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Abstract

Developers rely on online Q&A forums to look up technical solutions, to
pose questions on implementation problems, and to enhance their commu-
nity profile by contributing answers. Many popular developer communication
platforms, such as the Stack Overflow Q&A forum, require threads of dis-
cussion to be tagged by their contributors for easier lookup in both asking
and answering questions. In this paper, we propose to leverage Stack Over-
flow’s tags to create a hierarchical organization of concepts discussed on this
platform. The resulting concept hierarchy couples tags with a model of their
relevancy to prospective questions and answers. For this purpose, we con-
figure and apply a supervised multi-label hierarchical topic model to Stack
Overflow questions and demonstrate the quality of the model in several ways:
by identifying tag synonyms, by tagging previously unseen Stack Overflow
posts, and by exploring how the hierarchy could aid exploratory searches of
the corpus. The results suggest that when traversing the inferred hierarchi-
cal concept model of Stack Overflow the questions become more specific as
one explores down the hierarchy and more diverse as one jumps to different
branches. The results also indicate that the model is an improvement over
the baseline for the detection of tag synonyms and that the model could
enhance existing ensemble methods for suggesting tags for new questions.
The paper indicates that the concept hierarchy as a modeling imperative can
create a useful representation of the Stack Overflow corpus. This hierarchy
can be in turn integrated into development tools which rely on information
retrieval and natural language processing, and thereby help developers more
efficiently navigate crowd-sourced online documentation.
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1. Introduction

A modern trend in software development is that developers increasingly
rely on Web resources to acquire knowledge, seek snippets of code for reuse,
disseminate ideas, and establish professional standing and reputation [1]. For
instance, a successful resource that is integrated in many developers’ daily
work is the Stack Overflow Q&A forum, where technically sound answers
contribute to a developer’s professional standing, while helping to solve many
other developers’ software development problems. This community-driven
process has led to the accumulation of significant amount of knowledge about
software development on Stack Overflow. However, the growing number of
posts on this platform make it challenging for developers to quickly find
relevant posts to inform their work or to contribute answers to, which some
consider as worrisome to sustaining the platform [2]. To address this problem,
we aim at proposing automatic means to effectively group and relate the
vast content on Stack Overflow in order to improve the rapid retrieval of
relevant content on this platform. This can in turn become a foundation
to build effective developer-relevant search tools. For instance, a number of
recommendation tools targeting Stack Overflow have already been proposed
with the aim of improving developer productivity by integrating relevant
information from Stack Overflow into the IDE [3, 4, 5, 6].

To achieve this objective, we leverage Stack Overflow’s use of tags. Tags
aid exploratory information retrieval, which occurs in scenarios when a de-
veloper is unaware of the specific item she is searching [7, 8]. This is contrast
to known-item (or navigational) search, which occurs when developers are
searching for specific posts (e.g. using an error message as a query). Each
Stack Overflow question is tagged by the author with a small set of tags (min-
imum of one and maximum of five'), usually corresponding to the technology
domain that the question belongs to (e.g. ANDROID, 10S, JAVA-THREADS).
Organization via tags, labels, categories etc. is commonly used in our day-
to-day lives to make finding items easier. For instance, when we walk into
a library, we look for a relevant section; and when we visit a grocery store,

lhttps://stackoverflow.com/help/tagging



we go down a specific isle. Different from these analogies, in Stack Overflow,
a single question may belong to several tags, which is intuitive as questions
often do not fit only a single category (e.g. a question on What’s the best way
to share data between activities? can belong to both ANDROID and INTENT).
However, this does not suggest that tags themselves should not form a rela-
tionship between each other. At present, the Stack Overflow tags assigned
to a question are independent of each other.

One particular view of the relationship between tags is hierarchical, i.e.,
given a more generic concept, such as, ANDROID, we may be interested in
examining a more specific concept, such as, INTENT. A tag hierarchy can
help a question author decide which set of tags are more appropriate, as
often authors that want their question to be answered rapidly select both
more generic and more specific tags [9]. Conversely, when a developer uses
tags to search for information on Stack Overflow, she or he can expand the
list of returned posts by exploring either more specific or generic tags. Stack
Overflow’s answer contributors commonly search for new questions using a
set of tags corresponding to, often related, technologies where they possess
expertise. Empirical evidence from other fields also suggests that hierar-
chical tags help both contributors and readers as they perform exploratory
searches [10, 11, 12]. In addition, a hierarchical organization of tags helps
exploratory information seekers to branch to different content from the ini-
tial set of explored results, which may be based on an imperfect query. By
branching away from the current path of tags, the diversity of examined posts
increases, which can be beneficial in viewing a broader set of results [13].

In this paper, we propose to automatically construct a hierarchical tagged
concept model from Stack Overflow posts. Exemplifying the ideas discussed
above, we identify a modeling technique called the Label-to-Hierarchy model
(L2H) [14]. This model allows establishing a mapping between tags and as-
sociated topics extracted from the Stack Overflow post content. Such Stack
Overflow tag-topics (or concepts) exist in a hierarchy and express a discrete
probability distribution of the constituent terms occurring in the Stack Over-
flow corpus. We examine how this model can aid both question writers, by
predicting tags for posts, and information seekers, by organizing tags and de-
termining tags synonyms, in Stack Overflow. Specifically, the contributions
of this paper are:

e approach for applying the L2H model to organize Stack Overflow posts
and tags into a hierarchical concept model;



e cvaluation of the concept models for tag synonym prediction;

e examination of the concept model for predicting the tags of an unseen
post;

e novel technique for evaluating the concept hierarchy based on entropy
for its potential to focus or broaden retrieved document sets; and

e cvaluation of the L2H model based on the novel entropy-based metrics.

The rest of the paper is organized as follows. We begin with background
on hierarchical models for textual data, including the model used in this
paper, in Section 2, followed by the characteristics of the Stack Overflow
dataset and the challenges to apply the model to the dataset in Section 3.
We describe our extensive experimental plan along several dimensions (tag
synonyms, tag prediction, and navigational search) in Section 4, while the
results from this evaluation are presented in Section 5. Finally, in Section 6
we present a concise survey of the related work, and in Section 7, we conclude
the paper and list the future work.

2. Background

Relative to traditional technical documentation, such as, official API doc-
umentation and reference books, crowd-sourced online documentation is typ-
ically uncurated and therefore less organized. In this paper, we propose a
concept? hierarchy for tagged external documentation sources, such as Stack
Overflow. With this purpose in mind, in this section, we review and com-
pare relevant hierarchical clustering and hierarchical topic modeling methods.
Following this, we provide background on hierarchical concept modeling, the
primary modeling technique we employ for the task of building concept hi-
erarchies for Stack Overflow data in this paper.

2.1. Hierarchical Clustering and Topic Modeling

Hierarchical clustering algorithms are to extract a hierarchy of common
data points, and have been frequently applied to clustering documents [15,

2We use the term concept in this paper to refer to high-level development-related
abstractions (e.g. techniques, libraries, languages, operating systems).



16]. These algorithms divide documents into clusters in either an agglomer-
ative fashion, i.e., merging smaller clusters to a larger one bottom-up, or a
divisive fashion, i.e., dividing a larger cluster to smaller ones top-down. At
completion, both types of algorithms yield a hierarchy of clusters.

Most hierarchical clustering algorithms have a characteristic that is un-
desirable for building a concept hierarchy. That is, these algorithms assign
each document to one cluster path, from the root of the hierarchy to the leaf
of the hierarchy, i.e., if a cluster corresponds to a concept, the document can
only be associated with a single path of concepts, from more generic concepts
to more specific concepts. However, a document cannot be associated to two
disjoint concepts.

Considering that Stack Overflow documents, as well as other software
documentation types, are tagged, we would also like to leverage the tags
as human-recognizable expression of concepts. Hierarchical clustering algo-
rithms typically do not take tags into account. To address this concern, one
may also consider hierarchical classification algorithms where tags are the
labels into which documents are classified [17, 18].

Recently, a number of hierarchical probabilistic topic models have ap-
peared in the literature. Although they are very popular for processing nat-
ural language texts [19], probabilistic topic models are applicable to any
discrete data, including genome data and IDE interaction traces [20, 21].
These probabilistic topic models are commonly referred to as mixed mem-
bership generative models [22], because a document is assigned to a set of
groups probabilistically, i.e., a mizture of the set of group memberships for
the document. The groups themselves are referred to as topics. By modeling
group membership probabilistically, these models avoid the issue of a doc-
ument only associating to a single path of concepts, present in hierarchical
clustering.

Similar to the clustering algorithms whose learning of clusters from data
is unsupervised, many topic models are unsupervised. Among these unsu-
pervised topic models is Latent Dirichlet Allocation (LDA) [19]. LDA is a
flat topic model, in which the topics are independent and there is no struc-
tural relationship among the discovered topics. Hierarchical topic models
are developed to overcome two challenging issues in these flat topic models.
First, when using flat topic models, it is difficult or at least computation-
ally expensive to discover the number of topics that should be modeled in a
document collection. Second, since there is only a rudimentary relationship
among topics, the meaning of the topics is difficult to interpret, in particu-



lar, when multiple topics look alike based on their probability distributions.
Representative hierarchical topic models include Hierarchical Latent Dirich-
let Allocation (HLDA) and Nested Hierarchical Dirichlet Process [23, 24].
Hierarchical topic models also overcome the issue that a document is as-
signed only a path of concepts in the hierarchy; however, the topics still need
to be labeled with human interpretable tags.

A set of tagged (or labeled) and partially tagged (or labeled) topic models
have been developed to address the challenge [25, 14]. Ramage et al. asso-
ciate a document with multiple tags and each tag can be considered as an
interpretable concept for the topic associated with the tag [25], while Nguyen
et al. not only associate a document with multiple interpretable tags, but
the tags also form a tree-like hierarchy [14]. Considering the above, in this
paper we select Nguyen et al.’s L2H topic model [14] to extract a concept
hierarchy from a tagged corpus like Stack Overflow.

The Stack Overflow community, on its Meta Stack Exchange site, has
discussed the idea of organizing tags in a hierarchy as a search aid [26].
While the conclusion of the discussion is unclear, with arguments both for
and against such an organization, it is clear that a structure where tags
belong to multiple groupings is preferable.

2.2. Hierarchical Concept Model

In this section, we formally describe hierarchical concept (tag-topic) mod-
els, a class of probabilistic modeling techniques suited for tagged textual
corpora. We start with a set of definitions; the most basic unit of discrete
data are words, and we denote a word as w. A sequence of words forms a
document, i.e., d= (Wa,1, W42, - - .,wqnN,) where N, is the number of words in
the document and wg;, 1 <7 < Ny is a word in the document. A collection
of documents form a corpus, i.e., D = {d:, dy, ... ,JD} where D = |D)| is the
number of documents in the corpus, and d;, 1 <14 < D is a document in the
corpus. The set of all the unique words in the corpus is referred to as the
vocabulary of the corpus. Here we refer to it as word vocabulary and denote
it as V = {wy,ws,...,wy} where V = |V] is the number of unique words
in the vocabulary. Each document is associated with one or more tags (or
labels). The set of all the unique tags is the vocabulary of the tags of the cor-
pus. Here we refer to it as tag vocabulary and denote it as L = {ly,ls,... 11}
where L = |L| is the number of unique tags. Specifically, we leverage the
Label-to-Hierarchy model (L2H) [14], whose purpose is to build a concept



hierarchy from a set of documents, where each document contains multiple
tags.

Formally, a concept ¢ is a pair ¢ = (I, ¢), where [ € Lis atagand ¢ € is
a topic. A topic is defined as a discrete probability distribution over words in
the fixed vocabulary V, and can be defined by its probability mass function,
i.e., for topic ¢, Py(w = w;) = Pp,;, 1 < i < |V]| and Zgl P,; = 1. The
model assumes that the tags and the topics have a one-to-one mapping, i.e.,
the number of topics ® = | | is identical to the number of unique tags L.
As input, L2H requires a set of documents, each of which is assigned a list of
tags, and outputs a tree-like hierarchy of concepts, representing relationships
among the concepts. In L2H’s tree-like structure, a concept on the parent
node is more generic than its children while a concept in a child node more
specific.

Initially, L2H constructs an weighted directed graph G = (V,E), where
vertices V are the set of concepts C, i.e., V = C while edges [E are association
relationships between concepts. Two concepts ¢; = (l;, ¢;) and ¢; = (I}, ¢;)
are connected when there is an edge between them, and a concept ¢ may have
many directly connected neighbors. The edge weights of the neighbors to a
concept ¢ represent the strength of their relationship to the concept. In order
to build a concept hierarchy from this graph, we consider the weights between
two concepts ¢; and ¢; as latent variables, and in particular, the weight of edge
eij, the edge pointing from concept ¢; to ¢;, as representative of the proportion
of concept ¢; in concept ¢;. For instance, from the group of concepts AN-
DROID, APK (Android Package Kit), and ANDROID-STUDIO (IDE for building
Android apps), we consider APK and ANDROID-STUDIO to be more specific
concepts than ANDROID, while APK and ANDROID-STUDIO are two parallel,
but unrelated, concepts. When we consider all the input documents that
are associated with the concept ANDROID, the portion of the documents that
are associated with APK would indicate the weight of edge €undroid,apk, While
the portion with ANDROID-STUDIO the weight €undroid.android—studio- Since the
edge weights are latent variables, we can only estimate them by observing a
set of tagged documents where tags correspond to a set of concepts. Specifi-
cally, the association exists if and only if at least one document is tagged by
the two tags in their respective concepts [14]; furthermore, the initial weight
of an edge, e.g., e;; is estimated as the proportion of the documents tagged
by both of the tags /; and [; among those documents tagged by tag [;. Be-
fore inference of the L2H model, we build an initial graph G using the set of
tagged documents.



A salient feature of L2H is that it does not assume that a document is
tagged exhaustively with the concepts it is innately associated with, instead
it learns the relationship from the entire collection of the documents. Obvi-
ously, this depends on the input dataset — a gap exists when one forgets to
tag a document with a relevant concept using the concept’s respective tag;
however, when the dataset is sufficiently large, it is likely in the dataset there
exist documents that others have tagged with the missing concept, and the
gap can be filled.

The learning algorithm in effect determines the probabilistic distribution
over the latent variables that include the topics, the probabilistic distribu-
tions over the words of each topic, and the tree structure, i.e., the topology of
the tree and the weight of the edges. In this paper, we use the Markov chain
Monte Carlo (MCMC) inference algorithm [27]. Note that in the inference
algorithm, a background concept is introduced, as the root of the concept
tree with artificial edges to all of the vertices. To understand the latent and
observable variables, how they are related, and what constraints they are
subject to, we can examine the graphical structure of the model, and how a
document may be generated from the model, since the L2H model is in effect
a probabilistic graphical model for documents and commonly understood by
describing its generative process. We present the graphical representation of
the L2H model in Figure 1.

Shaded nodes in Figure 1 represent the observed data, the D documents
and the tag set of each document (e.g., Ly for document d). From these two,
using frequencies of tag occurrence we form a concept graph G as described
above, which we can then also considered observed. The hyperparameters «,
v = (71,72), and [ represent prior belief or knowledge on how the genera-
tive process should be constrained. The rest are latent variables, which are
learned. The training algorithm determines the joint probability distribution
of the parameters and the variables given the observed data.

The generative process of a topic model typically consists of two major
steps. The first step generates a set of K topics, while the second generates
a set of D documents using the K topics. A document exhibits the K topics
with different proportions. For each word in the document, the algorithm
selects a topic out of the K topics, and generates the word by sampling the
selected topic, a discrete probability distribution. The difference between
L2H and flat topic models like LDA is at the second major step, when a
topic is being selected for each word in a document, as shown in Figure 1.

The process to select the topic indicator 24, starts at sampling a spanning
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Figure 1: Graphical representation of the L2H model. The model can be viewed as
an extension to the Latent Dirichlet Allocation (LDA). The right hand side (starting at
wq,n) of the graph illustrates the process to generate K topics, identical to the graphical
representation of LDA. The difference L2H from LDA is the selection of a topic out of
the K topics for a word in a document, as illustrated in the left hand side of the graph
(starting at zq,). In L2H, a topic is selected based on a tree-like hierarchical prior and
tags of the document and the document collection, while in LDA it is selected from a
distribution drawn from a Dirichlet prior.

tree 7 from G. Note that by introducing a background node, we ensure that
a spanning tree exists in graph G. How we sample a specific spanning tree
from graph G affects computational efficiency since the graph is more likely
to have many spanning trees. In the inference algorithm described in [14],
the tree is initialized as the maxzimum spanning tree. The structure of tree
is updated during the training process. This choice is made to increase
computational efficiency. The K tags are divided into two subsets for each
document. Given document d’s tags Ly and the concept tree T, we divide
the K tags into two subsets L} and LY. The former are tags in Ly and the
tags’ ancestors in tree T, and the later is the complement of ). We form L}
in such a way because: (1) one may not exhaustively tag a document with all
concepts it is associated with; and (2) some systems have constraints on the
number of tags a document can be assigned to, e.g., in Stack Overflow, one
can only tag at most 5 tags. This also implies that we divide the K topics
into two subsets. In order to determine which set to choose from to select
a topic, we introduce a hyperparameter v = (71, y2), which parameterizes a
Beta distribution, a draw from which is a probability called the switching
probability 4. The parameters should be chosen in a way that 6} would be
selected with higher probability than 69, topic proportions of the two subset
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i statistic value
2 10 number of questions 13,472,796
310 number of answers 21,299,522
Lé number of comments 55,852,373
2 10% questions with <code> 10,034,060
§ 102 answers with <code> 15,188,226
o comments with <code> 6,814
10! number of tags 48,373
tags used < 10 times 12,955
0% ‘ ‘ ‘ ‘ tags used > 1000 times 3,537

10° 10! 102 103 104
Tag Rank

Figure 2: Statistics (right) and a plot of tags vs the number questions they appear in
(left) for the Stack Overflow Data Dump from 2008-07-31 21:42:52.667 to 2017-03-13
21:56:17.233. Tag rank is the rank of a tag when the tags are ordered according to the
number of Stack Overflow questions in which they are associated with, i.e., question count.

of topics. Drawing from the Bernoulli distribution parameterized by 7y, we
get x4, and use it to select one of the two subsets of topic proportions, from
which we know which of the K topic a word is sampled from.

3. Building a Concept Hierarchy in Stack Overflow

Documents in development related communication channels (e.g. Q&A,
tutorials, blogs posts) have a few common characteristics, differentiating
them from typical natural language texts. First, the documents commonly
contain a mix of source code and natural language text, which makes them
a unique source for mining and analysis [28, 29, 30]. Second, documents on
many of these platforms contain noise, which arises from the informal na-
ture of the communication. It is common that uncorrected misspelling are
present, or for documents to be mislabeled or poorly organized. Specific to
Q&A style documents, question writers may not clearly express their infor-
mation request, while the provided answers may also be of ranging quality,
with respect to their level of detail, ease of understanding, and even cor-
rectness. For analysis or mining of these online software development texts,
numerous choices on how to pre-process the data are typically necessary,
while particular analysis and modeling approaches can be very sensitive to
these choices. Probabilistic topic models, such as the one we have used in this
paper, are particularly capable of dealing with noisy discrete data, relying
on probability to model uncertainty.
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Table 1: Parameters for data preprocessing and model building.

Data Source

Data Preprocessing

Data Filtering

Model
ters

Hyperparame-

(by examining selected
documents in input
dataset)

(by examining tag and
word frequency distri-
butions in Stack Over-

flow)

(by optimization using
a separate held out
sample of 8mos.  of
Stack Overflow data)

Stack Overflow posts
between between
January 1, 2016 and
March 13, 2017

e questions only;

e select tags. Use
frequent tags as se-
lection criteria, i.e.,
we filter out tags
with  which less

e remove words that
appear in less than
300 questions, and
those that appear
in 40% or more
questions

a =10, 8 = 1000, v =
0.9, 72 = 0.1

than 250 questions
are associated;

e select questions.
Maximally 5000
random questions
are selected for
each tag;

In the following, we describe different choices for data preprocessing and
model construction. An overview of the specific selections we used is provided
in Table 1.

3.1. Data Preprocessing

Data preprocessing is extremely important in applying complex models
as the computational time to learn a model from a large dataset like Stack
Overflow is nontrivial, even on modern hardware. More importantly, pre-
processing should reflect the intended purpose of the model. For instance, if
the objective is to help a user to tag questions or to help a user to browse
and search questions, it may be more appropriate to consider only the ques-
tions when constructing a model. Here, we describe some of the important
data preprocessing choices in using a topic model on Stack Overflow, while
the next section describes the concrete pipeline we utilized in building our
model.

Document Granularity. First, we need to indicate what exactly constitutes
a document in Stack Overflow. There are a few choices, such as, (1) treating
each question or answer as a document, (2) treating a thread including both
the question and corresponding answers as a document, and (3) treating
the question, answers, and surrounding comments on both as a document.
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Because on Stack Overflow tags are primarily associated with a question, we
only select the questions and ignore all answers and comments.

Selecting Documents. It is computational costly and not always necessary to
include all the posts present in Stack Overflow in constructing the model.
In addition, the dataset has some ancillary attributes that we can consider
in selecting a subset of documents from the dataset. Posts can be selected
based on time stamps, on number of views, on votes of posts and questions,
on post histories, and on the combinations of these attributes. In building a
robust concept hierarchy the distribution of tags is the most relevant quan-
tity. Documents containing extremely rare tags are unlikely to meaningfully
contribute to our model.

Probabilistic topic models are statistical, and to to make estimated statis-
tics meaningful, we should ignore infrequent tags or terms that do not have
enough support in the dataset. This is a common approach when applying
probabilistic topic models. For instance, when introducing the Labeled LDA
model, Ramage et al. selected tags of medium to high frequency [31]. Wang
et al. ignored tags assigned to fewer than 50 documents when building a
Stack Overflow tag prediction model [32]. Also, since computational cost of
topic models grows superlinearly with the number of tags (or topics) [33],
by examining the tag frequency distribution in Figure 3, we filter out tags
assigned to fewer than 250 Stack Overflow questions.

Forming Words. A Stack Overflow post typically contains both natural lan-
guage text and code. Although Stack Overflow uses the <code> tag to anno-
tate code, since the mark’s main purpose is proper visual formatting of the
source code, it can sometimes be used for formatting non-source code text
by the contributing developers, while novice contributors often forget to use
it. To overcome this, researchers have recently developed more sophisticated
mechanisms and similarity metrics to accurately identify code snippets [34].
Once the entire vocabulary is known, we vectorize each document into a
term-frequency vector where term is a word and the frequency is the number
of occurrences of the word in the document. We form words in a two-step
approach. First, we divide each document into natural text and code using
the <code> tag. Second, we divide the natural text of a document into word
using word boundaries, such as, punctuation and spaces. A similar procedure
is also applied to the code, while taking account for subtle differences in ex-
tracting words from the text and the code. For instance, in natural language
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text, the underscore character is an acceptable choice for word boundaries,
while in code, it is not.

Selecting Tags. Tag popularity generally follows a power law, i.e., a number
of tags are widely used, while many are used sparingly, as shown in Figure
2 that graphs the number of questions with a specific tag versus the ordered
rank of tags on a log-log scale. In particular, few of the tags are widely
used and documented with extensive wiki pages. Examples of these are
JAVASCRIPT, JAVA, C#, PHP, and ANDROID, which are assigned in 9.94% ,
9.08%, 7.93%, 7.78%, and 7.13% of Stack Overflow questions, respectively.
In addition, significant portions of tags are rarely used. As shown in the right
side of Figure 2, 12,955 tags or about 26.78% tags are used no more than 10
times. The value of these tags to the overall corpus organization is arguable.
In addition, the rare occurrence results in insufficient support to model these
tags effectively without incurring noise. To create a dataset where tags are
consistently represented, we randomly sample questions for a tag if the tag
is overly represented, such as, JAVASCRIPT that is associated with 9.94% of
questions in Stack Overflow. For instance, Ramage et al. randomly sampled
4,000 documents that contain at least one of the selected tags. In our work,
we randomly select 5,000 documents for a tag if there are more documents
for the tag on Stack Overflow during the period we are examining.

3.2. Building the Model

The processing pipeline we used to obtain a concept hierarchy from the
Stack Overflow dataset consists of the following set of 4 steps.

1. In Step (1) of the pipeline, we select only the questions from the Stack
Overflow dataset, a granularity with sufficient support for extracting
commonly occurring concepts. Next, as mentioned above, we select a
corpus of Stack Overflow questions based on their tags, ensuring that
we use tags that occur frequently enough (i.e. with enough support)
in the dataset, omitting tags that are too rare or too frequent. We
also limit the number of questions per tag to a maximum of 5,000 as
discussed in Section 3.1.

2. During Step (2) we extract a corpus consisting of a set of questions,
extracting constituent word lists as described above. It is common
practice to filter out stop words, which are very common, or rare words
that have insufficient statistical support, from a corpus [35]. Following
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best practices in topic modeling [36], we choose to filter out rare words
that appear in less than 300 questions and overly frequent words (i.e.
stop words) that appear more than 40% questions. Frequent adjacent
words are combined to form bigrams, and these bigrams are treated
as additional words to the model, which are filtered using the same
thresholds.

3. Step (3) specifies the hyperparameters of the model’s priors, including
a, B, 11, and 79, as shown in Figure 1. We select the hyperparam-
eters’ values using both metric-based validation and by qualitatively
examining the model to determine it expresses logical distributions of
terms. As metrics, we use perplexity (or, alternatively, predictive like-
lihood) to examine the ability of the model to recognize unseen data.
The choice of the hyperparameters can have significant impacts on
the topics extracted [37]. To choose the model’s hyperparameters, we
start with values based on previous work in hierarchical topic mod-
eling [24, 23, 14] and perform a limited parameter search based on a
smaller dataset consisting of 3 months of Stack Overflow data. Full
scale grid-search optimization was prohibitive due to the high run-time
overhead of constructing the model on a substantial dataset. Prior
research also indicates that the sensitivity of the modeled topics is re-
duced as the training dataset size increases resulting from improved
statistical support from the data [38]. Another way to reduce the sen-
sitivity to the hyperparameters is to ensure each word or tag has suf-
ficient statistical support, which we have done by aggressively filtering
our corpus.

4. Assuming a good model fit, we can use the learned concept hierarchy
for predictive purposes, such as, e.g. to determine tag synonyms, or
to predict tags for an unseen question. In addition, since probabilis-
tic graphical models of this kind are also interpretable they can have
empirical value to researchers that want to examine frequent terms oc-
curring in a particular development community, which is represented
by a set of tags.

The overall parameters used in constructing our model and their origin
in listed in Table 1.
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4 I'musing :/github.com/playg: i 'play-games-plugin-for-unity plugin to sign in user with
his google account , and then i want to get Id Token and send it to my server and register an
0 account for this user in my own database.this is my code to get Id token :

W PlayGamesPlatform.Instance.Authenticate(success =>
{
if (success)

Debug.Log("Id Token :");
Debug.LogFormat(“{e}", PlayGamesPlatform.Instance.GetIdToken()};
Debug.Log("End Of Id Token");
i3
b

The problem is the first time it prints just empty string , when i call this for the second time (or a
moement |ater) it prints the token. | want to get token immediately or with a callback to make sure
that token is recieved .

How to make sure that token is recieved? is there any callback for this?

Thanks

Figure 3: Stack Overflow question entitled “How to immedi-
ately get id token from google play services Unity Plugin” cor-
responding to the inferred concept tree in Figure 4.

Figure 4: Inferred concept tree of a Stack Overflow post entitled “How to
immediately get id token from google play services Unity Plugin”. The cor-
responding question is in Figure 3. The graph displays only the tags with
significant weight > 0.008. The normalized weights (or probability) of tags
ANDROID, C#, ADAPTER, ADB, AMAZON-WEB-SERVICES, .NET, .MONO, and
.UNITY3D are, 0.5935, 0.1552, 0.0200, 0.0477, 0.0773, 0.0115, 0.0085, and
0.0573, respectively.

3.3. Example Concept Hierarchy

Figure 5 visualizes a subset of the Stack Overflow concept hierarchy, fo-
cusing on concepts in the ANDROID sub-tree. This hierarchy expresses the
structure of the concepts in the Stack Overflow document collection, and
represents the basis of our learned model. Given this model and any (seen
or unseen) document, we can infer a hierarchy that the specific document
exhibits. For instance, Figure 4 shows the concept tree for a single Stack
Overflow question entitled “How to immediately get id token from google
play services Unity Plugin” — listed in Figure 3 — which was inferred from
the ANDROID centered model. Unbeknownst to our model, this question was
tagged with the tags C#, ANDROID, UNITY3D, and GOOGLE-PLAY-SERVICES
by developers on the platform. We observe that the concept hierarchy has
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considerable overlap with the human selected tags, while providing addi-
tional context through the organization of the tags and additional relevant
tags (e.g. ADAPTER, .NET).
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4. Experimental Design

We aim to answer the following set of research questions, which focus on
the quality and the predictive power of the concept hierarchy (RQ 1 and RQ
2) and on the potential usefulness of the concept hierarchy for search and
navigation (RQ 3)3.

R@Q 1 Does the concept hierarchy identify tag synonyms matching human
labeled tag synonyms on Stack Overflow?

R@ 2 Does the concept hierarchy predict tags for an unseen Stack Overflow
document matching human assigned tags?

R@) 3 Does traversing the concept hierarchy towards the bottom focus, while
traversing towards the top broaden the set of Stack Overflow posts?

For the evaluation of all three RQs, we use the dataset, preprocessing,
filtering and hyperparameter choices described in Table 1. The resulting
dataset has 369 tags and 196 pairs of synonyms as reported by the Stack
Overflow community. We use 3 sets of evaluation metrics, described below,
in Section 4.1, Section 4.2, and Section 4.3, in order to answer R(Q) 1, R(Q) 2,
and RQ) 3, respectively.

4.1. Tag Synonym Identification (RQ1)

The Stack Overflow dataset has tens of millions of unique posts and tens
of thousands of tags. Many tags have community-contributed wiki pages con-
taining descriptive information. While tagging is effective in helping search
and navigation, allowing user to create tags results in the number of user-
contributed tags growing over time. In part, this is because of the existence
of tag synonyms, where a user has contributed a tag that already exists (e.g.
AMAZON-ATHENA and AWS-ATHENA). Stack Overflow indicates “[w]henever
you see questions being repeatedly tagged with the wrong or incorrect tag —
or multiple tags that mean the same thing — it’s a good idea to propose a tag
synonym” [39]. Users can suggest and vote on tag synonyms [39]. A tag syn-
onym pair is organized as a “master” and “synonym”. Stack Overflow will

30ur code and scripts as well as instructions to obtain experiment data are publicly
available at: https://doi.org/10.5281/zenodo.3234916.
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map any questions tagged with a “synonym” tag to its corresponding “mas-
ter” tag. The set of the Stack Overflow community mapped tag synonyms
has gradually grown over time, and the number of pairs of tag synonyms
stands at 3,650, retrieved on June 13, 2017 from the Stack Overflow Data
Explorer [40], compared to 2,765 pairs in September, 2014 from the same
source as reported in [41, 42]. By identifying tag synonyms, we can effec-
tively prune the tag space from unnecessary tags, thereby improving search
efficiency via tags. In this section, we aim to evaluate the concept hierarchy,
which contains a hierarchy of tags and their associated topics (probability
distributions of terms), for the purpose of tag synonym identification.

The intuition is that if two topics (i.e. their term distributions) are close
to each other and their difference is indistinguishable, then their associated
tags should be essentially indistinguishable. There are a large number of
choices of metrics to choose in comparing two topics (i.e. two discrete proba-
bility distributions) [43]. In topic modeling, the Kullback-Leibler divergence
(KL divergence) is widely used due to its probabilistic and information the-
oretic interpretation [44, 45, 46]. However, in this paper, we choose the
Jensen-Shannon divergence, an improvement over the KL divergence [47, 48]
in that it is symmetric (i.e., the Jensen-Shannon divergence from X to Y is
always equal to Y to X) and always a finite value, while KL divergence is
not.

The topological closeness of two concepts in a tree may also be considered
in comparing two concepts. It may also be computed in several ways. In this
paper, we adopt the shortest path between two concepts p and ¢ for g(p, q).
Since the graph is a tree, the distance of two nodes can be easily computed
since we only need to traverse from p and from ¢ toward the root until
we reach a common ancestor. To determine the effectiveness of automatic
synonym identification, we exhaustively examine all the pairs of tags in the
evaluation dataset, i.e., (329) = 67,896 pairs, computing the Jenson-Shannon
distance between any two tags. If the distance of the pair is less than a
threshold, we consider the pair to be synonymous.

Based on our hierarchical concept hierarchy, we can consider two distinct
tag synonym identification schemes:

Synonym Identification Scheme 1 [Topic-based tag synonym identification]:
A topic is a discrete probability distribution over words. Given that there are
V' unique words in our data, we represent a topic indexed by z conveniently
as a vector ¢, = (1,022, 0z4,...¢,n) Where ¢; = P(w = w;|z) and
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Zf\il P(w;|z) = 1. In this approach, we consider two tags t; and t; are
synonyms when d(¢y,, ¢;;) < d4 where d(p, q) is a similarity metric measuring
the closeness of two probability vectors p and ¢, and 9, is a threshold.

Synonym Identification Scheme 2 [Concept hierarchy-based tag synonym
identification]: The above scheme does not consider the hierarchical struc-
ture of the tag-topic model. The concepts, each of which is a pair of tag
and its corresponding topic, form a tree structure. We denote the shortest
graph distance of two topics in the tree as dt(@i,é‘tj). Utilizing the tree
structure of the concepts, we consider two tags t; and t; are synonyms when
d(@i,&tj) < Oy N g(&ti,@j) < d, where d(p,q) is a metric measuring the
closeness of two probability vectors p and ¢, g(p, q) is a similarity metric on
the closeness of two concepts that correspond to p and ¢ in the concept tree,
dp and d, are two thresholds.

4.2. Tag Prediction (RQ2)

For the second research question, we examine how well we can predict the
tags of an unseen (or held out) Stack Overflow question using our concept
hierarchy, where an unseen question is one that is not in the training dataset.
The target application that this evaluation mimics is recommending tags to
a developer that has just finished composing a new question in Stack Over-
flow. The evaluation process is as follows. We start by randomly selecting a
set of unseen questions retrieved from Stack Overflow, and use the concept
hierarchy to predict the probabilities of tags whose concepts the documents
exhibit. We rank the list of tags ordered by their probabilities, where the
greater the probability, the higher the rank. For simplicity, the tree structure
is ignored. Next, we select a list of top ranked tags, given N length of list
elements — the top-N tags. Since the unseen documents are tagged by the
Stack Overflow contributors, we can compare the tags of a document with its
top ranked documents, and count the number of matches. The ratio of total
number of matches to the maximally possible matches (i.e. the number of
total tags in the held out question) is the matching tags accuracy, which we
compute as our primary metric. We compare our accuracy to the recently
proposed tag prediction system EnTagRec. We searched but could not find
any description by Stack Exchange of the existing algorithm to predict tags.
Therefore, we have not yet devised a good method to compare directly to
the Stack Overflow tag suggestion algorithm.
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4.3. Exploratory Search Effectiveness (RQ3)

We evaluate whether it is possible for our concept hierarchy to serve as a
search aid for Stack Overflow. Our aim to to aid ezploratory searches, when
the developer seeks a document previously unknown to him or her. While
a silent majority often seeks answers on Stack Overflow via Web searches,
exploratory search via tags appear to be a common strategy by many ques-
tion answers on Stack Overflow?. According to the berry picking model of
information retrieval, a user satisfies their information need via a process
of dynamically adapting and refining search queries [7]. In this scenario,
the user typically begins with a generic query, for which the search tool re-
trieves a large set of ranked results that are impossible to examine in their
entirety. The concept hierarchy can then be used to further filter and explore
the initial set of retrieved results. Alternatively, absent an initial query, the
developer can begin navigating at the root of the concept tree. To clarify
how the concept tree can be used for this purpose, we present Algorithm 1.
The essential part of the algorithm is a function that computes a candidate
document set, as determined by the learned global concept tree.

There are a two distinct objectives in navigating the concept tree: speci-
ficity and diversity [49]. Specificity is relevant as developers refine their
searches by descending down the concept hierarchy. Ideally, we want to
ensure that the documents presented to the developers are specific to the
particular sub-tree they are currently exploring. However, when in doubt
and unsure of the most profitable path down the hierarchy, a developer may
need to take a different tack. Therefore, a second dimension is the diversity
of a different branch in the tree that enables a departure from the current se-
lections. More specifically, in the context of Algorithm 1, we expect that the
returned candidate document set becomes more specific when a user selects
a tag deeper along a path in the concept tree; however, we expect that the
document set becomes more diverse when a user select a tag on a different
branch of the tree. These two objectives appear in the information retrieval
literature to express the quality of retrieved search results or a corpus [50, 13].
In the following, we define specific metrics to evaluate these objectives.

Consider the bipartite graph in Figure 6, where D documents collectively
exhibit K concepts.The m-th document exhibits K concepts with proportions

4see “How to find the right questions that I can answer?  at https://meta.

stackexchange.com/questions/44739/
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Input: Inferred Global Model from the training dataset: M;
Document set to search from: D

1 while true do

2 DisplayConceptTree (M)

3 I < SelectKeyTagFromTree (M)

4 C <+ ComputeCandidateDocumentSet (M, D, [})

5 DisplayCandidateDocumentSet (C) // the application

orders the documents in some fashion

end

[=2]

Input: Inferred Global Model from the training dataset: M;
Document set to search from: ID;
Key tag: [

Output: Subset of documents in D based on [,

7 Function ComputeCandidateDocumentSet ( M, D, I;.)
8 C+0
€w < GetTagWeightThreshold (M, [i)

10 €y, < GetTagGraphPathThreshold (M, )

11 foreach d € D\ d; do

12 T4 + GetDocumentTree (M, d)

13 wq, < GetTagWeight (74, k) // construct a selection
criterion based on tag weights

14 Pa,; < GetTagGraphPathValue (M, Ty, l;) // a criterion
on concept tree graph structure

15 if wa; > €y A pay > €, then C < CU {d}

16 end

17 return C

18 end

Algorithm 1: Compute a candidate document set from a navigational
search.

Om = (Omas-- - O0mmn, - - .mx) Where 6, , is proportion, or weight, of the n-th
concept in the document. Following Martinez et al. [49], we begin to quantify
the diversity of a document exhibiting a concept by estimating Shannon’s
entropy.
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dq

dp

Figure 6: Concepts, pairs of tags and topics and documents form a bipartite graph. The
edge of the graph has a weight that is how strongly a document exhibits a concept.
The graph shows K concepts and D documents where the m-th document exhibits the
K concepts with proportions 6, = (6.1, ,0mm,-..m,x) Where 8, ,, is proportion or
weight of the n-th concept in the document.

K
Hy == 0pnnlogyOpnn,l <m <D (1)
n=1
Here, 1 < n < K, n is an index of a concept (or a tag), and 1 < m <
D, m is an index of a document labeled by the tag. If the m-th docu-
ment were to exhibit the K concepts equally, we would arrive at H,, =
- ZnK=1 1/Klog, 1/K = log, K, which would indicate that the document is
the most diverse with regard to the K concepts. Conversely, if the m-th doc-
ument were to exhibit only a single concept, e.g., the 1st concept, we would
arrive at M, = —limg,, , 1 0p 1108y 01 — Zfig limg,, ;0 Om,ilogy Omi = 0,
which shows that the document is the least diverse with regard to the K
concepts. We define another quantity,
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K K
Vm = <_ Z Hm,n IOgQ an) - <_ Z Hm,n lOgQ 07717”) (2)

n=1

1
=H,,— H, (3)

where 1 < m < D and

K
Hm = - Z em,n 10g2 gn (4)
n=1

representing the weighted average of the K topics exhibited in the m-th doc-
ument. This quantity measures how much a given document with regard to
the exhibition of the K topics departs from the overall (or average) distribu-
tion of the K topics in the D documents (i.e., the entire document collection).
We call this quantity the document divergence. The average divergence of
the D document becomes,

1 D
vzﬁn;vm (5)

We now return turn our focus to specificity. Since a concept may be
present in multiple documents with different proportion, the average pro-
portion of the n-th concept the m-th document of a set of D documents
is:

R

Applying the Shannon entropy to the proportions of the n-th concept in
the D documents, we define concept specificity as:

N 0
S, = Z T’”logQ%,lgngK (7)

Consider the case that the n-th concept is present equally in the D docu-

ments, i.e., 0,,,, = 0, for 1 <m < D. It follows S,, = % 23:1 eg“” log, eg"" =

% Zﬁzl g—zlog2 g—z =3 Zﬁzl 0 = 0. Consider another case thet the n-th
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concept is only present in a single document in the D document, e.g., the 1st
document. It follows that 6, = 1/D, 6;,, =1, 0,,,, = 0 for 2 < m < D, and
07—: log, 951_:"’ZZ=2 limg,, ,, 0 9%1—7;" log, 9%1;" = %(D log, D+
2522 0) = logy, D. The former represents the case that the concept is least
specific with regarding to the D documents, and the later the concept is
most specific with regarding to the D documents. We call the quantity in

equation 7 as the concept specificity with regard to the documents.

5. Evaluation Results

We now present the results of the evaluation we conducted to answer R(Q)
1, RQ@ 2, and R(@ 3, in turn, using the metrics detailed in the previous
section.

5.1. Tag Synonym Identification (RQ1)

To answer the first research question, Figures 7, 8, and 9 show the preci-
sion, recall, and F1 score of the synonym identification problem. The influ-
ence of the tree structure is encoded as ¢4, where a value of oo denotes no
influence from the structure, only topics (i.e. Synonym Identification Scheme
1). The result shows that the identification algorithm that uses both topic
distributions and the tree hierarchy (i.e. Synonym Identification Scheme 2)
produces better results in precision and F1 score. However, this identification
algorithm can produce more false negatives, i.e., there will be more cases the
algorithm considers two tags are not synonyms while humans consider they
are.

We draw further insight on whether we should consider the tree structure
in identifying synonyms from observing Figure 10. Generally, the topic dis-
tribution distance increases with the tree distance, which implies that these
two quantities are correlated. However, it can also be observed that for small
distances in the tree, e.g. at 1, or 2, the topic distance varies greatly. We
also observe that some tags that are far apart in the tree have similar topic
distributions. Both of these indicate that when by using the tree structure
and topic similarity in concert, we can avoid some likely misclassification
that could occur if we considered each quantity in isolation. Figures 7, 8,
and 9 confirm this understanding.

Figure 11 shows the true positive rate versus the false positive rate, com-
monly known as the Receiver Operating Characteristic for the binary classi-
fication problem. The curve illustrates that the true positive rate increases
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sharply as the false positive rate does, which indicates that we can select a
threshold to obtain a high true positive rate at a low false negative rate. It
is worth noting that this binary classification problem has very high class-
imbalance, i.e., the synonym pairs is much fewer than non-synonym pairs.
For the unbalanced classification problem, the Precision-Recall curve is often
computed as a metric to measure the performance of the binary classifica-
tion. Figure 12 shows the precision-recall curve that shows that the hierarchy
contributes to higher precision-recall curve.

An important observation from Figure 12 that matches the observation in
Figure 10 is that two tags that are close in their topic distributions may not
be close in the concept hierarchy topologically and vice versa. In Figure 12,
we use a fixed tree distance threshold of 1 (§, = 1) to determine whether
two tags are a pair of synonyms, which excludes many candidate pairs that
are close in their topic distribution but further apart in their graph distance,
which limits the recall to reach 1. This observation also suggests classification
with more flexible class boundaries may help.

The above experiments indicate that effectively identifying tag synonyms
from the Stack Overflow data depends heavily on choices of thresholds, which
trade off between different types of identification errors. Table 2 shows a
selection of precision, recall, accuracy, and F1 score values, when each of
these metrics is optimal, respectively. The results indicate that we would
arrive at 100% recall if we simply identify all pairs as tag synonyms. Without
the remaining metrics, recall is clearly meaningless. We argue that accuracy
is also not necessarily a good metrics for a novelty identification task like
this, because the number of negatives (67,896 — 196 = 67,700 pairs) far out-
weights that of positives, i.e., we can have high accuracy with very small true
positives because the number of true negatives is large. For the tag synonym
identification problem, precision is most appropriate, and the best precision
is 84.48% as shown in Table 2 when we consider both topic distributions and
concept hierarchy.

Beyer et al. initially suggested automated tag synonym identification
for Stack Overflow based solely on the tags [41], ignoring the content of
questions to which tags are assigned. Their approach produces a ranked list
of synonyms, which, when compared to the user curated tag synonyms in
Stack Overflow, has accuracy of 74.9% for suggesting a correct tag within
the top 15 suggestions, and 45.9% for the top 1 suggestion [41]. However,
since Beyer et al.’s rules for tag similarity are developed based on the user
curated tags in Stack Overflow, the accuracy on a set of synonyms not part
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of the existing set drops to 20% for the top suggestion. The two challenges in
directly comparing our results to Beyer et al. are that: 1) we use evaluation
thresholds that are not based on a ranked list of tags, as shown in Table 2;
2) accuracy is not an appropriate metric for class imbalanced classification.
However, overcoming these discrepancies, we observe that, if optimizing for
accuracy, we can achieve a value for accuracy of 96.14%, which is significantly
better than Beyer et al.; while the number of tag synonyms we select varies
from instance to instance it is always less than 10 tags.

Beyer at al.’s approach for tag synonym identification does not consider
the text of the Stack Overflow posts, so our improvements are to be expected.
In order to compare to a model that relies on textual data, in Figure 13
we also compare the F1 scores obtained using the hierarchical model and
a popular flat labeled topic model (Labeled LDA [51]). The results clearly
show that the hierarchical model is superior to the flat model for tag synonym
identification.

Table 2: Example results of tag synonym identification

Distribution Graph Optimal Performance

Threshold Threshold Metric Metrics
(%) (9,)

0.35 1 Precision=84.48% Precision=84.48%

Recall=25.00%

Accuracy=62.49%

F1 Score=38.58%

0.75 00 Recall=100.00%  Precision=0.79%
Recall=100.00%

Accuracy=81.91%

F1 Score=1.58%

0.60 oo  Accuracy=96.14% Precision=14.55%
Recall=84.69%

Accuracy=96.14%

F1 Score=64.59%

0.51 1 F1 Score=73.12% Precision=69.58%
Recall=77.04%

Accuracy=88.47%

F1 Score=73.12%
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Table 3: Example of tag synonyms identified by the model that are not (yet) recognized

by Stack Overflow (false positives).

Relationship Category  No. Tag 1 Tag?2
Parent-Child 1 APPCELERATOR ~ APPCELERATOR-MOBILE
2 ANGULARJS-DIRECTIVE ~ ANGULARJS-NG-REPEAT
3 ANGULARJS-SERVICE ~ ANGULARJS-HTTP
4 COMPLEXITY-THEORY  GRAPH-THEORY
5 DOCKER  OPENSHIFT
6 LARAVEL-5  ELOQUENT
7 NLP  STANFORD-NLP
8 PUBLISH  WEBDEPLOY
9 PYTHON-IMAGING-LIBRARY  SKIMAGE
10 SHAPE  POINTS
11 TITANIUM  TITANIUM-MOBILE
12 UISTORYBOARD  XCODE-STORYBOARD
13 VIDEO-STREAMING  YOUTUBE
14 WEB-SERVICES ~ APACHE-KARAF
15 BUILD  PACKAGE
Peer-to-Peer 16 APACHE-CAMEL  APACHE-KARAF
17 APACHE-SPARK-SQL  HIVE
18 ALEXA-SKILLS-KIT  AWS-LAMBDA
19 AMAZON-CLOUDFORMATION  AWS-LAMBDA
20 AZURE-ACTIVE-DIRECTORY  OAUTH-2.0
21 AZURE-ACTIVE-DIRECTORY  SQL-AZURE
22 AZURE-MACHINE-LEARNING  AZURE-TABLE-STORAGE
23 CELLS  FORMULA
24 CHEF  DOCKER
25 FOREIGN-KEYS  JOIN
26 JOIN  WHERE
27 NG-OPTIONS  NG-REPEAT
28 OVERLOADING  OVERRIDING
29 SEGUE  UIVIEWCONTROLLER
30 SEGUE  VIEWCONTROLLER
31 BIT  SIGN
Unrelated 32 BISON  SPACE
33 MODULO  TIMESPAN

Next, we examine the false positives produced by the model, i.e., the pairs
of tags that the concept hierarchy-based tag synonym identification approach
recognizes as synonyms, but are not (yet) manually tagged as synonyms on
Stack Overflow. Using the two thresholds for F1-Score-optimal tag synonym
identification, dg = 0.51 and d, = 1 shown in Table 2, the set of suggested tag
synonyms includes 66 false positive tag pairs (out of (339) = 67,896 potential
pairs). Table 3 shows a randomly chosen half of those false positive tag pairs,

a total of 33 pairs.

Two of the authors examined this subset of 33 false positives qualitatively,
grouping them into three categories based on the type of relationship between
the tags. The first category of false positive tag synonyms (pairs numbered 1-
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Table 4: Recall@5 for EnTagRec and Hierarchical EnTagRec, which includes a hierarchical
model in the tag prediction ensemble.

Tag Prediction Method

Document Length (# of Words)
0,50) [50,100) [100,150) [150, 00)
EnTagRec 0.7126  0.9011 0.9587  0.9841
Hierarchical EnTagRec 0.6619 0.9031 0.9762 0.9958

15) includes tag pairs that form a parent-child relationship, where one of the
tags is a more general and the other more specific concept within the same
technology space. These pairs have potential to be suggested as synonyms to
the community as, according to Stack Overflow, “[i/n some cases, tags that
are subsets of other tags will also be considered synonyms, such as JAVA-SE
for JAVA” [52]. Second, in rows 16 to 31, is a category of tag pairs that
are representations of two closely related technologies. For instance, we will
not be able to write a meaningful SQL JOIN statement without a WHERE
clause and we often contrast OVERRIDING with OVERLOADING in an object-
oriented programming language. While a few of the most closely related
tags may be suggested as synonyms, the majority should remain separate
as they represent related but distinct concepts. The last category is the
smallest, consisting of pairs numbered 32 and 33, and includes tags that the
two authors agree lack any significant relatedness between them.

5.2. Tag Prediction (RQ2)

Figures 14 and 15 show a set of results for predicting over 23,000 randomly
chosen sets of unseen documents, contrasting the matching tags accuracy
with a pair of relevant parameters, i.e. the number of tags in ranking (i.e.
the top N) and the length of the question in number of words. As a baseline,
we also show the accuracy obtained using Labeled LDA, a flat (i.e. not
hierarchical) topic model.

Figure 14 shows that the accuracy increases as the N in the top-NN tags
grows. This is expected, since we consider a match with a larger pool of tags
when N grows. In Figure 15 we see that the accuracy sharply increases when
the questions (or documents) are longer. It is intuitive that when questions
become longer, their meaning becomes more specific, and the algorithms
successfully captures the improved statistical significance from the data.

Most importantly, the results in both figures show that the hierarchical
model outperforms the flat topic model for tag prediction. This demonstrates
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the potential of the hierarchical model in building tag prediction systems for
crowd-sourced information sites. For instance, a highly accurate tag predict-
ing system called EnTagRec [32] outperforms other prior approaches [53].
EnTagRec is based on an ensemble of a Bayesian (i.e. Labeled LDA) and
a frequentist classifier. We anticipate that a hierarchical model would help
improve the prediction accuracy of such a system by improving the Bayesian
component (as indicated by the across the board improvement in accuracy
of the hierarchical model vs. Labeled LDA in Figure 14 and Figure 15). To
demonstrate this in part, we retrofitted EnTagRec to include the hierarchical
topic model examined in this paper (calling the resulting ensemble hierarchi-
cal EnTagRec). Table 4 shows the Recall@5 for the dataset provided with
EnTagRec using the two tag prediction methods. This result shows that the
Hierarchical EnTagRec edges out the original EnTagRec when documents
are long, but loses to the original EnTagRec when documents are short.

5.8. Ezploratory Search Effectiveness (RQ3)

For this research question, Figure 16 visualizes the specificity of the con-
cept hierarchy extracted from our test dataset. Each line in the Figure cor-
responds to a branch in the tree from the root to the leaf. It clearly shows
that specificity increases considerably from the root to level 2, and gradually
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Figure 16: Specificity of concepts in re- Figure 17: Average document divergence
turned document set from using Algo- within a subset of documents selected us-
rithm 1, i.e., S,, where n indexes a con- ing a concept, and average divergences
cept. The figure only shows branches and standard errors to the subset of doc-
whose length is no less than 5 levels. uments from using sibling concepts from

using Algorithm 1.

levels off following that at a rate dependent on the specific tree branch. This
is indicative of the hierarchy aiding to navigate to a more specific set of doc-
uments, but that many deeper level of the hierarchy are roughly as specific
as level 2.

We also compute average document divergence from the subset of docu-
ments from using any siblings of this concept. Figure 17 is the comparison
of the divergences. Since a concept has multiple siblings, we shows the range
of the divergences corresponding to the sibling concepts. We observe that
document divergence increases when we select a different sibling in the tree
at almost all tree levels. However the difference in divergence between the
selected subtree and the siblings is greatest at level 2 of the tree. Overall,
we seen that the selection of Stack Overflow documents shown during navi-
gational searches would be improved by our concept hierarchy and that this
benefit is greatest at the higher levels of the tree, tapering off among the
concepts in the deeper levels.

5.4. Threats to Validity

Our approach for building a hierarchical concept model for Stack Overflow
suffers from a few threats that impact the validity of our study and the ability
to generalize its results.

A threat to the internal validity of the results are the specific parameter
and configuration choices we used for our study. We mitigated this threat
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by systematically examining these parameters, by using a separate validation
dataset, and by examining distributions of the input data to select reasonable
thresholds. Another threat to internal validity is the sensitivity of topic
models, and other similar probabilistic constructs, to a variety of random
factors, including the ordering of the documents considered by the model [37].
We mitigate this threat by examining tag synonym identification and tag
prediction with a number of different randomly selected and ordered data
sets.

A threat to construct validity is whether the measurements we used ac-
curately reflect dimensions of interest in our study. To mitigate this, we used
standard metrics and evaluation techniques that others have proposed and
used in topic modeling and for the different purposes that we applied are
model to.

The primary threat to external validity, which concerns the ability to
generalize the results, is that we applied the modeling technique only on a
snapshot of the Stack Overflow dataset. A mitigating factor to this threat is
the considerable diversity and size of the datasets we used in our study.

6. Related Work

Question and answer sites, like Stack Overflow, have grown to become
an important enabler of collaborative knowledge sharing for software devel-
opers. Empirical evidence suggests that there has been a growing trend for
developers to shift to Q&A sites for technical solutions to their development
problems and for sharing knowledge with the community [54]. Popular Q&A
sites have in effect become a crowd-sourced knowledge base for software de-
velopers and computer scientists [55, 56]. For instance, Stack Overflow has
significant coverage of the APIs of popular programming languages and plat-
forms, and be effective for obtaining answers for code reviews and conceptual
questions [55].

Researches have proposed approaches to leverage Stack Overflow in var-
ious ways, including linking API documentation with posts and example
code [57], building integrated recommendation tools within IDEs to Stack
Overflow posts [58], and integrating issue tracking systems with Stack Over-
flow [59, 60]. These approaches demonstrate that the knowledge curated
on Stack Overflow helps developers and software development both directly,
when developers read and write questions and answers on the site, as well as
indirectly, when the Stack Overflow data is processed by tools.
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While applications of Stack Overflow are numerous in the literature, our
focus is related work on approaches for tag recommendation and tag synonym
identification, parts of the overall goal of this paper of organizing a large
community-driven tagged corpus like Stack Overflow.

Several techniques have been proposed to recommend tags for a newly
composed Stack Overflow question. Saha et al. proposed a support vector
machine model that treats the tag recommendation problem as a binary clas-
sification problem [61], by building a per-tag binary classifier that indicates
whether a post should be classified as the tag, given a training dataset. For
a new post the algorithm generates a list of classification decisions on all of
the tags ranking each model based on the similarity to the class (e.g. the
class center). The technique reports 70% prediction accuracy for the tags
examined.

Fang et al. proposed nonlinear tensor factorization using Gaussian kernel
for tag recommendation [62], a method similar to support vector machines.
Feng and Wang utilized this tensor factorization method in conjunction with
personal data to recommend tags [63]. Topic modeling, a probabilistic tech-
nique commonly applied to extracting concepts from a natural language cor-
pus, has also been applied to the tag recommendation problem. For instance,
variants of Labeled Latent Dirichlet Allocation (Labeled LDA) have been ap-
plied to tag prediction [64, 65] with results showing better prediction for less
popular tags and worse for more popular tags. The paper attributes this
result to an observation that more popular tags are less meaningful to de-
velopers than less popular and more specific tags. Wang et al. proposed
a tag recommendation system for software information sites and evaluated
the system using the data from 4 software information sites including Stack
Overflow [32]. Their approach combines both Labeled LDA, a Bayesian in-
ference technique and a frequentist modeling technique, and shows that both
Bayesian and frequentist modeling techniques can be complementary and
help achieve superior tag prediction performance.

Beyer and Pinzger devised multiple strategies to determine whether two
tags should be considered as synonyms [41, 42]. Synonyms proliferate on
Stack Overflow because contributors are free to generate new tags, which can
result in numerous duplicates. The site has a community driven mechanism
to identify tag synonyms, but the process is manual and takes considerable
time. In [41], presented 9 strategies for tag synonym detection, and in [42]
3 of the strategies were supplemented by 6 refined strategies. An impor-
tant characteristic of these tag synonym detection strategies is that they are
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based on the tags alone and do not use the Stack Overflow post content.
For instance, the stemming strategy compares stemmed tags, while strategy
metaphone compares the pronunciation of two tags. Similarly, in [42] Beyer
et al. use graph community detection algorithms on a directed graph of Stack
Overflow tag relationships. Since they are fairly straightforward, these rule-
based strategies are computationally efficient to compute while producing
reasonable accuracy and effectiveness. The combined strategies recognized
88.4% of tag synonym pairs, using the synonyms identified by Stack Overflow
users as a gold set.

A recent article by Nassif et al. proposes an approach that groups
Stack Overflow tags into a set of automatically extracted hypernyms [66].
The approach is based on natural language processing and primarily lever-
ages Wikipedia’s corpus to create its groups of hypernyms (e.g. ”program-
ming languages”, ”integrated development environment”) to which individ-
ual Stack Overflow tags belong to. While this approach is similar to ours in
that it organizes Stack Overflow tags, it is different in many ways. Our tag
categorization is multi-layered and only consists of Stack Overflow tags, not
broader terms. More importantly, our approach also probabilistically models
the word distribution of each tag, which can serve additional purposes, such
as for tag prediction of an unseen document.

7. Conclusion and Future Work

Crowd-sourced online documentation has become popular among devel-
opers, as they increasingly rely on sources like the Stack Overflow Q&A
Forum to solve problems during their daily tasks. In this paper, we describe
a concept hierarchy as a convenient and effective means to help utilize the
vast and growing resources on Stack Overflow. We posit that exploratory
searching and developer-facing recommendation systems can benefit from
this concept hierarchy.

The paper describes how to build a concept hierarchy using a hierarchical
topic model, where a concept corresponds to a tag-topic pair. After apply-
ing a supervised hierarchical topic model to the Stack Overflow dataset, we
examine two important problems. First, how do we determine the quality
of model? Second, how do we apply the concept hierarchy to the design of
search tools, and how do we quantify the potential for aiding search?

For the former, we apply the resulted hierarchical model to identify tag
synonyms, and to predict tags for unseen documents. The results show that
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the model yields improvement in tag synonym identification relative to re-
cently proposed rule based techniques, and an improvement in tag prediction
performance to flat models commonly used in the literature. For the later,
following recent research in information retrieval, we define both diversity
and specificity for searches, terms inspired by work in genome diversity and
specificity. We observe that searches generally become more specific following
the concept hierarchy. We also observe that by visiting different branches,
the searches would increase more diverse set of results. Both of these obser-
vations match the needs of information search.

Our work suggests a few future research directions. First, we intend to
work towards parallelizing L2H in order to enable the construction of larger
models, including more tags, which may reveal interesting associations among
rare or underused tags. Second, the vast amount of external documentation
resources (e.g. blogs, tutorials, books) are not tagged. We are interested
in investigating how we may abstract a set of tags from the Stack Overflow
content, which can be useful to build effective search tools for these other
untagged sources. Third, a common phenomenon in human tagged documen-
tation is tag explosion where tag spaces continues to grow, and the context of
a tag may evolve over time. In this work, we apply a regimented synonym tag
identification method (the class boundary is a rigid rectangular shape). A
more sophisticated tag synonym identification system can not only improve
identification performance but also detect changes of semantic meaning of
tags over time, resulting from new trends in software development.
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