensions.

Furthermore, the approach we took in solving the M-by-N problem was in treating the

redistribution data as another parameter in the parallel method invocation. In order

to express this, we extended the CCA’s Scientific IDL (SIDL) specification to provide

a distribution array type. This defined type is used in method signatures to represent

a distribution array of a certain type and dimension. We chose to define a distribution

array type separate from usual method and class definitions. This definition was chosen

in order to limit the need to declare a distribution array, its dimensions and type for each

use of the array. We further extended the type to be bound to a specific schedule which

was calculated to redistribute the data. This allowed for distribution schedules to be

reused and increased the efficiency as the schedule calculation is a task which requires a

fair amount of computation and communication. The type definition follows the expected

scoping rules so that it is valid only in the scope it is defined and ones below it. The

distribution array type can be included in more than one method declaration and would

signify a distribution array as a parameter to a particular method. An example of the

changes to the SIDL can be seen below.

package PingPong_ns {

distribution array D <int, 1>; //a typedef for SIDL purposes

interface PingPong {

collective int pingpong(in D test);

};

};

This is a pingpong example of the modified SIDL that represents M-by-N distribution

types. The type “D” is defined as a one-dimensional distributed array of integers bound

at runtime to a specific redistribution schedule. The intention is for this defined type

to be reused wherever necessary to redistribute an integer one-dimensional array with

a specific caller and callee distribution. Within our extensions to the SIDL, we allow

for explicit method signature specifications to describe whether we want the method to

be collective or independent. We default to the independent case if none is specified.

However, when a distributed array type is used within a method signature, that method

is automatically specified to be collective. The M-by-N data redistribution mechanism



16

only makes sense using collective PRMI and we have limited our system to permit only

this scenario. In addition to the IDL modifications, two methods were provided in order

to express and exchange the data distribution from each process’ perspective at runtime:

setCalleeDistribution(DistributionHandle dist_handle,

MxNArrayRep array_representation);

setCallerDistribution(DistributionHandle dist_handle,

MxNArrayRep array_representation);

Each of these methods was designed to be called collectively by all of the callee and

caller parallel processes respectively. Their end purpose is to bring forth a situation where

the infrastructure is aware of the array distribution the caller has and the distribution

that callee wants. Both of them expect the same group of arguments: a handle for

the distribution parameter in question and a description of the array distribution that

a particular process contains. The array representation will be described in more detail

below.

The immediate action of the setCalleeDistribution() method is to establish the fact

that a particular component is a callee in respect to a particular distribution. Also, the

proper distribution objects are created, and the callee waits to receive the distribution

metadata from all of its callers. The setCallerDistribution() method, on the other

hand, does a scatter/gather to all of the callee processes exchanging the appropriate

metadata. When the setCallerDistribution() method is complete in all of the participating

processes, both the callee and caller processes have the necessary metadata and the

necessary objects instantiated that will perform the data distribution. We have chosen to

report distributions at runtime since this would suit the component writer. Many data

distributions depend on the number of processes under which they are executed, therefore

making it much more convenient for our system to support the reporting of distributions

at runtime. A disadvantage of this particular decision is that it requires the redistribution

schedule to be calculated at runtime. The way the distribution method calls and the data

representation fit together in the current system is expressed in the following example:

//CALLEE:

int dimNum = 1;

Index** indexArr = new Index* [dimNum];
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indexArr[0] = new Index(0,100,1); //first=0,last=100,stride=1

MxNArrayRep* callee_arr_rep = new MxNArrayRep(dimNum,indexArr);

callee_obj->setCalleeDistribution(‘‘someDistribution’’, callee_arr_rep);

//CALLER:

int dimNum = 1;

Index** indexArr = new Index* [dimNum];

indexArr[0] = new Index(0,100,2); //first=0,last=100,stride=2

MxNArrayRep* caller_arr_rep = new MxNArrayRep(dimNum,indexArr);

//*** scatter/gather distributions with all of the callee processes:

caller_obj->setCallerDistribution(‘‘someDistribution’’, caller_arr_rep);

The setCalleeDistribution() and setCallerDistribution() calls work in conjunction with

theMxNArrayRep and Index classes, which are used to describe a distribution array. The

methods and classes provided fit together to express the actual data transfer. They put

all of the necessary pieces together in order to calculate a data redistribution schedule.

The actual data transfer, however, takes place only when the method that requires the

data gets invoked. This architecture has the benefit that the system does not require any

point of central control or a centralized schedule calculation, alleviating any bottleneck

that could arise if centralized control existed.

In order to represent the array distribution we use the PAWS [2] data model. It

consists of the first element of an array, the last element of an array, and a stride

denoting the number of array spaces in between two elements. For instance, the data

representation (first = 0, last = 100, stride = 2) for an array named arr would represent

the array starting at arr0, ending at arr100, and taking every second element in between

(i.e., arr0, arr2, arr4, arr6, ..., arr100). Using some of PAWS’s terminology we call this

description an index, and we use one index to describe each dimension of the array in

question. Figure 3.4 depicts the index of a one-dimensional array. The elements in gray

are ones described using the index: first = 0, last = 100, stride = 2.

A distribution schedule is expressed through a collection of intersected indices. These

indices, which are obtained by intersecting two of the regular data representation indices,

describe the exact data that need to be transfered between a given callee and caller

process. The intersection of indexes is in fact the calculation of the distribution schedule.

In addition, it is important to note that our system is built so that it does not require an
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Figure 3.4. Description of a distribution index.

index to define the global array that is distributed among the processes. We accomplish

this by mapping arrays in the IDL to the vector class of C++’s Standard Template

Library, which provides us with a way to determine the local array size.

As we compiled the IDL code that contained a distributed array type, the stub/skeleton

code changed significantly by adding the necessary code to perform the data redis-

tribution. When executed, this code performs the necessary distributions. By doing

this, we have alleviated the scientific component programmer from any responsibility of

redistributing the data. The distribution is performed on a point to point basis in such

a way that a data transfer link is established directly between two processes that require

transfer of data. Synchronization primitives are in place so that the method does not

execute until all of the data is completely transfered. The current system provides a data

redistribution mechanism for out and inout arguments just as well as the in arguments.

In Figure 3.5 we see an example of how the data transfer would look like for a given

one-dimensional array redistribution and an in distribution array argument specified in

the SIDL. The figure shows the data that will be transfered between these components

for a given one-dimensional array distribution. The data movement in this figure is

from the caller to the callee, although in general movement in the opposite direction or

both directions is also possible. The numbers on the arrows represent the data that are

transferred in index format. It is, in fact, necessary to compute these indices as they

make transferring the data, in a practical sense, much easier.
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Figure 3.5. Example of a data redistribution pattern.



CHAPTER 4

IMPLEMENTATION DETAILS

The purpose of this chapter is to closely examine the implementation of our system.

We will attempt to explain the more interesting and challenging aspects of the implemen-

tation. We will discuss several algorithms as well as the overall structure of the system

implementation.

4.1 SIDL Compiler

SIDL (Scientific Interface Definition Language) is the component interface language

that was conceived by the CCA (Common Component Architecture) forum. The language

strongly resembles other component interface languages used in the industry. Within

SCIRun2 (The University of Utah’s CCA Component Framework) is one implementation

of a compiler for SIDL. This compiler is written in C++ and it translates SIDL interface

specifications into C++ stub and skeleton code. Another implementation of the SIDL

compiler is Babel [13] [4], which goes further and provides SIDL translation to many

programming languages such as: Python, Java, C/C++, Fortran77, and Fortran90.

Figure 4.1 shows the inputs and outputs of the SCIRun2 SIDL compiler.

Our compiler is based on a scanner and parser written using LEX and YACC1. An

abstract syntax tree is created from the parsed SIDL code. This is further translated

directly into several C++ classes. There are separate classes in place for the component

skeleton and stub. The SIDL compiler implementation currently has the deficiency of not

dividing the stub and skeleton code into separate files. The same file that contains both of

the stub and skeleton code (filename sidl.cc in Figure 4.1) has to be linked in by both the

component implementation and the component proxy. Since the stub and skeleton are

separate classes within this file, the change to make separate files in this situation would

be relatively trivial. Special attention was paid for the implementation of the skeleton

1Tools used to generate a lexical analyzer and a parser.
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Interface
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Figure 4.1. The input and output files of our SIDL compiler implementation.

to be reentrant so that it allows different methods to be serviced by separate threads. If

an invocation is made on the same method twice, there are blocking primitives in place

to ensure that there is no overtaking between invocations. That is, the invocations on

the same method are serviced in the order they are received. However, a multithreaded

implementation of the component skeleton is necessary in order for the component to

provide an acceptable service level. All component method invocations are blocking to

the process that performs the invocation, which allows the component skeleton to be

multithreaded.

The SIDL compiler depends upon a collection of run-time objects. These objects are

used by many aspects of the generated stub/skeleton code in order to facilitate the com-

ponent interaction. The compiler run-time objects are collectively named PIDL (Parallel

IDL). These objects contain component and proxy base functionalities, type-checking

primitives, definitions of some variable types such as arrays and complex numbers, and

a collection of communication abstract classes. The PIDL runtime library’s objects will
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be discussed throughout this section.

The PIDL communication abstract classes provide the communication API that is

used by the stub and skeleton code. The goal is to provide an abstraction that would

allow many different implementations of a communication library without changing the

compiler. The actual communication library that the system uses is chosen through

methods in the PIDL objects. The communication abstraction consists of a channel and

message abstraction. A connection between a proxy and a component is termed as a

channel, while messages are sent through each channel. Messages have the granularity of

a remote method invocation request. A message usually contains method arguments and

a method number for the handler method that accepts method invocations. To facilitate

this, methods are called on the message class that marshal variables of different types or

send the specific message. In the remainder of this document, examples will be shown

that will contain references to these abstractions. Most of the functionalities called for

by these abstractions should be easily understandable to the reader.

The underlying communication library that SCIRun2 uses is the Nexus communica-

tion library from the Globus Toolkit [6, 5, 7]. Nexus contains one-sided communications

primitives. It supports data marshaling/unmarshaling and provides and RMI mechanism.

This library also contains a high level of multithreading.

The array type represented in the PIDL is a wrapper on the C++ Standard Template

Library’s (STL) vector class [16]. An STL vector is automatically resizable array. Vector

provides the functionality to check the number of elements currently stored in it. We

leverage this specific feature of the underlying vector class in the M-by-N redistribution

of arrays. In addition, a PIDL array is allocated continuously on the heap regardless of

the number of dimensions. This fact alleviates some problems that would arise, if this

were not the case, when the component code uses pointers to locations of the array.

4.2 PRMI

The Parallel Remote Method Invocation (PRMI) is implemented solely through the

IDL (Interface Definition Language) compiler. Modifications to the SIDL (Scientific IDL)

allow for explicit choice of the type of PRMI by the component writer. The two choices of

PRMI allowed by our system are collective and independent. The keywords collective and

independent are used in the SIDL as descriptors for each method. Not specifying one of

these keywords resorts to the default, which is the independent case. The keywords trigger
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the creation of the appropriate C++ code by the SIDL compiler. The generated C++

code is robust enough to be able to handle all aspects of the specific invocation regardless

whether the caller and callee components are on the same machine or distributed across

a network. We will examine the generated code for each PRMI case.

4.2.1 Independent

The independent PRMI is the simpler of the two. It consists of sending a request

to the appropriate parallel process of the callee component. This appropriateness is

determined through a simple invocation distribution among the available callee processes.

An independent PRMI request is sent from a the caller process to the callee equal to

the caller process rank2 modulo the number of callees. The number of callee process

is information that is made available to the stub code, but not to the user code that

performs the invocation. The invocation distribution creates a state where if all caller

processes (assuming there were more than one) were to initiate a request, all of the

requests would be equally distributed among the callee processes (again, assuming more

than one). This is the only special functionality that is provided by the independent

scenario. The remaining code is in place to facilitate a regular (nonparallel) invocation

by marshaling/unmarshaling the arguments, invoking the right method/function on the

callee, determining whether there were exceptions, etc. Below is an example of a high-level

stub and skeleton pseudo C/C++ code for the independent invocation. (Discussion of

some of the communication abstractions shown in the following pseudo-code took place

in the beginning of this section.)

//independent stub

int i = calculateCallDistribution();

message = getCalleeMessage(i);

message->marshalType(someVariable); //generated separately for each

//argument type

message->sendMessage();

message->waitReply(); //block until a reply is received

message->unmarshalType(someVariable); //generated separately for each

2A unique number identifier for each parallel process. The rank of a parallel process is an integer
between 0 and the number of parallel processes.
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//return variable type

//end of independent stub

//********************************

//independent skeleton

message->unmarshalType(someVariable); //generated separately for each

//argument type

method_call();

message->marshalType(someVariable); //generated separately for each

//return variable type

//end of independent skeleton

4.2.2 Collective

Collective PRMI is one that involves all processes of the caller and callee component.

Several methods are possible in its implementation. We chose a method that uses direct

process-to-process communication. This implementation requests that all processes of

the callee component separately accept a collective method invocation. Another PRMI

implementation possibility is for the invocation to be taken only by a representative pro-

cess of the component and then redistributed to all processes internally. We understand

that there may be many circumstances in which this would more efficient. However, this

method of implementation may not be scale well to a large number of parallel processes.

Also, we wanted to simplify the implementation by decreasing the complexity and achieve

the same efficiency. An in depth discussion of the efficiency of the implementation will

follow in Chapter 5.

Several cases are possible within the collective PRMI. These are: M=N, M>N, and

M<N (for M is the number of parallel processes on the caller and N is the number of

parallel processes on the callee). Each of them arises through a different relation of the

number of processes on the caller and callee component. We have discussed these in

depth in the previous chapter. In order to facilitate the implementation of these cases,

each of them having distinct requirements, we implemented special messages to be passed

from the caller to the callee component. The caller component’s stub (not the user code)

has access to the number of parallel processes on the callee. This information is received

upon connecting the components. Knowing the number of callee processes, the caller
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can calculate which of the aforementioned cases exists. Using special message formats

the caller can further instruct each callee process to do the appropriate thing, given

the scenario. These special messages are named: CALLONLY, RETURNONLY, and

CALLANDRETURN. The implementation of these messages rests on an integer placed

as a header to indicate the message type. When the skeleton code of a particular callee

process receives a message and a collective invocation has been specified, it strips off the

integer header and determines the type of message it has received. If a CALLONLY

message was received, it does not return anything to its caller after it invokes the

method. On the other hand, a RETURNONLY message recipient does not invoke the

requested method but only returns the return value of this invocation. We will discuss

how this functionality is achieved in a later section. Finally, a CALLANDRETURN

message results with the regular behavior of the callee, which is invoking the method

and forwarding the return values. To illustrate this concept better, what follows is some

high-level pseudo-code that the SIDL compiler generates for the skeleton piece of the

callee component:

//collective skeleton pseudo-code:

int header;

message->unmarshalInteger(header);

if ((header == CALLANDRETURN) ||

(header == CALLONLY)) {

message->unmarshalVariables(x,y...);

method_call();

}

if (header == CALLANDRETURN) {

message->marshalVariables();

//Save this message for all RETURNONLY calls that might come:

saveThisMessage();

message->sendMessage(caller_process);

}

if (header == RETURNONLY) {

message = retrieveSavedMessage();
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message->sendMessage(caller_process)

}

As the above pseudo-code indicates, functionality is needed to save a return message

in order for the system to work. It is also important to notice that we need some

sort of a guarantee that a CALLANDRETURN invocation will come in front of every

RETURNONLY invocation in order for a return message to be exchanged. A deadlock

is possible in this scenario if the implementation is not careful to avoid it. We chose

to perform this by blocking on the retrieveSavedMessage request and allowing multiple

threads to execute this code. All threads will block until a CALLANDRETURN invoca-

tion arrives and saves a message using the appropriate method. These specific invocations

might overtake each other. However, these are not real invocations as they all belong to

one big parallel invocation. Therefore, aligning them to fit the semantic purpose does not

change anything from the perspective of the component writer. The only question left is

how we guarantee the existence of a CALLANDRETURN invocation in all cases where

there is a RETURNONLY invocation. In order to show this, we will discuss the algorithm

that is in place at the stub of the caller participating in this collective call. This algorithm

is explained at a high-level in the previous chapter. The RETURNONLY calls exist in

the case where the number of the caller processes is greater than the number of callee

processes (i.e., M>N). This scenario provides for one regular (CALLANDRETURN) call

to each of the callee processes and a number of RETURNONLY invocations dependent

on the number of caller processes. We are then guaranteed that our system will receive

a CALLANDRETURN call and will behave appropriately.

4.3 M by N Data Redistribution

4.3.1 Overview

Implementing the M-by-N data redistribution through the SIDL compiler and the

code it creates is an innovative step. Previous systems that have provided M-by-N

redistribution capability have done so through an API. The SIDL compiler is a powerful

tool in implementing the M-by-N data redistribution. It allows to switch the M-by-N

redistribution capability of our system on only when explicitly required to do so. Non-

redistribution cases are relieved from any overhead. We accomplished this by adding

special SIDL type definitions for array distributions. When the SIDL compiler detects

these it produces special code to redistribute the data. Discussion of the SIDL additions
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took place in the previous chapter. The compiler also allows the flexibility of generating

tailored code specific to the needs of the particular redistribution. The data redistri-

bution we implemented within our SCIRun2 component framework consists of several

important pieces. One piece is the setCalleeDistribution() and setCallerDistribution()

methods that exist within each component expecting data redistribution. Each caller

component requiring to redistribute data to a callee component invokes these methods

in order to negotiate the redistribution. Another part of the system implementation is

the PIDL runtime library that assists with many aspects of the redistribution. In fact,

the objects of the PIDL are used to store distribution descriptions (i.e., indices) and to

determine redistribution schedules through intersecting the indices. An integral part of

our implementation is represented in the stub and skeleton code that does the actual

redistribution data transfer. Subtle differences exist whether the arguments are in, out,

or inout. The stub/skeleton code also contains code that extracts the right data from a

specified array. I will proceed in discussing the aforementioned parts of the M-by-N data

redistribution implementation in more detail.

4.3.2 Distribution Expression Methods

The setCallerDistribution() and setCalleeDistribution() methods serve the purpose

of reporting data distributions to and from components. These methods have the goal

of bringing forth a state where each process on both the caller and callee component

knows the distribution of the other component. When a process has this knowledge,

it can calculate a data transfer schedule for itself tailored to the distribution of the

other component. The data distribution specification takes the form of a collection

of indices containing a first, last, and stride. The movement of the indices using the

setCaller/CalleeDistribution() methods is from the caller to the callee component. In

other words, the indices are exchanged only upon invoking the setCallerDistribution()

method and not setCalleeDistribution(). An invocation of this method on the caller

component, moves the caller’s index to the callee and returns the callee’s index. When

invoked once, the setCallerDistribution() method performs this functionality for all callee

processes of the component. Its effect is a scatter/gather of all the component’s distribu-

tion metadata and the caller component’s process that invoked the method. On the other

hand, the setCalleeDistribution() method is one that saves only the specific distribution

to the home component. It is required that the setCalleeDistribution() method is invoked
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before the request for that component’s index arrives through some caller’s invocation of

the setCallerDistribution() method. This is not a hard requirement to satisfy in practice

as component setup code – where the setCalleeDistribution() method would be invoked

– has to execute before a caller connects to that component. The implementation of

the distribution notification methods is achieved through proxy methods and a handler

method on the component implementation. A proxy (i.e., stub) as well as a handler (i.e.,

skeleton) method exist for the setCallerDistribution(), while the setCalleeDistribution()

method is implemented on the component. Conversely, the callee distribution notification

method does not require any communication as it only stores the local distribution

by creating and modifying the appropriate PIDL runtime objects. Below is a part of

the pseudo-code of the implementation of the setCallerDistribution() proxy and handler

method.

//*****setCallerDistribution Proxy

myDistribution = getMyDistribution(distributionHandle);

for (all Callee Processes) { //scatter:

message = getNextCalleeMessage();

message->marshal(distributionHandle);

message->marshal(myDistribuion);

message->sendMessage();

}

for (all Callee Processes) { //gather:

message = getNextCalleeMessage();

message->waitForReply();

message->unmarshal(distribution);

reportDistribution(destributionHandle,distribution,callee_rank);

}

//*****end Proxy

*****************************

//*****setCallerDistribution Handler

message->unmarshal(distributionHandle);

message->unmarshal(distribution);

reportDistribution(distributionHandle,distribution,caller_rank);
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myDistribution = getMyDistribution(distributionHandle);

message->marshal(myDistribution);

message->sendReply();

//*****end Handler

The proxy pseudo-code above makes a special effort to send its distribution to all

callees before it waits for their reply. This is done to increase the efficiency of this

transaction by filling some of the reply wait time with other requests.

4.3.3 Runtime Objects

The objectives of the setCaller/CalleeDistribution() methods are closely tied to those

of the PIDL object classes. In fact, these methods often invoke and create PIDL M-by-N

objects. The PIDL runtime library objects used to perform M-by-N data redistribution

are: MxNScheduler, MxNScheduleEntry, MxNArrayRep and Index. Code to instantiate

theMxNScheduler object is written by the SIDL compiler for every component that needs

to participate in a redistribution. TheMxNScheduler is the PIDL object that provides the

interface from each component to the functionality provided for M-by-N redistribution

by the PIDL. It is a very important part of the M-by-N data redistribution. However,

most of the time this object only invokes methods on other objects in order to achieve

the requested action. Locking, synchronization, index intersection and a place to store a

pointer to distribution array are functionalities that the are provided by the MxNSched-

uleEntry object. This object is referenced from the MxNScheduler object and is provided

to satisfy a specific redistribution. Each component contains an MxNScheduler and each

distribution creates an MxNScheduleEntry object. An MxNScheduleEntry contains many

MxNArrayRep objects. TheMxNArrayRep object is a group of Index objects representing

an array distribution of a specific process. Each MxNScheduleEntry object contains one

MxNArrayRep for its home distribution and others that describe the distribution of the

other component’s processes. This is the PIDL M-by-N object hierarchy, structure and

functions. Some of the functions we will discuss below; others will be referenced later.

4.3.4 Index Intersection

An integral functionality provided by the PIDL M-by-N objects intersecting indices in

order to form a redistribution schedule. This functionality is located in the MxNSched-

uleEntry object as it has access to all of the array distributions involved. The intersection
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is of two indices at a time, so that indices are intersected for the same dimension of the

two processes’ array representations. The result of the intersection of two indices is an

intersection index. This intersection index perfectly describes the data that should be

redistributed. The intersection algorithm rests upon the following theorem [21]:

(Thm.): There exists i, j in Z such that a*i+b = c*j+d

if and only if b-d=0 mod gcd(a,c)

This theorem directly motivates the following algorithm for the intersection of array

indices (in C/C++):

//Calculate lcm and gcd of the strides:

int lcm_str = lcm(str1,str2);

int gcd_str = gcd(str1,str2);

//Find first and stride of intersection

intersectionIndex->stride = lcm_str;

if ((first1 % gcd_str) == (first2 % gcd_str)) {

int I,J,m,n;

extended_euclid(stride1,stride2,&m,&n); //*see text below

I = first1 + (- ((stride1*m*(first1-first2))/gcd_str));

J = (I + (lcm_str * ceil((max(first1,first2) - I)/lcm_str)));

intersectionIndex->first = J;

}

else {

//No Intersection

intersectionIndex->first = 0;

intersectionIndex->last = 0;

intersectionIndex->stride = 0;

return intersectionIndex;

}

//Find the last

intersectionIndex->last = min(last1,last2);;
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The index intersection pseudo-code uses the extended Euclid’s algorithm. This al-

gorithm finds the greatest common divisor, g, of two positive integers, a and b, and

coefficients, m and n, such that g = ma + nb.

This algorithm provides us with an efficient method to calculate the redistribution

schedule that is able to adapt to all possible combinations of first, last and stride.

The algorithm can also adapt to negative strides. To our knowledge, this fully general

algorithm has not been published previously.

4.3.5 Data Transfer

The index produced by the intersection defines the data that are to be transfered.

However, it does not describe exactly how to extract the data to be sent and how to place

the received data. This is best shown in the following example (see Figure 4.2).

Looking at the data that move between the arrays at the caller and callee in Figure 4.2

we notice that this does not directly correspond to the specified distribution. Elements

starting at 0 are transfered from the caller array even though the schedule asks for

elements between 50 and 100. We have done this intentionally in order to compensate for

the fact that arrays in C/C++ begin with 0 and not with any positive integer. Also, we

are taking in account the fact that we want to deal with packed arrays and do our best to

adjust appropriately. Therefore, we begin transfer of the data elements starting with the

element defined by this calculation: scheduleFirst - myDistributionFirst (first appears in

all indices (first,last,stride)). In the case of the above example, this would result with: 50

(50, 100, 1) (0, 100, 2)

(50, 100, 2)

CALLER CALLEE

(…) (…)

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Figure 4.2. Data transfer example.
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- 50 = 0. The adjustment of the first element is performed on both the caller and callee.

On the callee side, the data are placed starting with the element received from subtracting

the callee distribution first from the schedule’s first. In a similar fashion, we adjust the

stride one both the caller and callee by dividing the schedule’s stride by the stride of the

local distribution. For instance, the callee in the above example places elements at the

stride of: scheduleStride / myDistributionStride = 2 / 2 = 1. This allows arrays to be

tightly packed as well as provide a more natural interface to the redistribution system.

We do not attempt to adjust the index’s last as it is automatically adjusted by the first,

stride, and the size of the array.

The final aspect of the implementation of the M-by-N data redistribution is the

nuances in the SIDL compiler code generation for different types of arguments such as:

in, out, and inout. The in arguments require synchronization and assembly of the data on

the callee. In addition to this the stub code first redistributes the data and then invokes

the method requesting the data. This is further synchronized within the callee skeleton

code so that the data are assembled completely before the actual invocation. We pay

close attention in all of these to prevent any extra copying of the data.

The out arguments require that the method is called before the data are redistributed

back to the caller. This places all of the redistribution routines in the callee skeleton

code after the method invocation. Similarly, the caller stub code contains the method

invocation followed by the data redistribution code. The actual implementation of the

communication is that the caller sends a request for the redistributed data after the

invocation, and the data come as a reply to that request. This is done is order to

preserve a request/reply paradigm from the callee to the caller and not vice-versa. Syn-

chronization of the data request and method invocation takes place within the callee,

while synchronization for assembling all of the data is in place at the caller.

The inout arguments are a combination of the in and out. In fact, they do not require

anything more than placing both the in and out pieces together into the stub/skeleton

code. In order to better show the implementation of all of these aspects of the generated

code, I will show a general pseudo-code for the implementation of an inout argument:

//***** proxy

sendRedistributionData(Arg.in);

callMethod();

receiveMethodReply();
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sendOutArgDataRequest(Arg.out);

receiveOutArgDataReply(Arg.out);

//***** end of proxy

//***** handler

switch(request) {

case (method_call): {

waitFor(Arg.in);

callMethod();

sendBackMethodReply();

}

case (Arg.in) {

receiveRedistributionData();

}

case (Arg.out) {

waitFor(method_call);

sendRedistributionData(Arg.out);

}

}

//***** end of handler

This was a general description of the M-by-N system’s implementation. The intention

of the description was to focus on the more interesting and problematic aspects of the

work. We discussed the SIDL compiler we used to implement most of the functionality

of our system. We gave an explanation of the implementation of both of the PRMI

semantic choices: collective and independent. We further discussed the aspects of the

M-by-N distribution: the distribution expression methods, the runtime objects of the

PIDL runtime library and the intersection of indices. Falling far short of including the

entire source code, this should provide a general implementation idea of our PRMI and

M-by-N data redistribution system.



CHAPTER 5

RESULTS

A series of experiments have been performed and their results will be described in this

chapter. The intention of these experiments is to:

• demonstrate the functional capabilities of the system by choosing characteristic

applications;

• quantify the scaling capabilities with respect to data size in comparison to scaling

of MPI programs;

• quantify and analyze the overhead that is imposed on the execution of the program

by the system;

• compare the system’s performance to other systems that provide similar function-

ality.

The following tests were performed on a 256 node Dell PowerEdge 2650 cluster. Each

node contains 2 Intel Pentium 4 Xeon 2.4 GHz CPUs. The Pentium 4 Xeon processor

uses Hyper-Threading technology, which allows each processor to contain two continuous

threads of execution at any time. The operating system of choice for this cluster is version

8.0 of Red Hat Linux. 100 Megabit Ethernet is in place as the network interconnect

between the cluster’s nodes.

5.1 Choosing Characteristic Applications

The system we developed can be used by a variety of applications. In order to show

this, we chose classic parallel programs written for problems in a set of scientific areas. The

problems we chose are: LU Matrix Factorization, Odd-Even Merge Sort, and the Jacobi

solution to the Laplace Heat Equation. The LU Factorization is classic mathemathic

problem that is easily parallelized and uses a cyclic data distribution among its processes.

We chose the Jacobi solution to the Laplace Heat equation because of its importance in

the field of physics and since it demonstrated a block data distribution pattern. The

block and cyclic distribution patterns are the most frequently used data distributions
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by parallel programs in the field of scientific computing. The Odd-Even Merge Sort

was implemented since it was an algorithm that could be implemented in a significant

degree by the data redistribution mechanism we provided. This sorting algorithm rests on

factoring out even and odd elements from a list, and by interleaving them back together.

Our system can perform this in an automatic fashion. Therefore, the reason we chose the

Odd-Even Merge Sort was to show the usability of the system, by the simplicity of the

implementation.

We implemented each of these problems in two ways: by using only MPI and through

MPI and components in the SCIRun2 problem-solving environment. The language of

the implementation was C++, compiled through the GNU1 C++ Compiler (g++). The

implementations of the characteristic applications are discussed in the following sections.

The source code for the applications can be found in Appendix B.

5.1.1 Jacobi Solution to the Laplace Heat Equation

This is is an implementation of the Jacobi iteration to solve Laplace’s Heat Equation.

The heat equation is used to calculate the steady heat conduction of a certain material.

The problem is computed by block distribution of data among the parallel processes.

Calculation requires the exchange of boundary conditions at each iteration of Jacobi’s

algorithm. This proceeds until a steady state given a degree of error is reached.

The SCIRun2 implementation of the algorithm uses a MPI-parallel Jacobi solver

component and a separate serial Launcher component, which sets the problem conditions.

The Launcher component invokes the Jacobi solver and passes the array in the form of

an inout distribution array. The calculation is completed within the Jacobi solver and

passed back to the Launcher. The Jacobi solver component uses MPI communication

primitives within itself in order to accomplish boundary condition exchange.

On the other hand, the simple MPI implementation of the algorithm uses MPI’s

Gather and Scatter functionalities both at the beginning and end of the computation.

This transfers the data and solution between the root parallel process and the rest of the

parallel processes.

1The GNU Project, http://www.gnu.org
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5.1.2 LU Matrix Factorization

The LU Factorization algorithm is used to solve a group of linear equations by

factoring the equation matrix to a multiple of a lower-triangular matrix L and an upper-

triangular matrix U. The parallel algorithm divides the data in a cyclic fashion among

the parallel processes. The implementation used here did not focus on techniques that are

used in order to achieve better accuracy by adding a level of complexity to the algorithm.

In SCIRun2, the LU Factorization algorithm is implemented within a MPI-parallel LU

Factorization component. A separate Launcher component is used to generate a random

problem matrix. The Launcher component is parallel and has a block distribution of

the data. The parallel processes in the Launcher component invoke the LU Factorization

component and distribute the matrix in a cyclic fashion among its processes. The solution

matrices are calculated and distributed back to the Launcher. The block and cyclic data

layouts provide us with an interesting data redistribution scenario that we expect to

be commonly used. Because of this, we used the LU Factorization problem for various

benchmarks, which will be shown later.

As before, we provided a regular MPI parallel implementation of the algorithm. In

this implementation, all of the matrices are global to the parallel cohorts.

5.1.3 Odd-Even Merge Sort

Odd-Even Merge Sort is a classic parallel sorting algorithm [14]. It uses several data

redistributions in order to sort a parallel array. Our implementation uses Quicksort to

obtain a sorted array per each node and then uses the Odd-Even Merging Algorithm to

sort these arrays into one. Using Quicksort at a certain stage makes the algorithm more

efficient than the ”complete” Odd-Even Merge Sort. By doing this we have alleviated the

need for recursion, making it conducive to the SCIRun2 component system.

The SCIRun2 implementation has three components: Launcher, Splitter, and Sorter.

The Launcher generates a random one-dimensional array of integers. It passes it to the

Splitter that splits the array on to the Sorter component, which uses Quicksort to sort

these separate arrays. The Splitter Component receives sorted data back from the Sorter

component and combines the data in a sorted manner using the Odd-Even merge sort.

This Odd-Even Merge Sort implementation uses data redistribution as an integral part

of the algorithm; therefore it redistributes very frequently.

The non-SCIRun2 MPI-parallel implementation uses extra space to perform the algo-

rithm without data redistribution. It otherwise relies on a similar algorithm to the one
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Table 5.1. Jacobi’s algorithm running times using two parallel processes.
Problem Size MPI Time SCIRun2 Time MPI Time / SCIRun2 Time

10x10 0.000865 0.023293 26.9283237

50x50 0.08256 0.73736 8.93120155

100x100 4.0331 8.37276 2.076011009

150x150 16.77975 32.7804 1.953569034

200x200 26.98269 43.4538 1.610432466

250x250 54.409 78.431 1.441507839

300x300 112.354 131.924 1.174181605

Times are in seconds.

Table 5.2. LU Factorization algorithm running times using six parallel processes.
Problem Size MPI Time SCIRun2 Time MPI Time / SCIRun2 Time

40x40 0.005212 0.035614 6.833128

100x100 0.031432 0.146655 4.665807

160x160 0.078964 0.473564 5.996993

200x200 0.162404 0.676691 4.16671

320x320 0.722134 1.147214 1.58864

600x600 4.09197 5.686459 1.38966

2000x2000 49.18632 60.99476 1.24007

Times are in seconds.

described for the SCIRun2 Odd-Even Merge Sort.

5.2 System Scaling

The scaling of the system with respect to data size is very important to measure.

We tried to show that given two similar MPI parallel programs, one of which relies on

SCIRun2 for data redistribution and the other does not require redistribution of any kind,

the overhead imposed by the system’s data redistribution will be more negligible as the

problem size gets larger. We compared and plotted the difference factor of the running

time of the SCIRun2 componentized application and the simple MPI implementation.

Figure 5.1 shows the results of this experiment. Tables 5.1, 5.2, and 5.3 show the exper-

iment times of Jacobi’s, LU Factorization, and Odd-Even Sort algorithm respectively.

The LU Factorization is represented by the line furthest to the left. The middle line

represents the Jacobi algorithm, whereas the line on the right is the Odd-Even Merge

Sort. The graph’s problem size for LU Factorization and Jacobi represent one side of a
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Table 5.3. Odd-Even Sort running times using four parallel processes.
Problem Size MPI Time SCIRun2 Time MPI Time / SCIRun2 Time

500 0.001113 0.010483 9.41868823

1000 0.001173 0.011189 9.538789429

2000 0.002381 0.016644 6.990340193

5000 0.003774 0.032934 8.726550079

10000 0.016741 0.063244 3.777791052

50000 0.043401 0.148052 3.411257805

100000 1.201013 3.003914 2.501150279

Times are in seconds.
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Figure 5.1. System scaling graph.

square matrix. Odd-Even Merge Sort uses one-dimensional arrays, the size of which is

depicted as the problem size in this graph.

It is clearly noticeable that as the problem size increases, the factor of the difference

between the SCIRun2 and MPI programs decrease. This decrease does not in any way

suggest that the overhead imposed by the redistribution remains static as the problem

space grows. In fact, we claim that this is the case due to an increase in data to be

transferred over the network. Other overheads that SCIRun2 imposes are connected to

the underlying system structure. The system is heavily multithreaded in order to always

achieve reasonable response time; therefore a substantial performance penalty is paid for
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thread management. However, the schedule calculation, the PRMI, and other time costs

are static, and we see that the overall overhead becomes less and less important as the

data increases. To show this, we measured the number of bytes of data sent from the

callee to the caller component in the Jacobi example. There were a 103 bytes of overhead

data that were sent from the callee component. These include the data used to calculate

the schedule and manage the method invocation. This amount remained static as the

problem size grew showing the diminishing importance of the overhead with the growth

of the problem size. The next section will attempt to further show this by providing a

breakdown of the overhead of SCIRun2’s PRMI and automatic data redistribution.

5.3 Overhead Analysis

The analysis of the overhead our system imposes on the execution of an application

has the intention of providing us with a clear picture of our system, therefore allowing

improvements to minimize the overhead. We used the characteristic applications we

designed to run a series of experiments, noting the exact time required to accomplish the

PRMI and M-by-N data redistribution from the perspective of one participating process.

One experiment had the intention of partitioning and analyzing the data redistribution

on one caller process. The benchmarks were made on an application that was solving a

2000 by 2000 matrix using LU Factorization. The results of this experiment are provided

in Figure 5.2.

The experiment shows that data marshaling is the most expensive task in the re-

distribution from the caller perspective. The data are marshaled element by element,

constantly requiring the underlying communication library to be invoked. Currently,

SCIRun2 relies on the Nexus communication library from the Globus Toolkit [6, 5, 7]

for this purpose. The data marshaling is a task whose time share grows as the data

grow larger and will be considered as a prime candidate in system optimization. Another

interesting aspect of this experiment was the relatively brief time (0.23% of total redis-

tribution time) it took for the system to calculate the redistribution schedule. The total

time the caller process took to redistribute the data was 4.74 seconds. We measured 2.66

seconds for a representative callee process to receive and assemble the data in the same

application.

Another experiment was intended to provide us with a comparison of all of the method

invocation possibilities of our system. This test would show the overhead imposed by
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Figure 5.2. M-by-N overhead analysis.

the PRMI and data redistribution system in a separate manner. We used the same

representative application as above and timed the following invocations: serial invocation,

independent PRMI, collective PRMI (without M-by-N), and collective PRMI with 400

byte M-by-N arrays. The resulting data are located in Table 5.4.

The data shown by this experiment clearly represent that the M-by-N redistribution

is much more costly than the PRMI itself. Similarly, a very small amount of the M-by-N

data redistribution cost comes about by the requirements in the PRMI handling. This

in turn shows that the performance of the system is highly dependent on optimizing the

redistribution feature.

Table 5.4. Invocation comparison.
Method Invocation Time

serial invocation 432.6

independent PRMI 550

collective PRMI (without M-by-N) 1539

collective PRMI (with 400 byte M-by-N arrays) 5427

Times are in microseconds.
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5.4 Comparison to Similar Systems

In this section, we attempt to compare SCIRun2’s performance to that of other

existing systems. SCIRun2’s functionality is unique in the way it treats components

similarly to established component standards and in the way it uses the IDL to provide

automatic data redistribution. A system that provides these functionalities in a closely

similar way does not exist. However, we chose to compare SCIRun2’s performance to

a system that provides data redistribution, regardless of the manner it chooses to do

so. We chose Global Arrays [17, 3] as a system that provides asynchronous, one-way

communication which can provide a user with similar functionality to that of M-by-N data

redistribution. This toolkit used the concept of a global array to create a environment

similar to shared-memory for distributed-memory architectures. Global Arrays are well

implemented and are widely used for similar applications to that of SCIRun2. We

programmed the LU Factorization application using the Global Arrays toolkit to perform

a data redistribution pattern similar to that of the SCIRun2 version of this application.

Both implementations were based on MPI to perform the actual LU Factorization algo-

rithm. Table 5.5 and Figure 5.3 show the execution time comparison of this experiment.

The experiment shows that the Global Arrays implementation has a high start-

ing/initialization overhead. However, as the problem space grows we see that the overhead

grows at a much smaller pace than that of SCIRun2, resulting with a faster time for the

Global Arrays 600x600 matrix LU Factorization. The Global Arrays toolkit has highly

optimized communication primitives that are tailored specifically to separate environ-

ments. The communication of SCIRun2 is one specific area that requires improvement in

order to match the data transfer performance of the Global Array toolkit.

Table 5.5. Global Arrays comparison of LU Factorization algorithm running times using
four parallel processes.

Problem Size Global Arrays Time SCIRun2 Time

40x40 1.011828 0.027201

100x100 1.033565 0.123307

160x160 1.093734 0.502175

200x200 1.450243 0.676691

320x320 1.843234 1.308741

600x600 5.701233 6.2124

Times are in seconds.
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CHAPTER 6

CONCLUSIONS AND FUTURE

RESEARCH

The SCIRun2 system has demonstrated that M-by-N data redistribution based on

PRMI with the help of an IDL compiler is a tool that can benefit a scientific component

programmer. Further, this system described a method to put all of this functionality

in the IDL compiler and its associated runtime objects. In order to accomplish this,

we described a paradigm for PRMI. Our goal was to illustrate a way of handling PRMI

that would be simple, while encompassing most invocation scenarios. We described our

additions to the CCA Scientific IDL (SIDL) that could be used to tailor the method invo-

cation to the appropriate need. We also provided two methods to report a component’s

data distribution at runtime. This would enable the distribution to adapt to the number

of parallel processes without modification to the code. We described our implementation

as well as some of the major algorithms we used to provide all of the functionality we

described, such as the index intersection in order to calculate the data redistribution

schedule. Finally, we showed performance results concerning different aspects of our

system.

These included experiments regarding system scaling, overhead analysis and compar-

ison with the Global Arrays system. We showed that the system scales well and that

most of the overhead is static. The redistribution of the data took a considerable amount

of time and was the only overhead that grew with the size of the problem. Overall,

we feel that this was acceptable behavior given the functionality that SCIRun2 tries to

provide. The overhead analysis showed that the network traffic was, again, mostly data

redistribution. Other networking overheads were small and static. The approach to data

marshaling and the underlying communication infrastructure are a slowing point. This is

one aspect that we plan to focus on in the future. The Global Arrays system was slower

than SCIRun2 for very small problems, but was increasingly faster as the problem space

grew. We believe that this is due to the Global Arrays architecture-specifically optimized
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communication library. SCIRun2 needs a significant deal of improvement in that area in

order to increase its overall performance.

The future work of this project also involves permeating our PRMI and M-by-N

redistribution infrastructure through the component framework and GUI (Graphical User

Interface) of SCIRun2. In addition, we plan on adding less constrained distribution de-

scriptions. These would allow a user to partially specify a distribution and the system will

adapt according to the available specifications. This would allow deployed components to

be more flexible to the amount of data they are distributed. Finally, we plan on devising

and implementing methods that would further improve the performance of our system.



APPENDIX A

SIDL INTERFACES TO EXAMPLE

APPLICATIONS

In the following we show the SIDL interfaces describing the example applications we

discussed. These interfaces are compiled through the SCIRun2 SIDL compiler to provide

the functionality I have discussed in this thesis.

A.1 Jacobi Solution to the Laplace Heat Equation

package Jacobi_ns {

distribution array X <double, 2>;

interface Jacobi {

int solveHeatEquation(inout X arr,in double top,in double bottom,

in double left,in double right);

};

};

A.2 LU Matrix Factorization

package LUFactor_ns {

distribution array A <double, 2>;

interface LUFactor {

int LUFactorize(in A arr);

};

};

A.3 Odd-Even Merge Sort

package OESort_ns {

distribution array X <int, 1>;

distribution array Y <int, 1>;
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distribution array Z <int, 1>;

distribution array A <int, 1>;

interface OESort {

int sort(in X arr, out Y odds, out Z evens);

};

interface OESplit {

int split(inout A arr);

};

};



APPENDIX B

SOURCE CODE TO ODD-EVEN MERGE

SORT

The Odd-Even Merge Sort algorithm relies heavily on data transfers. Its implemen-

tation can rely on our system to perform these distributions, therefore aleviating this

responsibility from the programmer. Below, we will show how this algorithm would be

implemented using our system to perform the data transfer. The implementation is not

recursive and limited to sorting two lists. We will also show an MPI implementation

of this algorithm in order to compare that the SCIRun2 implementation is simpler to

program. The other benchmarks illustrated have similar differences, namely that the

MPI implementations are more complex and less flexible in regard to data distribuions

than those expressed using our system.

B.1 SCIRun2 Implementation

B.1.1 OESplit Caller

//Generate a random number list

init(arr,ARRSIZE);

//Inform everyone else of my distribution

//(this sends a message to all the callee objects)

Index** dr0 = new Index* [1];

dr0[0] = new Index(0,ARRSIZE,1);

MxNArrayRep* arrr0 = new MxNArrayRep(1,dr0);

oesplit_proxy->setCallerDistribution("A",arrr0);

/*Odd-Even merge sort start*/

oesplit_proxy->split(arr);
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B.1.2 OESplit Callee

OESplit* oesplit=new OESplit;

int localsize = ARRSIZE / mpi_size;

int sta = mpi_rank * localsize;

int fin = sta + localsize;

if (mpi_rank == mpi_size-1) fin = ARRSIZE;

//Set up server’s requirement of the distribution array

Index** dr10 = new Index* [1];

dr10[0] = new Index(sta,fin,1);

MxNArrayRep* arrr10 = new MxNArrayRep(1,dr10);

oesplit->setCalleeDistribution("A",arrr10);

int OESplit::split(const array<int>& arr)

{

/*Pairwise check of merged array:*/

for(unsigned int arri = 0; arri+1 < arr.size(); arri+=2)

if (arr[arri] > arr[arri+1]) {

int t = arr[arri];

arr[arri] = arr[arri+1];

arr[arri+1] = t;

}

}

B.1.3 OESort Caller

Index** dr0 = new Index* [1];

dr0[0] = new Index(sta,fin,1);

MxNArrayRep* arrr0 = new MxNArrayRep(1,dr0);

oesort_proxy->setCallerDistribution("X",arrr0);

Index** dr1 = new Index* [1];

dr1[0] = new Index(sta,fin,2);
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MxNArrayRep* arrr1 = new MxNArrayRep(1,dr1);

oesort_proxy->setCallerDistribution("Y",arrr1);

Index** dr2 = new Index* [1];

sta = abs(mpi_rank-1) * localsize;

fin = sta + localsize;

dr2[0] = new Index(sta+1,fin,2);

MxNArrayRep* arrr2 = new MxNArrayRep(1,dr2);

oesort_proxy->setCallerDistribution("Z",arrr2);

oesort_proxy->sort(arr,odds,evens);

B.1.4 OESort Callee

OESort* oesort=new OESort;

int localsize = ARRSIZE / mpi_size;

int sta = mpi_rank * localsize;

int fin = (mpi_rank * localsize) + localsize;

if (mpi_rank == mpi_size-1) fin = ARRSIZE;

//Set up server’s requirement of the distribution array

Index** dr0 = new Index* [1];

dr0[0] = new Index(sta,fin,1);

MxNArrayRep* arrr0 = new MxNArrayRep(1,dr0);

oesort->setCalleeDistribution("X",arrr0);

Index** dr1 = new Index* [1];

dr1[0] = new Index(sta,fin,1);

MxNArrayRep* arrr1 = new MxNArrayRep(1,dr1);

oesort->setCalleeDistribution("Y",arrr1);

Index** dr2 = new Index* [1];

dr2[0] = new Index(sta,fin,1);
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MxNArrayRep* arrr2 = new MxNArrayRep(1,dr2);

oesort->setCalleeDistribution("Z",arrr2);

int OESort::sort(const array<int>& arr, array<int>& odds, array<int>& evens)

{

mergeSort(arr,evens,odds);

return 0;

}

B.1.5 MPI Implementation

int my_rank, nodes, i_size;

int* destarr;

int* merge_arr;

int* arr;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

MPI_Comm_size(MPI_COMM_WORLD,&nodes);

/*Allocate Array:*/

i_size = ARR_SIZE/nodes;

arr = (int*)malloc(i_size*sizeof(int));

/*Each process generates a random number list and sorts it*/

generate(arr,i_size);

sort(arr, arr+i_size);

for(int k=1; k < nodes ;k=k*2) {

if ((my_rank == 0) || ((my_rank % (k*2)) == 0)) {

if (my_rank+k < nodes) {

/*Receive size of array:*/

int destsize;
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MPI_Recv(&destsize, 1, MPI_INT, my_rank+k, 0, ...);

/*Receive array:*/

destarr = (int*)malloc(destsize*sizeof(int));

MPI_Recv(destarr, destsize, MPI_INT, my_rank+k, 1, ...);

/*Merge:*/

int m_size = i_size + destsize;

merge_arr = (int*)malloc(m_size*sizeof(int));

int loc,i,j;

/*Odd-Even -> Even*/

loc=0;

i=0;

j=1;

while (i < i_size) {

if (j < destsize) {

if (arr[i] < destarr[j]) {

merge_arr[loc] = arr[i];

i+=2;

}

else {

merge_arr[loc] = destarr[j];

j+=2;

}

}

else {

merge_arr[loc] = arr[i];

i+=2;

}

loc+=2;

}
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while (j < destsize) {

merge_arr[loc] = destarr[j];

loc+=2;

j+=2;

}

/*Even-Odd -> Odd*/

loc=1;

i=1;

j=0;

while (i < i_size) {

if (j < destsize) {

if (arr[i] < destarr[j]) {

merge_arr[loc] = arr[i];

i+=2;

}

else {

merge_arr[loc] = destarr[j];

j+=2;

}

}

else {

merge_arr[loc] = arr[i];

i+=2;

}

loc+=2;

}

while (j < destsize) {

merge_arr[loc] = destarr[j];

loc+=2;

j+=2;

}
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/*Pairwise check of merged array:*/

for(loc = 0; loc+1 < m_size; loc+=2)

if (merge_arr[loc] > merge_arr[loc+1]) {

int t = merge_arr[loc];

merge_arr[loc] = merge_arr[loc+1];

merge_arr[loc+1] = t;

}

else if ((my_rank % k) == 0) {

/*Send size of array:*/

MPI_Send(&i_size, 1, MPI_INT, (my_rank-k), 0, MPI_COMM_WORLD);

/*Send array:*/

MPI_Send(arr, i_size, MPI_INT, (my_rank-k), 1, MPI_COMM_WORLD);

}

}

MPI_Finalize();



REFERENCES

[1] Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L.,

Parker, S., and Smolinski, B. Toward a common componnent architecture for
high-performance scientific computing. In Proceedings of the 8th IEEE International
Symposium on High Performance Distributed Computation (July 1999).

[2] Beckman, P. H., Fasel, P. K., Humphrey, W. F., and Mniszewski, S. M.

Efficient coupling of parallel applications using PAWS. In Proceedings of the 7th
IEEE International Symposium on High Performance Distributed Computation (July
1998).

[3] Chen, Y., Nieplocha, J., Foster, I., and Winslett, M. Optimizing collective
i/o performance on parallel computers: a multisystem study. In Proceedings of the
11th international conference on Supercomputing (1997), pp. 28–35.

[4] Epperly, T., Kohn, S., and Kumfert, G. Component technology for high-
performance scientific simulation software. In Working Conference on Software
Architectures for Scientific Computing Applications (Ottawa, Ontario, Canada,
October 2000), International Federation for Information Processing.

[5] Foster, I., Karonis, N., Kesselman, C., Koenig, G., and Tuecke, S. A
secure communications infrastructure for high-performance distributed computing.
In Proceedings of the 6th IEEE International Symposium on High Performance
Distributed Computation (July 1997).

[6] Foster, I., and Kesselman, C. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing 11, 2 (Summer 1997), 115–128.

[7] Foster, I., Kesselman, C., and Tuecke, S. The Nexus approach to integrating
multithreading and communication. Journal of Parallel and Distributed Computing
37, 1 (1996), 70–82.

[8] Geist, G. A., Kohl, J. A., and Papadopoulos, P. M. CUMULVS: Providing
fault-tolerance, visualization and steering of parallel applications. In Environment
and Tools for Parallel Scientific Computing Workshop (Domaine de Faverges-de-la-
Tour, Lyon, France, August 1996).

[9] Group, O. M., 2002.

[10] Johnson, C. R., and Parker, S. G. The scirun parallel scientific computing
problem solving environment. In Ninth SIAM Conference on Parallel Processing for
Scientific Computing (1999).



55

[11] Johnson, C. R., Parker, S. G., and Weinstein, D. Large-scale computational
science applications using the scirun problem solving environment. In Supercomputer
2000 (2000).

[12] Keahey, K., Fasel, P. K., and Mniszewski, S. M. PAWS: Collective invoca-
tions and data transfers. In Proceedings of the 10th IEEE International Symposium
on High Performance Distributed Computation (July 2001).

[13] Kohn, S., Kumfert, G., Painter, J., and Ribbens, C. Divorcing language
dependencies from a scientific software library. In Proceedings of the 10th SIAM
Conference on Parallel Processing (Portsmouth, VA, March 2001).

[14] Leighton, F. T. Introduction to Parallel Algorithms and Architectures. Morgan
Kaufmann Publishers, Inc., 1992.

[15] Maassen, J., Kielmann, T., and Bal, H. E. GMI: Flexible and efficient
group method invocation for parallel programming. Tech. rep., Faculty of Sciences,
Division of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, The
Netherlands, 2001.

[16] Musser, D. R., Derge, G. J., and Saini, A. STL Tutorial and Reference Guide:
C++ Programming with the Standard Template Library. Addison-Wesley Publishing
Company, 2001.

[17] Nieplocha, J., Harrison, R. J., and Littlefield, R. J. Global Arrays: a
portable ‘shared-memory’ programming model for distributed memory computers.
In Proceedings of Supercomputing ’94 (November 1994), pp. 340–349.

[18] Parker, S. G. The SCIRun Problem Solving Environment and Computational
Steering Software System. PhD thesis, The University of Utah, August 1999.

[19] Parker, S. G., Beazley, D., and Johnson, C. R. Computational steering
software systems and strategies. IEEE Computational Science and Engineering 4, 4
(1997), 50–59.

[20] Parker, S. G., and Johnson, C. R. Scirun: A scientific programming environ-
ment for computational steering. In Proceedings of Supercomputing ’95 (December
1995).

[21] Rosen, K. H. Elementary Number Theory and Its Applications. Addison-Wesley
Publishing Company, 1984.

[22] Szyperski, C. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Publishing Company, 1998.


