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ABSTRACT
More than ever, developers are participating in public chat com-
munities to ask and answer software development questions. With
over ten million daily active users, Slack is one of the most popular
chat platforms, hosting many active channels focused on software
development technologies, e.g., python, react. Prior studies have
shown that public Slack chat transcripts contain valuable informa-
tion, which could provide support for improving automatic soft-
ware maintenance tools or help researchers understand developer
struggles or concerns.

In this paper, we present a dataset of software-related chat con-
versations, curated for two years from three open Slack communi-
ties (python, clojure, elm). Our dataset consists of 38,955 conver-
sations, 437,893 utterances, contributed by 12,171 users. We also
share the code for a customized machine-learning based algorithm
that automatically extracts (or disentangles) conversations from
the downloaded chat transcripts.

CCS CONCEPTS
• Software and its engineering → Maintaining software; •
Information systems→ Social networking sites;
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1 INTRODUCTION
Increasingly, software developers are engaging in conversations
via online chat services such as Slack, IRC, Gitter, Microsoft Teams,
and Freenode. Public, open-to-all Slack channels have been cre-
ated around specific software technologies allowing participants
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to ask and answer a variety of questions. Our preliminary stud-
ies show that such chat communications on Slack contain valu-
able information, such as descriptions of code snippets and spe-
cific APIs, good programming practices, and causes of common
errors/exceptions [8, 9]. Availability of these types of information
in software-related chats suggests that mining chats could provide
similar support for improving software maintenance tools as what
researchers have already leveraged from emails and bug reports [7],
tutorials [23], and Q&A forums [4, 24, 26].

Different from many other sources of software development-
related communication, the information on chat forums is shared
in an unstructured, informal, and asynchronous manner. There is
no predefined delineation of conversation in chat communications;
each conversation could span from two messages to hundreds. Chat
conversations are also often interleaved, where multiple questions
are discussed and answered in parallel by different participants.
Therefore, a technique is required to separate, or disentangle, the
conversations for analysis by researchers or automatic mining tools.

In this paper, we describe a released dataset of software-related
developer chat conversations. A subset of this dataset was analyzed
as part of our research in understanding the content of developer
chat conversations on publicly available Slack channels [8]. We pub-
lish our dataset in XML format, where each XML node represents a
chat utterance, containing the anonymized name of the participant,
a timestamp, the message text, and an attribute (conversation id) to
associate the message with its corresponding conversation. The con-
versation id is created through a chat disentanglement technique,
which is a modified version of Elsner and Charniak’s well-known
algorithm that better matches the constraints of Slack and the type
of software-related Q&A conversations in our corpus [12].

The released conversations are from three programming com-
munities on Slack (python, clojure, elm), gathered over two years
(July 2017- June 2019). The overall dataset consists of 38,955 conver-
sations, 437,893 utterances, contributed by 12,171 users. To enable
others to process additional Slack transcripts and disentangle them
into conversations, we also share the code we used to process daily
chat logs, convert them to XML, and extract individual conver-
sations from the collected chat transcripts. Both code and data1
are openly available to be downloaded for further reuse by the
community.

2 BACKGROUND AND RELATEDWORK
Background: The most popular chat communities used by soft-
ware developers include Slack, IRC, Microsoft Teams, and Flowdock.
Slack, with over 10 million daily active users [31], is easily accessi-
ble to users as a mobile application (Windows, iOS, and Android)

1https://zenodo.org/record/3627124
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as well as a web-based and OS-based (Windows, Linux, and Mac)
application. Public chats in Slack comprise of multiple communities
focused on particular topics such as a technology (e.g., Python or
Ruby-on-Rails), with specific channels within a given community as-
signed to general discussion or to particular subtopics [32]. Within
each channel, users participate in chat conversations by posting
messages, emojis, and/or multimedia (image and video) messages.
Conversations in some channels follow a Q&A format, with infor-
mation seekers posting questions and others providing answers,
possibly including code snippets or stack traces.Slack provides easy
integration to frequently used developer tools (e.g., Github, Bit-
bucket, JIRA, and Jenkins) through a set of conversation-based bots
and apps [35]. These bots and apps have been widely adopted by
many developers for different software engineering tasks such as
maintaining code quality, testing, conducting development opera-
tions, supporting customers, and creating documentation [16].
Chat Disentanglement Techniques: Most of previous research
on conversation disentanglement has focused on developing data
and models based on chats extracted from IRC channels [12, 13].
Elsner and Charniak’s dataset and disentanglement algorithm, ex-
tracted from the #Linux IRC channel, has been used for training
and evaluation in subsequent disentanglement research [14, 20].
Riou et al. [28] adapted Elsner and Charniak’s technique [13] to a
French corpus extracted from the Ubuntu platform, while Adams
and Martell [1] investigated methods of topic detection and topic
thread extraction. Lowe et al. [18, 19] used a heuristic-based ap-
proach to extract conversations from the #Ubuntu channel. More
recently, Kummerfeld et al. [15] released a manually annotated IRC
conversation disentanglement dataset with reply-to relations be-
tween messages. To the best of our knowledge, our paper presents
the first large-scale dataset of automatically disentangled software
related conversations from the Slack platform.
Analysis of Chats: Researchers have studied chat communities
to learn about how they are used by development teams and the
usefulness of the conversations for understanding developer behav-
iors. Shihab et al. [30] analyzed developer Internet Relay Chat (IRC)
meeting logs to analyze the content, participants, their contribution
and styles of communications. Yu et al. [39] conducted an empirical
study to investigate the use of synchronous (IRC) and asynchronous
(mailing list) communication mechanisms in global software de-
velopment projects. Lin et al. [17] conducted an exploratory study
to learn how Slack impacts development team dynamics. Stray et
al. [33] investigate how distributed global development teams use
Slack. Panichella et al. [22] investigate collaboration links iden-
tified through data from three different kinds of communication
channels: mailing lists, issue trackers, and IRC chat logs. Lebeuf
et al. [16] investigated how chatbots can help reduce the friction
points that software developers face when working collaboratively.
Paikari et al. [21] characterized and compared chatbots related
to software development in six dimensions (type, direction, guid-
ance, predictability, interaction style, and communication channel).
Alkadhi et al. [2, 3] conducted exploratory studies to examine the
frequency and completeness of available rationale in chat messages,
and the potential of automatic techniques for rationale extraction.
In one of our earlier works, we assessed Slack public Q&A chat as
a mining source for improving software tools [8].

3 METHODOLOGY
Figure 1 presents an overview of our process for automatic data
collection, preprocessing, disentanglement and storage of Slack
developer chats. First, we download daily chat transcripts from
each Slack channel in JSON format. Second, we collate the daily
chat transcripts, and convert them into XML format. Next, we
anonymize the user identities of the chat participants to preserve
privacy, as, otherwise, the Slack user ids can be used to retrieve
the participant’s e-mail via the channel of origin. Finally, we run
a disentanglement algorithm to produce XML attributes that asso-
ciate identified utterances (i.e., messages) with their corresponding
conversations.

3.1 Data Selection
For the purpose of creating a dataset reusable for software devel-
opers and maintenance tools, we identified groups that primarily
discussed software development topics and had a substantial col-
lection of participants. We selected three programming commu-
nities with an active presence on Slack: python, clojure, and elm.
Within those selected communities, we focused on four channels
that follow a Q&A format: pythondev#help, clojurians#clojure, elm-
lang#beginners, and elmlang#general. The channels are advertised
on the Web and allow anyone to join, with a joining process only
requiring the participant to create a username (any unique string)
and a password. Once joined, on these channels, participants can
ask or answer any question, as long as it pertains to the main topic
(e.g., programming in Python).

3.2 Data Collection and Preprocessing
Because programmatic access to the data in Slack communities is
controlled by the administrators of the Slack team, we contacted
several public Slack teams and asked for an API token that would
allow us to read and store their data. Public Slack teams typically
use Slack’s free tier, which only stores the most recent 10,000 mes-
sages. Thus, for each Slack community, we downloaded all of the
discussion data from each channel incrementally, every day for two
years (July 2017- Jun 2019).

The downloaded chats from Slack were in JSON format. We
collated all the downloaded chat transcripts and converted them to
XML format, in which each message contains a timestamp, the id of
the participant, and themessage text. In the next step, we obfuscated
the participant’s ids for privacy, by replacing the original usernames
with randomly generated human names.

3.3 Conversation Disentanglement
Since messages in chats form a stream, with conversations often
interleaving such that a single conversation thread is entangled
with other conversations, a technique is required to separate, or
disentangle, the conversations for analysis. Figure 2 shows an exam-
ple of an interwoven conversation in pythondev#help channel on
Slack. In this example, a question follows another question, while
the answers do not follow a chronological order; the third and the
fourth utterances are answers to the second and first questions,
respectively. This free form nature of chat communications makes
the task of tracing and understanding chat transcripts difficult for
automated tools.
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Figure 1: Overview of Data Collection, Preprocessing and Storage of Slack Chats

 <message conversation_id = T3610>
    <ts>2018-06-11T11:56:24.000781</ts>
    <user>Harrison</user>
    <text>Hi guys. How can we delete all line breaks from .docx file? 
    I'm using python-docx library. In docx - I store some Jinja2 template, 
    which later I'm rendering with some data.</text>
  </message>
  <message conversation_id = T3611>
    <ts>2018-06-11T12:24:04.000597</ts>
    <user>Minna</user>
    <text>Not sure if I should ask here or job_board, I wanted to expand 
    my github and use it as a portfolio of sorts, are there certain types 
    of projects that are good to have in there to show my comptency?</text>
  </message>
?
  <message conversation_id = T3611>
    <ts>2018-06-11T12:58:11.000201</ts>
    <user>Raul</user>
    <text><Minna; no one has real time to browse through your repo i would 
    think. So if you want a position that uses django/react then do a project 
    that does so. If you're trying to get into scraping, do a scraping project 
    etc</text>
  </message>
  <message conversation_id = T3610>
    <ts>2018-06-11T12:58:58.000549</ts>
    <user>Raul</user>
    <text>Harrison: yes just open the file and remove all the line breaks. 
    They are essentially the special character `"\n"`</text>
  </message>

Figure 2: Data Format

The chat disentanglement problem has been studied before in
the context of IRC and similar chat platforms [36]. We leveraged
the effective technique proposed by Elsner and Charniak [12] that
learns a supervised model based on a set of features between pairs
of chat messages that occur within a window of time of each other.
The features include the elapsed time between the message pair,
whether the speaker in the two messages is the same, occurrence
of similar words, use of cue words (e.g., hello, hi, yes, no), the use of
technical jargon, among others. For the training set, we manually
disentangled a set of 500 messages from each Slack channel and
trained the model using the combined set.

After we observed that some Slack channels can become dormant
for a few hours at a time and that participants can respond to each
other with considerable delay, we modified Elsner and Charniak’s
algorithm to expand the window of message pairs. Our modifica-
tion computes features between the current utterance and every
utterance that 1) occurred <= 1477 (1.518) seconds prior to it, or
2) is within the last 5 utterances observed in the channel. We also
added to the set of features used by Elsner and Charniak, introduc-
ing several specific to Slack, for instance, the use of URLs, Slack
channel references, or code blocks within a message. Leveraging
the fact that our conversations are mostly Q&A, we added features
corresponding to gratutude (e.g., thanks, this works, makes sense),

Table 1: Dataset of Disentangled Slack Conversations
Community #Conver. #Utterances #Partic.
pythondev#help 8,887 106,262 3,295
clojurians#clojure 7,918 72,973 2,422
elmlang#beginners 13,169 168,689 3,695
elmlang#general 8,981 899,69 2,759
Total 38,955 437,893 12,171

which sometimes occurs at the end of a conversation, when the
question is answered satisfactorily. We also followed the procedure
prescribed by Elsner and Charniak to create a better set of technical
words for the model by extracting all of the words occurring in
Stack Overflow documents tagged with a particular tag that do
not co-occur in the English Wikibooks corpus. To measure the
accuracy of the disentangling process, we manually disentangled
separate sets of messages from each of the channels. The model
with our enhancements produced a micro-averaged F-measure of
0.80; a strong improvement over the vanilla Elsner and Charniak
approach’s micro-averaged F-measure of 0.66. Since during the
process of creating the gold set of disentangled chat conversations
annotators can disagree whether a new conversation branches off
from the original or not, micro-averaged F-measure is considered
more appropriate than the standard F-measure [12]. With the per-
mision of the original authors, we provide our modified Elsner and
Charniak disentanglement code along with the Slack dataset.

3.4 Data Format
We publish our dataset in an XML format as shown in Figure 2,
produced as an output of a process called conversation disentangle-
ment. In the disentangled files, each message has <message conver-
sation_id> which is a markup to associate each message with it’s
corresponding conversation id, timestamp <ts> in Epoch format,
anonymized participant names <user>, and the content <text> of
the message.

4 DATA METRICS
In Table 1 we show the break down of number of conversations,
utterances, and participants for each of the 4 channels in our dataset.
We also compute and report a few additional measures on our
dataset that describe its basic characteristics: conversation length,
code snippets, and urls.

Conversation length is defined as the number of sentences in a
conversation. We computed this measure on the natural language
text in each document using the sentence tokenizer from NLTK [6].
Code snippet count is computed as the number of code snippets
per conversation, counting both inline and multiline code snip-
pets in a conversation. In Slack, inline code snippets are enclosed

3
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(a) Conversation length (b) Code Snippet count (c) Code Snippet length

Figure 3: Box Plots of Measures by Community

in single quotes, whereas multiline code snippets are enclosed in
triple quotes. Code snippet length is the number of non-whitespace
characters in each code snippet.

The results are displayed as boxplots in Figure 3. As shown in
Figure 3a, the median conversation lengths for each of the commu-
nities are similar, ranging from 5-7 sentences. Figure 3b indicates
that elmlang#beginners can have larger number of code snippets
than the other communities. The median code snippet count in
elmlang#beginners is 2, whereas the median code snippet count in
elmlang#general and clojurians#clojure is 1. The median code snip-
pet count for pythondev#help is zero, probably because sufficient
resources about coding in python is already available online. From
Figure 3c, we observe that both the median and the variation of
code snippet length for elmlang#beginners is larger than the rest of
the communities. Intuitively, this is because elmlang#beginners is
for novice programmers who frequently ask and answer more pro-
gramming related questions, such as errors and exceptions related
to specific code snippets etc.

5 LIMITATIONS AND EXTENSIONS
Our dataset originates from public Slack channels, focusing on
conversations that start with a question followed by a discussion
with one or more answers. Thus the content of our dataset, to some
extent, resemble with Q&A based forums such as Stack Overflow.
If others are interested in datasets that represent team dynamics
inside an organization, they would need to augment with private
conversations.

We selected the chat transcripts from Slack, which is one of
the most popular software developer chat communities. We chose
three active programming language communities (4 Slack channels)
for our dataset. There is a broad set of topics related to a partic-
ular programming language in each channel; however, if others
want broader topics represented in their datasets, they will need to
broaden the set.

We modified Elsner and Charniak’s disentanglement algorithm
to account for several features specific to Slack. The code of our
modified disentanglement algorithm may need to be adapated to
work well on other chat platforms or developer communications.
Any changes in disentangled conversation could be handled manu-
ally by post processing or by further automation adaptation.

6 RESEARCH OPPORTUNITIES
In our previous study [8], we found that Q&A chats in Slack pro-
vide the same information as can be found in Q&A posts on Stack

Overflow. Over the years, researchers have mined the knowledge
embedded in Q&A forums, such as Stack Overflow, for supporting
IDE recommendation [4, 24, 26], learning and recommendation of
APIs [10, 25, 37], automatic generation of comments for source code
[27, 38], and in building thesauri and knowledge graphs of software-
specific terms and commonly-used terms in software engineering
[11, 34]. Presence of similar information in Slack Q&A chats suggest
that it can serve as a resource for several mining-based software
engineering tools.

Developers use Slack to share opinions on best practices, APIs,
or tools (e.g., API X has better design or usability than API Y ).
Q&A forums such as Stack Overflow explicitly forbids posting of
questions which asks for opinions or recommendations. However,
it is clear that receiving opinions is valuable to software developers.
The availability of opinions or recommendations in chat may lead
to new mining opportunities for software tools.

We noticed that, along with few links to Stack Overflow and
GitHub Gists, there were sporadic links to other sites in our dataset.
We believe that embedded links on Slack are used in many different
contexts, and as such can be mined to provide more context to other
data sources (tutorials, Q&A forums), and thus improve or augment
developer learning resources.

Due to its increased popularity, Slack is becoming a popular me-
dia to disseminate information between software engineers across
the globe. Lin et al. [17] have shown that developers use Slack to
discover news/information on technological trends. Our dataset
could be studied to identify ‘hot’ topics of discussion in a program-
ming community [29], and understand common challenges and
misconceptions among developers [5]. The results of these studies
would provide guidance to future research in developing software
support and maintenance tools.

The widespread use of chat communication platforms such as
Slack provides a thriving opportunity to build new conversation-
based tools and integrations, such as chat-bots. Bots have become
increasingly prominent due to the ease of their integration with
communication tools and accessibility to various APIs and data
sources [16]. Sharing chat datasets such as ours could potentially
facilitate further research on training and designing chatbots for
software development activities [21].
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