
A Systematic Survey of Just-In-Time Software Defect
Prediction

YUNHUA ZHAO, CUNY Graduate Center, USA
KOSTADIN DAMEVSKI, Virginia Commonwealth University, USA
HUI CHEN∗†, CUNY Brooklyn College, USA

Recent years have experienced sustained focus in research on Software Defect Prediction (SDP) that aims to
predict the likelihood of software defects. Moreover, with the increased interest in continuous deployment, a
variant of SDP called Just-in-Time Software Defect Prediction (JIT-SDP) is focusing on predicting whether
each incremental software change is defective. JIT-SDP is unique in that it consists of two interconnected data
streams, one consisting of the arrivals of software changes stemming from design and implementation, and
the other the (defective or clean) labels of software changes resulting from quality assurance processes.

We present a systematic survey of 67 JIT-SDP studies with the objective to help researchers advance
the state-of-the-art in JIT-SDP and practitioners become familiar with recent progress. We summarize best
practices in each phase of JIT-SDP workflow, carry out a meta-analysis of prior studies, and suggest future
research directions. Our meta-analysis of JIT-SDP studies indicates, among other findings, that the predictive
performance correlates with change defect ratio, suggesting that JIT-SDP is most performant in projects
that experience relatively high defect ratios. Future research directions for JIT-SDP include situating each
technique into its application domain, reliability-aware JIT-SDP, and user-centered JIT-SDP.

CCS Concepts: • Software and its engineering → Software defect analysis; Risk management; •
Computing methodologies→ Cross-validation; Learning settings; Learning paradigms.

Additional Key Words and Phrases: software defect prediction, release software defect prediction, just-in-
time software defect prediction, change-level software defect prediction, machine learning, searching-based
algorithms, software change metrics, change defect density

ACM Reference Format:
Yunhua Zhao, Kostadin Damevski, and Hui Chen. 2022. A Systematic Survey of Just-In-Time Software Defect
Prediction. ACM Comput. Surv. Vol, Num, Article 0 (2022), 36 pages. https://doi.org/xx.xxxx/xxyyzza.aabbcde

1 INTRODUCTION
Software Defect Prediction (SDP) aims to predict the likelihood of defects in software artifacts,
typically, in source code elements of different granularity (e.g., methods, classes, files, components).
SDP has long been a topic of interest among researchers and industry practitioners alike, since
knowing the predicted defect likelihood can help improve software quality and reduce its cost. For
∗The corresponding author
†Also with CUNY Graduate Center, Department of Computer Science.

Authors’ addresses: Yunhua Zhao, Department of Computer Science, CUNY Graduate Center, 365 5th Avenue, New York, NY,
USA, 10016, yzhao5@gradcenter.cuny.edu; Kostadin Damevski, Department of Computer Science, Virginia Commonwealth
University, 401 West Main Street, Richmond, VA, USA, 23284, damevski@acm.org; Hui Chen, Department of Computer &
Information Science, CUNY Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY, USA, 11210, huichen@acm.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0360-0300/2022/0-ART0 $15.00
https://doi.org/xx.xxxx/xxyyzza.aabbcde

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

https://doi.org/xx.xxxx/xxyyzza.aabbcde
https://doi.org/xx.xxxx/xxyyzza.aabbcde

0:2 Zhao, Damevski, and Chen

instance, developers can use SDP for prioritizing maintenance tasks, planning activities to reduce
technical debt, estimating cost and needed resources for project Quality Assurance (QA) efforts,
and improving the overall development process by understanding systemic factors that contribute
to defect occurrences.
Modern software development is collaborative and agile, with popular trends like continuous

delivery and continuous deployment that aim at building, fixing, and releasing software with greater
speed and frequency. As a result of this growing trend, recent years have witnessed activities in a
new sub-area of SDP, Just-in-Time Software Defect Prediction (JIT-SDP), which aims to predict the
defect likelihood of each software change. JIT-SDP has introduced significant new requirements
beyond ordinary SDP, e.g., streaming data [7, 68], label verification latency [7, 69], which make the
prior work in SDP inappropriate.

This article is a systematic literature survey of Just-In-Time Software Defect Prediction (JIT-SDP).
Our goal is a comprehensive overview of the state-of-the-art in JIT-SDP, including data sources
and data preparation, independent and dependent variables, modeling techniques, performance
evaluation, and a discussion of the trends and gaps in the literature. To our knowledge, this is the
first comprehensive survey specifically on JIT-SDP. More specifically, the objectives of this survey
are, 1) to help researchers gain a comprehensive understanding about typical concerns and current
techniques at different stages of JIT-SDP workflow that would allow researchers entering this field
to get up to speed quickly; 2) to help researchers identify gaps and opportunities for future studies
in this area; and 3) to benefit practitioners in selecting and tailoring JIT-SDP models to their QA
needs.
We identify prior surveys on SDP and list them in Table 1. These SDP surveys have focused

on a variety of aspects of the SDP problem, including the specific definition of the problem (e.g.,
predicting a probability or binary value), selected features, data granularity, training and test data
sets, model design and evaluation metrics. While some of the surveys mention JIT-SDP, they focus
only on the difference in data type (i.e., JIT-SDP uses software changes), but fail to provide coverage
of the more nuanced aspects of the problem. For instance, JIT-SDP introduces a label identification
latency stemming from the fact that it takes time for developers to identify defects, which, in turn,
changes certain past software changesets from clean to defect-inducing.

Table 1. Summary of Software-Defect Prediction Surveys

No. Authors Survey Coverage
Duration # of Articles Surveyed Survey Topic

SV1 Li et al. [41] 2000–2018 49 Unsupervised SDP
SV2 Li et al. [43] 2014–2017 70 Comprehensive
SV3 Hosseini et al. [26] 2002–2017 46 Cross-project SDP
SV4 Kamei and Shihab [31] 1992–2015 65 Comprehensive
SV5 Malhotra [46] 1995–2013 64 Within-project & cross-project SDP
SV6 Radjenović et al. [60] 1991–2011 106 Software metrics for SDP
SV7 Hall et al. [21] 2000–2010 208 Within-project & cross-project SDP
SV8 Catal et al. [8]1 1990–2009 68 Datasets, metrics, and models
SV9 Fenton and Neil [16]2 1971–1999 55 Defect, failure, quality, complexity,

metrics, and models
1Catal et al. [8] investigate 90 software defect/fault prediction papers in their survey, but only cite 68. We use
this as the number of papers studied in their survey.
2 Fenton and Neil [16] do not list explicitly the paper surveyed, and we only count the papers relevant to software
metrics, defects, faults, quality, and failures.

The specific objectives and contributions of this survey are the following.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:3

(1) understanding the scope of JIT-SDP research and the problems it tries to solve, in the broader
context of SDP.

(2) survey of the input data and the commonly used features for JIT-SDP, which are not only
helpful to build JIT-SDP models, but also aid understanding on the empirical relationship
between factors in software development and defect occurrences.

(3) explanation of model building techniques including machine learning (ML) techniques and
searching-based approaches for JIT-SDP. For instance, what machine learning techniques
have been leveraged thus far to improve JIT-SDP performance.

(4) evaluation strategies and criteria used in the existing JIT-SDPmodels, including their strengths
and limitations.

(5) synthesis and meta-analysis of the prior JIT-SDP studies including a discussion of open
questions and future directions.

We organize this survey as follows. Section 2 describes the methodology we used to conduct this
survey. In Section 3, we present JIT-SDP in detail and examine the problems in each step of the
entire workflow.
We synthesize the prior research and conduct a meta-analysis of the research in Section 4,

followed by a discussion of the future research directions in Section 5. Finally, we provide a brief
summary of this study in Section 6.

2 REVIEWMETHODOLOGY
Following Kitchenham et al. [38, 39], a systematic literature review process consists of planning
the review (including identifying the need for the review, specifying the research questions, and
developing a review protocol), conducting the review, and reporting the review. In the previous
section, we outline the need to conduct this review and list the review objectives. For our review
protocol, in this section we define the digital libraries that serve as sources for the literature search,
and describe the search queries and the review process used to determine whether to include or
exclude an article.
SDP has been a long standing research subject for nearly half a century, since the 1970s. There

are a number of existing systematic surveys of the literature. Considering this, we divide the review
methodology into two phases: 1) a meta survey on SDP, i.e., a tertiary review or a systematic
review of systematic reviews [37]; and 2) a focused survey of JIT-SDP. The meta survey serves
three purposes: 1) to justify the need for a focused survey on JIT-SDP; 2) to provide background
information for JIT-SDP, such as, clear definitions of defect and SDP; and 3) to determine the distinct
aspects of JIT-SDP to focus our survey on. For the meta survey, we identify and analyze 9 SDP
surveys (Table 1). As a result of the meta survey, we focus our discussion on characteristics unique
to JIT-SDP, while providing references to the existing SDP surveys for the common attributes (such
as, some of the evaluation criteria in Section 3.7). Below, we discuss the article selection process of
the focused survey on JIT-SDP. We provide a detailed description of the complete survey protocol,
including the methodology used for the meta survey, in the online supplement that accompanies
this article.

2.1 Identification of Research Articles for JIT-SDP Survey
We begin the literature search with a digital library keyword search. To reduce the chance that we
miss any significant prior studies, we complement the keyword search with a snowball process.

Exclusion and Inclusion Criteria. Highly-cited JIT-SDP articles, such as, Kamei et al. [32] and Kim
et al. [35] trace the first change-level defect prediction research to Mockus and Weiss, published in
2000 [49]. We conclude the keyword search in November 2021. As such, we consider peer-reviewed

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:4 Zhao, Damevski, and Chen

research articles written in English published in a journal or conference proceedings between 2000
and November 2021. We include only articles that study predictive modeling for JIT-SDP whose
prediction is on the level or sub-level of software changes; however, exclude non-peer reviewed
articles, posters, and abstract-only articles.

Digital Libraries. To locate existing SDP surveys and JIT-SDP studies, we search the following
popular digital libraries: 1) ACM – https://dl.acm.org; 2) IEEE Xplore – https://ieeexplore.ieee.org/;
3) ScienceDirect – https://www.sciencedirect.com/search/; 4) SpringerLink – https://link.springer.
com/; 5) Wiley – https://onlinelibrary.wiley.com/. These digital libraries archive and index leading
journals and conference proceedings in Software Engineering and related fields.

Digital Library Keyword Search. Researchers refer to JIT-SDP by different terms. Kamei et al. [32]
coined the term “Just-in-time” Software Quality Assurance for change-level defect prediction. Other
researchers, such as, Jiang et al. [29] refer to it as “change-level” defect prediction. Aside from
these, researchers and practitioners have used a range of terms to refer to the scenarios when
software exhibits undesired behavior or outputs. These terms include “defect”, “fault“, “bug”, “error”,
“failure”, and “exception”. These occur either in a “software” or in a “program”. Considering these, we
formulate our digital library search queries semantically as “((((fault OR defect OR bug OR
exception OR failure OR error) AND (prediction OR model))) OR ((fault OR defect
OR bug OR exception OR failure OR error) AND risk AND (assessment OR prediction
OR model))) AND (just-in-time OR change) AND (year >= 2000)”. With the queries, we
search the digital libraries for keyword matches appearing in the title, abstract, and metadata of
the article.

Literature Selection via 2-Pass Review. We combine all of the search results from the digital
libraries and remove duplicates and divide the set of articles among the authors of this survey to
evaluate whether to include or discard an article. The division ensures that we assign each article
to two of the three authors and each article goes through two reviews by the two assigned authors
(thus, the 2-pass review). Each author follows the following process. First, we remove any article
whose title clearly indicates that it is not relevant. Second, for the remaining articles, we evaluate
whether or not to include them by reading the abstract. Finally, we convene a meeting and resolve
the difference via a discussion.

Literature Snowballing. The digital library keyword search may not identify all of the relevant
studies. To alleviate this problem, we use the snowball method to discover new studies starting
with the identified articles from the previous step. We consider a variant of the snowball method
called the backward (or reverse) snowball where we examine the references of an identified article.
Empirical evidence suggests that the snowball method should be effective to locate “high quality
sources in obscure locations [20].” We apply the snowball method to the 55 JIT-SDP studies resulted
from the digital library keyword search and 2-pass review, examining all of the referenced articles,
removing duplicates, and selecting additional articles by reading the titles and abstracts.

Literature Identification Results. Table 2 provides a summary of the result of the above literature
identification process. The final result is 67 JIT-SDP articles. The full list of the articles and a brief
one-sentence summary of each is available in the online supplement.

3 JUST-IN-TIME SOFTWARE DEFECT PREDICTION
Fenton and Neil observe that “[d]efects, like quality, can be defined in many different ways but
are more commonly defined as deviations from specifications or expectations which might lead to
failures in operation [16].” A software failure is observable software misbehavior, however, a defect

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

https://dl.acm.org
https://ieeexplore.ieee.org/
https://www.sciencedirect.com/search/
https://link.springer.com/
https://link.springer.com/
https://onlinelibrary.wiley.com/

A Systematic Survey of Just-In-Time Software Defect Prediction 0:5

Table 2. JIT-SDP Literature Search Results

Digital Library &
Sources

Additional Constraint # of Articles

Library Search or Snowballing JIT-SDP after
2-Pass Review

ACM – 196

55
IEEE Xplore – 55
ScienceDirect Research articles 269
SpringerLink – 334
Wiley Computer Science 27

Snowballing On 55 JIT-SDP papers 2563 12

may not always lead to a failure. Software Defect Prediction (SDP) aims to predict the existence of
defects, colloquially called bugs in software artifacts, typically in the software source code.
This section summarizes the progress in Just-in-Time Software Defect Prediction (JIT-SDP)

described in the 67 studies we identified. To begin with, we discuss the motivation for JIT-SDP, in
contrast to ordinary SDP. Next, we provide an overview of the typical JIT-SDP workflow, focusing
on specific sub-problems that researchers have been concerned with. Throughout, we highlight the
existing approaches for these problems in the JIT-SDP research literature.

3.1 Definition and Overview of JIT-SDP
The majority of prior research has assumed that SDP closely follows the project release schedule, i.e.,
leveraging snapshots and defects of the software from its historical releases to predict defect-related
variables, e.g., defect density, defect severity on software modules of varying granularity (packages,
files, classes, methods). We refer to this type of SDP as Release SDP. A recent alternative to Release
SDP is to leverage software change histories to predict potential defect-inducing software changes
as soon as they are committed into the repository (“just-in-time”), i.e., JIT-SDP. Developers typically
record all software changes as commits to a Source Code Management (SCM) system or a Version
Control System (VCS). Kamei at al. [32] argue that JIT-SDP has several benefits. Software changesets
are typically smaller and each has a descriptive log message. Therefore, when it comes to carry out
QA activities (e.g., code review) for changesets predicted as defect inducing, it also likely requires
less effort from the developers. In addition, since each change has a single committer, it is usually
easier to locate expertise to conduct the QA activities for the change. Finally, developers may
quickly examine their own potentially defect-inducing software changes as they make commits
to the SCM, when a JIT-SDP model prompts them to do so. In this scenario, it is likely that the
developers have fresh memory about the recent changes, which eases their cognitive load. Due to
these benefits, JIT-SDP is increasingly being emphasized by researchers in recent years.
Figure 1 provides an overview of the overall JIT-SDP workflow. The workflow begins with

identifying and assembling the Data Sources that drive the model building process. The data sources
include software code changes, issue reports, commit messages, and others. Section 3.2 provides a
detailed discussion about the data sources. Next, the Data Acquisition step is to convert the data into
“raw” feature vectors, e.g., to compute software change metrics from the changesets; more details
about this are in Section 3.3. From the “raw” feature vectors, we prepare the feature vectors that are
ready for building the model. We commonly refer to this step as preprocessing, discussed further
in Section 3.5. The next two steps are model building and model evaluation, which are discussed
in Sections 3.6 and 3.7. It is important to note that for supervised JIT-SDP models, we must have
changeset data that is labeled as defect-inducing or clean for training. Unsupervised models do
not need labeled data for training. However, for both supervised and unsupervised models, labeled

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:6 Zhao, Damevski, and Chen

changeset data are necessary for model evaluation. To assign a label of defect-inducing or clean to
a software change, we begin with a known fix change, a change that fixes a defect. We can identify
fix changes by keywords search in SCM commit messages, or by using an Issue Tracking System
(ITS) [32, 75]. From the fix change, we search the history of the changes to identify the earliest
change that introduces the defect, which is typically via invoking an algorithm called SZZ [36, 67].
There are two variants of SZZ, ITS SZZ and ad hoc SZZ (also called, approximate SZZ) depending
on whether we identify fix changes using ITS or using keyword search [32, 75]. We refer to change
labelings via these two variants of SZZ as ITS change labeling and ad hoc change labeling. Section 3.4
provides an overview of SZZ and its use for the change labeling process in JIT-SDP.

Issue
Report

Code
Change

Commit
Message

Issue
Discussion

Static
Analysis
Warning

. . .

Data
Acquisition

Data
Preparation

Model
Building

Model
Evaluation

(ITS) Change
Labeling

(Ad hoc) Change
LabelingData Sources

Fig. 1. Overview of JIT-SDP workflow

3.2 Data Sources
What types of SCM data are useful for JIT-SDP? Software change history data is the primary data
source for JIT-SDP. However, several other types of data are also useful, including commit log
messages, issue reports, issue discussions, change/modification requests, code reviews, and static
program analysis warning messages.

3.2.1 Software Change History and Changeset. A software change (i.e., changeset) is the difference
between two revisions of the software in a SCM (e.g., git). Upon completing a modification to
a software project, a developer records the change to a SCM using the commit command, which
results in a creation of a new revision number in the SCM. We compute a software change as
the difference of two successive revisions in the SCM, e.g., the output of the git diff command.
Figure 2 is an example of a software change computed by the git diff command containing two
hunks. Each of the hunks corresponds to a part of a file in the commit, consisting of one or more
nearby modifications, i.e., lines of code added or deleted.

Discussion. There are complexities extracting software change data sets that impact the quality
of the data. First, there have been a variety of diff algorithms to compute differences between
two files. For instance, git defines four diff algorithms, i.e., myers, minimal, patience, and
histogram. Nugroho et al. [53] observe that there is a considerable difference among the results
extracted using different diff algorithms. The difference is at the numbers of changed lines and
the locations of change lines. Via a manual analysis of multiple Java projects, they observe that
the histogram algorithm produces more accurate diffs and assert that the improvement of diff
quality can lead to more accurate computation of code churn metrics and identification of defect
inducing changes. However, whether and how the accuracy of diffs impact performance of JIT-
SDP is unclear as the choice of the diff algorithm is rarely in the discussion of prior JIT-SDP
studies.

Second, SCMs have varying capabilities to maintain revisions. In earlier SCMs like CVS, revision
numbers are per file. In more recent SCMs, including both git and subversion, revision numbers

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:7

1 diff --git a/parallel/help.cpp b/parallel/help.cpp
2 index fba9e3b ..59 d1e9f 100644
3 --- a/parallel/help.cpp
4 +++ b/parallel/help.cpp
5 @@ -4,7 +4,8 @@
6 void print_help(const char *progname) {
7 fprintf(stderr , "Usage: %s <NUMBER > <NUM_WORKERS >"
8 "\ nNUMBER: an integer greater than 1."
9 - "\ nNUM_WORKERS: the number of worker threads (must be greater 0).\n",
10 + "\ nNUM_WORKERS: the number of worker threads (must be greater 0).\n"
11 + "\nExit with 0 if perfect numbers , not otherwise .\n",
12 progname);
13 }
14
15 diff --git a/parallel/perfectnum.cpp b/parallel/perfectnum.cpp
16 index a10d357 ..26 fcbd8 100644
17 --- a/parallel/perfectnum.cpp
18 +++ b/parallel/perfectnum.cpp
19 @@ -1,4 +1,5 @@
20 #include <cstdio >
21 +# include <pthread.h>
22

Fig. 2. A software change evaluated as a diff of two successive revisions of a toy C++ application with
command, git diff --diff-algorithm=histogram --patch db44335 b8dff778. The command is to
compute a diff for the software change𝐶𝑑𝑏44335 as𝐶𝑑𝑏44335 = diff(𝑐𝑑𝑏44335, 𝑐𝑏8𝑑𝑓 𝑓 78) where 𝑐𝑏8𝑑𝑓 𝑓 78 is the
parent commit and 𝑐𝑑𝑏44335 the child. Here, db44335 and b8dff78 are “short hashes” that identify the two
commits in the change history in the git repository. The diff algorithm is the histogram algorithm and the
format of the diff is the patch format. The change contains two hunks, each of which corresponds to the
modification to a file in the workset. Line 1 marks the beginning of the 1st hunk for the modification to file
help.cpp. Each hunk defines a succession of lines modified via lines added or removed marked by the “+”
and “-” signs. Line 15 marks the beginning of the 2nd hunk for perfectnum.cpp.

are per workset where a workset is a list of files that a developer changes together. Some software
projects transition between different repositories (e.g., CVS to git). However, it is unclear whether
these changesets are comparable and how they impact the interpretation of the results.

Third, git defines a staging area that stores information about what will go into the next revision,
which allows a developer to control which modifications will be in the next revision; subversion
has no such capability and includes all modifications in the next revision. This difference may have
an impact on the likelihood of commits that reflect an intentional, coherent change to the software.
Fourth, there have been two versioning models, i.e., the lock-modify-unlock and copy-modify-

merge models, and the later model allows concurrent modifications to the same file. SCMs like git
and subversion adopt the copy-modify-merge model, and as a result, there are revisions that are
only the merges of concurrent modifications. As such, a merge revision in the SCM has two parent
revisions.

Fifth, distributed SCMs like git record all revisions locally until the developer pushes the local
revisions to the central repository. As a result, anonymous development branches are common in
git repositories. In addition, with local revisions, the recorded commit time is the local time of the
committer. This can cause a problem if the committer has a misconfigured clock; this may be rare
but it does occur. A more common problem is that the commits from two or more branches can
interleave in commit time. As a result, we may deduce an incorrect order of successive changes
and an incorrect parent commit if we simply use the chronological order to determine the parent
and child commits to compute a software change. Trautsch et al. [75] observe this phenomenon
and build a Directed Acyclic Graph of commits to “gain improvements with regard to changes
on different branches.” However, they do not provide a comparison to the case of identifying

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:8 Zhao, Damevski, and Chen

parent commits via commit time. Tan et al. [69], Cabral et al. [7], and Tabassum et al. [68] study
online JIT-SDP and only leverage the chronological order of software changes. How we should best
determine the order of software changes and how the order impacts on defect prediction remains
an open research question.

3.2.2 Commit Message. Most SCMs require that developers enter a commit log message to describe
concisely the nature of the committed change. Commit messages are useful to JIT-SDP in two ways.
First, they are useful to label a change as defect-inducing or clean, which we discuss in Section 3.4;
most researchers use commit messages in this context. Second, there are several studies that use
features extracted from the commit messages as independent variables (or features) for defect
prediction [3, 24, 25, 35].

Discussion. It is uncommon for JIT-SDP research to use commit messages as sources of indepen-
dent variables (i.e., features), however, this may be worth further exploration. Barnett et al. [3]
propose a metric that measures the level of detail in commit messages. They demonstrate that
adding the metric can significantly improve AUC-ROC (see Section 3.7 for the definition of AUC-
ROC) and explanatory power of a JIT-SDP model with change-based metrics. Hoang et al. [24]
also observe that their deep neural network JIT-SDP model has improved AUC-ROC when adding
commit messages to the features. In addition, commit messages may also be useful to reduce noise
in the software change data. For instance, Herzig et al. [23] investigate tangled software changes
where developers commit unrelated or loosely related code changes in a single commit transaction.
They use commit messages to identify potential tangled changes and show that untangling tangled
changes can result in more accurate regression-based defect prediction models.

3.2.3 ITS Data. Similar to commit messages, data in a project’s ITS can help establish links between
changesets and issues that report defects; this link is crucial to label a change as defect-inducing or
clean, as discussed in Section 3.4. ITS data can also be used to construct features for JIT-SDP, albeit
studies that do this are infrequent.

Discussion. Using ITS, developers describe and discuss change requests, comment on the code for
code review, and propose future improvements. Although uncommon, ITS data, such as, the issue
reports, discussions, change requests, can be useful to JIT-SDP, in particular for predicting on future
changes addressing the reported issues. Tourani and Adams [74] and Tessema and Abebe [72]
appear to be the only studies that investigate the use of some of these ITS data as features for
JIT-SDP. Both show that their JIT-SDP models built using the features extracted from this type of
data in addition to software change metrics outperform those using the software change metrics
alone. There are two challenges utilizing the types of data as features. First, many changesets may
not have a corresponding issue report in the ITS. Second, it requires to establish links between ITS
data and changesets in the software repository. Noticing the difficulty of this requirement, Paixao
et al. [54] curate a data set of code reviews and link them to revisions of source code. Data sets like
this may help a broader adoption and further exploration of the ITS data in defect prediction.

3.2.4 Static Program Analysis Warning Messages. Warning messages produced by static program
analysis tools (e.g., lint), although rarely, have also been used as a data source of information for
building JIT-SDP models.

Discussion. Trautsch et al. [75] derive from the warning messages a warning density feature,
i.e., the ratio of the number of static analysis warnings to the product size. Their results show that
features extracted from the static program analysis warning messages are among the top 10 most
important features for defect prediction. Static program analysis warning messages can have a
value for defect prediction. However, a caveat is that a full static program analysis takes significant

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:9

computational time to complete on a large code base [61] and for each changeset. To use this type
of data broadly for JIT-SDP, we need to investigate how we can reduce the computational costs,
perhaps by performing only partial, lightweight static analysis.

Table 3. Manually Designed Features for JIT-SDP

No. Metrics or Features Description Example Study
1 Diffusion how a changes is spread out, e.g., the number of files touched Kamei et al. [32]
2 Purpose the purposes of a change, e.g., is it a fix? Kamei et al. [32]
3 Size the magnitude of the change like the size of the change Kamei et al. [32]
4 History the history of the change, e.g., previous changes to the files touched Kamei et al. [32]
5 Experience developers’ experience, e.g., the number of changes the developer made Kamei et al. [32]
6 Code Churn the size of a code change Liu et al. [45]
7 Change Context the lines of code surround the changed lines in a software change Kondo et al. [40]
8 Indentation the number of indentations of a change Kondo et al. [40]
9 File-level Process

Metrics
file-level change characteristics Pascarella et al. [55]

10 Commit Message the features characterize commit messages, e.g., the bag-of-words fea-
tures, the message length, and the message content features

Tan et al. [69], Bar-
nett et al. [3]

11 ITS Features human discussion like code reviews, issue reports, change requests, and
discussions

Tourani and
Adams [74]

12 Static Analysis static program analysis warning messages, e.g., message density Trautsch et al. [75]

3.3 Feature Acquisition and Processing
Upon identifying the necessary and useful data sources, the next step is to transform the data into
a format suitable for use by a JIT-SDP model. The primary questions here are as follows. What
information do we need to extract from the data? In other words, what are the independent variables
that we use to build a JIT-SDP model? In addition, how do we extract them from the several types of
input data discussed in the previous section?
There are two approaches for these, feature engineering and feature learning. The former is to

design features manually. The later is to algorithmically learn feature representations from the
data, which is an emerging approach due to the recent advancements in deep learning, e.g., Deep
Neural Networks (DNN). Table 3 is a summary of the categories of metrics proposed for JIT-SDP.
The detailed list of metrics in each of the categories is in the online supplement.

3.3.1 Software Change Metrics. Software change metrics are those directly computed from the
software code of the changes, e.g., the diffs. Rows 1 to 9 in Table 3 are the categories of software
change metrics designed and evaluated in JIT-SDP studies. Table 4 lists the metrics used by Kamei
et al. [32] plus the code churn metrics by Liu et al. [45] that JIT-SDP studies frequently cite.

3.3.2 Commit Message Features. Since commit messages are written as natural language text,
features to encode them are usually borrowed from the natural language processing literature.
These features include bag-of-words, the message length, and the message content features [3, 69].

3.3.3 ITS Data Features. ITS contains two types of data, natural language text, such as, issue
reports, issue discussions, and code reviews and meta-data, such as, the type of issues and the
issue creation time. Prior JIT-SDP studies design and investigate features mostly capturing the
characteristics of the ITS data other than actual textual contents [72, 74].

3.3.4 Static Program Analysis Metrics. Trautsch et al. [75] collect static program analysis warning
messages using two popular tools, PMD and OpenStaticAnalyzer. From these warning messages,
aimed at JIT-SDP, they derive several warning density metrics.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:10 Zhao, Damevski, and Chen

Table 4. Example Software Change Metrics [32, 45]

Category Metric Description Category Metric Description
Diffusion NS Number (#) of modified subsystems Purpose FIX Whether the change is a defect fix

ND # of modified directories History NDEV # of developers who modified the files
NF # of modified files NUC # of unique changes to modified files
Entropy Distribution of modified code across

each file
AGE Average time interval between the last

and current change
Size LA Lines of code (LOC) added Experience EXP Developer experience

LD LOC deleted REXP Recent developer experience
LT LOC in a file before the change SEXP Developer experience on a sub-system
Churn Size of the change, i.e., LA + LD

3.3.5 Feature Representations. We refer to the type of features learned automatically via an algo-
rithm as feature representations. Early JIT-SDP studies treat commit message and software code
change as text and use the output of spam filters as features [3, 51]. More recently, deep learning,
i.e., deep neural networks, has become the technique of choice to learn feature representations
for JIT-SDP. For this, there are two general approaches. One is to directly compute from software
changes (e.g., tokenized diffs) the “end-to-end” feature representation [24]. Examples of this
approach are in Hoang et al. [24, 25]. The other approach is to take human designed features as
inputs to learn feature representations, which Yang et al. [83] refer to as the “expressive features”.
More recent examples of this approach are in Zhao et al. [92] and Xu et al. [78].

3.4 Defect-Inducing Label Assignment
JIT-SDP’s aim is to detect whether a change is defect inducing or not. To accomplish this, most
approaches use supervised or unsupervised machine learning. A precondition to building and
evaluating a supervised JIT-SDP model is the availability of a set of labeled software changes,
the label of each of which is either defect-inducing or clean. While unsupervised JIT-SDP models
do not require a labeled set of software changes to build the model, which is a strong advantage
over supervised techniques [17, 28, 45, 80, 86], they also require access to a labeled set of software
changes in order to be adequately evaluated. There is an intricacy of labeling changes as defect-
inducing or clean. For instance, it is straight forward to label a software module as defective because
the module is defective when the module fails a test. However, the test does not reveal to us which
software change introduces the defect in the module that leads to the test failure. The primary
question becomes, how do we assign the defect-inducing (i.e., defective) or clean label to a software
change?

To label a software change as defect-inducing or clean, we generally follow a two-step approach
to examine the change history of the software project [35], (1) to identify a defect-fixing change;
and (2) to locate the prior change that introduced the defect in Step 1, i.e., the defect-inducing
change.
For Step 1, to identify a defect-fixing change, we can examine either commit log messages , or

issue reports in ITS, or both. There are two commonly used heuristics. One is to search for a natural
language pattern in the text, e.g., “fixes”, “fixed”, “resolves”, “resolved”, “defect”, and “bug“ [32]. The
other is to look for references to issue reports, e.g., “#123abc” [47].

For Step 2, to locate the corresponding defect-inducing change, we search backward in the change
history to find the changeset that introduced the defect. Conceptually, this is possible because the
current change fixes a defect, therefore the added lines are the fix and the removed lines contain
the defect. To locate the defect-inducing changeset, we need to locate in which change the removed

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:11

lines first appear in the change history, i.e., as part of the added lines in a prior change. This change
is the one that induces the defect that the defect-fixing change resolves.
Following the above conceptual framework, Śliwerski et al. [67] propose an algorithm to auto-

matically identify defect-inducting changes, based on defect-fixing changes. The algorithm is now
known as SZZ, named after the first initials of the three inventors Śliwerski, Zimmermann, and
Zeller [67]. The SZZ algorithm scales up the labeling of software changes and the use of SZZ in
JIT-SDP research is ubiquitous.

Discussion. Investigations of the accuracy of this automated software change labeling have
shown that it may not always be easy to identify a defect-fixing change (i.e., Step 1) [30, 35, 75]
and it can also be difficult to locate the corresponding defect-inducing change (i.e., Step 2) [36, 52].
There have been several implementations (or variants) of SZZ with the aim of addressing some
of these issues in Step 2. The questions are: 1) how should we identify defect-fixing changes; 2)
which implementation of SZZ should we use; and 3) how do these choices impact JIT-SDP results?
Trautsch et al. [75] differentiate “ITS SZZ” from “Ad Hoc SZZ”, where for the former they identify
defect-fixing changes using explicit links in ITS and SCM, while for the later they use heuristics.
They show that ITS SZZ offers an advantage in predictive performance. However, explicit links
between ITS and SCM are not always available [32]. Quach et al. [59] discuss their choice of the SZZ
implementations and give their preference to MA-SZZ [12]. Fan et al. [15] investigate the impact
of the mislabeled changes by SZZ and assert that RA-SZZ [52], an extension to MA-SZZ is most
accurate [15]. However, Rosa et al.’s recent investigation on SZZ implementations does not yield a
clear support for these exact preferences [64]. Some researchers still suggest manual vetting of SZZ
results to ensure highest quality data is used to construct the JIT-SDP model [15, 59]. However, this
is time-consuming and difficult to do for developers that are unfamiliar with a particular software
project.

3.5 Data Transformation
The input data for building JIT-SDP models is typically a vector, consisting of the values of the
features for a specific changeset. The vector is the result of the steps described in Section 3.3.
The collection of vectors for a number of changesets forms a matrix. In most cases, the matrix
data, e.g., software metrics of changesets, requires additional transformations prior to building
a JIT-SDP model. Based on such a matrix, we divide the transformation techniques into two
categories, column-based and row-based [26]. A column is in effect the values of a feature for all of
the software changes while a row represents the “raw” feature values of a software change. The
primary questions are two: How do we transform each column of the “raw” feature matrix and why do
we need this column-based processing? How do we select or transform the changesets represented by the
feature “matrix” (i.e., the rows), and why and when do we need to perform the row-based processing?

3.5.1 Column-based Processing. Building a JIT-SDP model is in part to automatically discover
regularities in the software change data that are predictive of whether a future change is defect
inducing. JIT-SDP models encode the regularities in a set of model parameters. An important
concern is whether we can uniquely determine the model parameters from the input data, either
theoretically or numerically. This is called the parameter identifiability problem [62], which can be
alleviated with column-based processing.

Dealing with Skew. Most features of the software change data are highly skewed, e.g., some
variables vary between 0 and 1 while the others are several orders of magnitude higher; many
features are not normally distributed. Most statistical and machine learning algorithms expect
that the values of independent variables are standardized, e.g., the manual of the popular machine

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:12 Zhao, Damevski, and Chen

learning library scikit-learn [56] states, “ [s]tandardization of data sets is a common requirement
for many machine learning estimators implemented in scikit-learn; they might behave badly if
the individual features do not more or less look like standard normally distributed data: Gaussian
with zero mean and unit variance.” There are three methods dealing with the data skews in the
JIT-SDP studies, and we discuss them as follows.
The most popular method in the JIT-SDP studies to deal with this standardization problem is

to apply a logarithmic transformation to the software metrics whose values are numeric [11, 14,
15, 28, 30, 42, 49, 74, 80, 91]. For instance, several studies apply the logarithmic function ln(𝑥 + 1)
to transform numeric variable 𝑥 [14, 15, 30, 80]. An implied assumption here is that the software
metrics take non-negative values, but some are less than 1. The logarithmic function ln(𝑥 + 1)
ensures the transformed features are positive for all of the software metrics. Another method is to
apply a z-score function to the variables [40, 82, 93, 94]. The z-score function is 𝑧 (𝑥) = (𝑥 − 𝜇)/𝜎 ,
where 𝜇 is the sample mean of the variable and 𝜎 is the sample standard deviation of the variable.
Similar to the z-score method but involving simpler computation is the max-min method that
computes the normalized feature value as 𝑧 (𝑥𝑖 𝑗) = (𝑥𝑖 𝑗 −min(𝑥 𝑗))/(max(𝑥 𝑗) −min(𝑥 𝑗)), where
𝑥𝑖 𝑗 is the value of feature 𝑗 of software change 𝑖 , 𝑥 𝑗 represents column 𝑗 of the feature matrix, and
𝑥 𝑗 = (𝑥1, 𝑗 , 𝑥2, 𝑗 , . . . , 𝑥𝑁,𝑗), where 𝑁 is the training data set size. For instance, Yang et al. [83] use this
method in their study.

Dealing with Collinearity and Multicollinearity. Collinearity means that two features correlate
with each other while multicollinearity is when a feature correlates with a combination of multiple
features. Correlated features, such as correlated software metrics, can introduce two problems
in JIT-SDP. First, numerical non-uniqueness can occur to a Logistic Regression model due to the
collinearity of the features [16, 62], where numerical non-uniqueness is the inability to determine a
unique set of model parameters. Second, correlated features can also lead to misinterpretation of
effects of individual features on predicting defect-inducing software changes [15, 70]. Because of
these, it is necessary to eliminate correlated or multi-correlated variables. A typical procedure is to
use the combinations of correlation analysis, independence analysis, and redundancy analysis as
exhibited by prior researches [14, 15, 32].

Discussion. De-skewing and dealing with collinearity and multicollinearity are two necessary
steps. There are no strong evidences which de-skewing method discussed in the above is superior.
However, as cautioned by several studies, we should de-skew the variables before we address the
collinearity and multicollinearity problems [14, 15, 30]. There is a practical consideration when
we address the collinearity and multicollinearity problems, such as, if two variables are correlated,
which of these two should we remove [15, 18, 30, 32]? One factor to consider is that we should
keep the variable that helps ease model interpretation following prior studies [15, 18, 30, 32]. For
instance, Kamei et al. [30] and Fukushima et al. [18] find in their studies that variables NF and ND
are highly correlated and remove ND since prior studies have examined the relationship of NF and
software defects.

3.5.2 Row-based Processing and Class Imbalance. Row-based processing aims to filter software
changes in order to improve the generality or predictive performance of JIT-SDP models. One
important problem typically addressed via row-based processing is the class imbalance problem.

Dealing with Class Imbalance. Software change data are often class imbalanced. In particular,
the difference between the number of defect-inducing changesets and that of clean changesets
can be significant for some software projects. For instance, the ratios of the clean changes to the
defect-inducing changes of the 6 open-source projects that Kamei et al. [32] select for evaluating
their JIT-SDP models range from 1.7 : 1 to 18.1 : 1 as shown in Table 5. Without transformation,

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:13

most machine learning algorithms learn the traits in the majority class (i.e., clean) at the expense
of learning the traits in the minority class (i.e., defective). Solutions to address this problem are
to resample the original data set, typically in one of the three categories, 1) undersampling the
majority class, 2) oversampling the minority class, or 3) a combination of the two. The objective
is to have balanced classes, each of which has an identical number of software changes. Tan et
al. [69] further divide the oversampling and undersampling class-balancing strategies into four
methods, namely, Simple Duplicate, Synthetic Minority Over-sampling Technique (SMOTE), Spread
Subsample, and Bootstrapping with/without Replacements. It is important to note that for properly
assessing the generality of a predictive model, we ought not to apply these technique to balance
the validation or test data set.

Table 5. Characteristics of Changeset Data of Selected Projects [32]

Project # of
Changes

Average LOC of
Modified Files

Average LOC
of Changes

of Developers
Per File

Clean
(𝑁𝑐)

Defect
Inducing (𝑁𝑑)

𝑁𝑐 : 𝑁𝑑

Bugzilla 4620 389.8 37.5 8.4 2924 1696 1.7 : 1
Columba 4455 125.0 149.4 1.6 3094 1361 2.3 : 1
JDT 35386 260.1 71.4 4.0 30297 5089 6.0 : 1
Mozilla 98275 360.2 106.5 6.4 93126 5149 18.1 : 1
Platform 64250 231.6 72.2 2.8 54798 9452 5.8 : 1
Postgres 20431 563.0 101.3 4.0 15312 5119 3.0 : 1

Discussion. The prior JIT-SDP studies adopt more frequently the undersampling and the SMOTE
approaches than the others. For instance, Kamei et al. [32] use an undersampling approach in their
study, in effect Spread Subsample with target class ratio as 1 : 1. Several studies follow Kamei et
al. and use the identical approach [15, 27, 42, 74, 82, 86, 91]. Catolino et al. [9], Trautsch et al. [75],
and Zhu et al. [94] choose SMOTE in their studies.

Huang et al. [28]’s experimental results show that Kamei et al. [32]’s approach of undersampling
of the majority class always outperforms SMOTE, however, without sharing any experimental data
on what performance metrics are in use. Zhu et al.[94] argue that the simple duplicate method
is prone to over-fitting and can cause numerical stability problem; however, they do not provide
any quantitative evidence. Duan et al. [14] also investigate both oversampling and undersampling
approaches, comparing Kamei et al. [32]’s undersampling and SMOTE approaches over several
performance metrics, and the results are inconclusive whether undersampling or oversampling is
superior. For instance, their evaluation results suggest for most cases in their study undersampling
contributes to higher AUC and F1 scores of some evaluated software projects while oversampling
yields overall higher average AUC [14]. Although Tan et al. use the 4 bootstrap methods, i.e.,
Simple Duplicate, SMOTE, Spread Subsample, and Bootstrapping with/without Replacements,
they use these data balancing strategies for model selection without comparing the 4 balancing
strategies [69]. Therefore, researchers remain inconclusive on the optimal choice of data balancing
strategies for JIT-SDP models.

Finally, there is a choice of not to balance the data. Instead, we address the problem via the design
of a predictive model. When a JIT-SDP model is to minimize a loss function or to maximize an
objective function, we can assign a larger class weight to the minority class than do to the majority
class [92]. An ensemble model, such as, an ensemble of classifiers can as a whole use all of the
data while each of the classifier uses a balanced subset of the whole data set [82, 95]. In addition,
we should also be cautious about balancing the data when the interpretation of the model is our
primary concern since the balanced data may change the interpretation of the model, such as, shift

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:14 Zhao, Damevski, and Chen

the ranking of the most important metrics [44]. For instance, because of this, Lin et al. [44] opt not
to use any balancing techniques.

3.6 Modeling
There are several key decisions we ought to make in JIT-SDP Modeling. First, what are the dependent
variables? The choices of dependent variables give rise to two related defect prediction models,
defect prediction and effort-aware prediction. Second, what type of algorithms are we using? The
options are usually machine learning or searching-based models. Searching-based JIT-SDP models
are based on heuristics, some of them are unsupervised non-learning algorithms and do not require
labeled data to learn. Most JIT-SDP models are supervised machine learning models. For the
supervised models we must have changesets with defect-inducing or clean labels to draw training
instances. We must also consider, what are the learning settings, i.e., under what setting do we learn to
predict defects using a machine learning algorithm?Most prior JIT-SDP models are in batch learning
setting. In batch learning, there are no requirements on the order of the training instances when we
train the model by feeding the instances to it. Some argue that batch learning is not realistic and opt
for an online learning setting [7, 68]. In online learning, there is a presumed order of the training
and testing instances, typically, the order is the arriving order of the instances in the SCM. Next,
what is the prediction setting? There are typically two prediction settings, within- and cross-project
predictions. JIT-SDP are for aiding software quality assurance, and as such, we ought to consider
the software development process and the characteristics of the data originated from the process.
In Section 3.6.1, we discuss JIT-SDP models for defect prediction, in Section 3.6.2 effort-aware

models, and in Section 3.6.3 cross-project models. We then discuss how we address some character-
istics of software development process and the software data in Section 3.6.4. Finally, we discuss
our observation on the tug of war of the simple and complex JIT-SDP models in Section 3.6.5.

3.6.1 Defect Prediction. JIT-SDP is typically formulated as predicting defect proneness or defect
inducing at the granularity of software changes.

Modeling Technique. The most common model choices are supervised machine learning tech-
niques. There have been several investigations of unsupervised models [45, 86], however, the
predictive performance of these models are not competitive. Pursuing the best performing mod-
els, JIT-SDP studies examine a variety of techniques from standalone to ensemble learners. The
standalone learners include Logistic Regression [32, 49], Naive Bayes [29], Support Vector Ma-
chine [2, 35], Decision Tree [71], and Neural Networks [83] while the ensemble learners span from
the ensemble of a single type of base learner, such as, Random Forest [18] to the multi-type and
multi-layer ensembles [87]. Our analysis (detailed in the online supplement) shows that Logistic
Regression, Tree-based models (including Random Forest, C4.5 Decision Tree and ADTree) and
ensemble models (including Random Forest, XGBoost, and others) are more popular modeling
techniques and the use of neural network-based models (including deep neural networks) is on the
rise. Section 4.2 provides an analysis of model performance.

Prediction Granularity. JIT-SDP models are to detect defects primarily on the level of software
changeset. For instance, in the context of modern SCMs like git, we predict which commit is
detect-inducing. Some of the prior works also use changesets from legacy SCMs like CVS and the
prediction target are often on logical change transactions, i.e., clusters of commits that share some
commonality within a time window [32]. There are several studies that predict defects on finer
granularity, such as, scoring files [55, 75], classes in the files [1], or lines added in a changeset [57, 79].
These works show that defect prediction on finer granularity can potentially further reduce quality
assurance effort than that on changeset-level granularity.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:15

3.6.2 Effort-Aware Prediction. The effort required for developers to review the predicted defect-
inducing changes, i.e., the QA effort, is an important design consideration.

Table 6. List of Effort-Aware Prediction Models

Model Research Change Score QA Sorting Order

DEJIT Yang et al. [85] 𝑌 (𝑐)/Churn(c) descending (↓)
EATT Li et al. [42], Zhang et al. [91]

∑3
𝑖=1 𝑝𝑖 (𝑐)/Churn(c) descending (↓)

MULTI Chen et al. [11] 𝑃 (𝑐) and Churn(𝑐) optimization & selection
CCUM Liu et al. [45] 1/Churn(𝑐) descending (↓)
OneWay Fu and Menzies [17] LT(𝑐) , AGE(𝑐) , . . . ascending (↑)
CBS+ Huang et al. [28] 𝑃 (𝑐)/LT(𝑐) descending (↓)
CBS Huang et al. [27] LT(𝑐) descending (↓)
TLEL Yang et al. [82]

∑𝑁
𝑖=1 𝑏𝑖 (𝑐)/LT(𝑐) descending (↓)

LT, AGE Yang et al. [86] LT(c) or AGE(𝑐) ascending (↑)
Deeper Yang et al. [83] 𝑃 (𝑐) descending (↓)
EALR Kamei et al. [32] 𝑌 (𝑐)/Churn(c) descending (↓)

𝑝𝑖 (𝑐) . The predicted defect proneness of change 𝑐 by classifier 𝑖
𝑃 (𝑐) . The predicted defect proneness of change 𝑐
𝑏𝑖 (𝑐) . The predicted bipolar change label, 1 for defect inducing and -1 for clean by classifier (e.g., decision tree) 𝑖
𝑌 (𝑐) . The predicted binary change label, 1 for defect inducing and 0 for clean.
𝑌 (𝑐)/Churn(c). The change defect density, also denoted as 𝐷 (𝑐) .

All the studies in Table 6 define the QA effort for a change as the total lines changed, i.e.,
Churn = LA + LD. The models therein generally define an effort-awareness score to rank or to order
the software changes for QA. The score is either the change defect proneness, or the change defect
density, or the QA effort, or some combination of the above. Table 6 lists the change scores and the
order we would conduct QA for the changes. To achieve this, we simply sort the software changes
and begin QA from the beginning of the sorted changes.

Unsupervised versus Supervised Models. Among the models in Table 6, the models by Yang et
al. [86] and the CCUM model by Liu et al. [45] are unsupervised. These models are based on simple
heuristics, such as, the observation that smaller modules are proportionally more defect-prone
and should be inspected first [28, 86]. For instance, Yang et al. show that models LT, AGE, NUC, and
Entropy rank software changes based on these metrics and can sometimes outperform Kamei et
al. [32]’s supervised model EALR. Yang et al’s findings influence several other supervised effort-
aware models. These supervised models take advantage of both of the heuristics and the power of
a learning algorithm to improve effort-aware predictive performance. CBS and CBS+ classify the
changes as defect-inducing and clean first, then search the changes that are classified as defect
inducing according to a heuristic [27, 28]. OneWay is based on the observation that the best heuristics
vary among software projects [17]. For instance, the choice of searching-based model, such as,
LT, AGE, NUC, and Entropy, should be based on the specific software project in order to maximize
effort-aware predictive performance. Therefore, OneWay selects the best heuristics based on labeled
changeset data first.

Exploration of Modeling Techniques. Recent developments in effort-aware models have been those
that take advantage of advancements in predictive modeling, such as, multi-objective optimization,
evolutionary computation, and ensemble models. Prior studies mostly structure supervised effort-
aware models in two ways. One is to form a pipeline where they predict defect proneness of a
software change via a classification model, and use the prediction to compute the effort-awareness

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:16 Zhao, Damevski, and Chen

score, such as, Huang et al. [28]. The other is to build a dedicated model to predict the effort-
awareness score via a regression model, such as, Kamei et al. [32]. Chen et al. [11] take a different
approach and propose a model called MULTI where they model JIT-SDP problem as a dual-objective
optimization problem to maximize defect proneness probability while simultaneously minimizing
QA efforts. Observing that prior studies often consider effort-aware JIT-SDP as a classification or
regression problem, Yang et al. [85] approach the effort-aware prediction problem as an optimization
problem. They design an optimization objective function called density-percentile-average (DPA)
representing the average percentile of the defect density of each software change. Their model
(DEJIT) learns model parameters by using the differential evolution algorithm to maximize the
objective function. Li et al. [42] and Zhang et al. [91] propose a semi-supervised model called
EATT – Effort-Aware Tri-Training, an ensemble model of decision trees. Section 4.3 examines the
performance of some of the effort-aware models.

3.6.3 Cross-Project Prediction. We can divide supervised JIT-SDP models into two categories,
Within-Project JIT-SDP (WP-JIT-SDP) and Cross-Project JIT-SDP (CP-JIT-SDP), based on the choice
of training and target software projects. WP-JIT-SDP is to train a prediction model from historical
software change and defect data of one project, and to use the model to carry out defect prediction
or effort-aware prediction for the same project, i.e., the target project is identical to the source
projects. Different from this, CP-JIT-SDP is to build a prediction model from the change and defect
data of one or more projects, and to use the model to predict defect prone changes for a project. In
this case, the target project may or may not be in the set of the source project. Why do we desire
CP-JIT-SDP? Sometimes, the historical change and defect data of a single software project may
not be available or may not be sufficient to train a JIT-SDP model, e.g., in the initial development
phase of the project. Therefore, there is a practical need to develop models that can be trained
using the historical data from other projects for defect prediction, which gives rise to the very idea
of CP-JIT-SDP. However, there is a problem about CP-JIT-SDP. Defect prediction works because
the training data and the testing data share some common “traits”, e.g., their software change
metrics share similar statistical distributions. However, two software projects may have significantly
different characteristics. As a result, it begs the question, can applying a JIT-SDP model trained
from one or more projects directly to the other yield as good predictive performance?

Fukushima et al.[18] show that JIT-SDP models trained on similar projects can perform as well in
the cross-project context. Kamei et al. [30]’s further exploration indicates that we can have improved
predictive performance when using three approaches, namely, data selection, data merging, and
model ensembling. Data selection is to “select models trained using other projects that are similar to
the testing project [30]”, data merging is to “combine the data of several other projects to produce
a larger pool of training data [30]”, and model ensembling is to “combine the models of several
other projects to produce an ensemble model [30].”

However, when the interpretation of the model is of our chief concern we may have to be cautious
about using JIT-SDP models for cross-project prediction according to a recent study. Lin et al. [44]
report that the most important metric of the CP-JIT-SDP model using data merging (global model)
is only consistent with 55% of the studied projects’ local models (a model trained from an individual
project), which suggests that the interpretation of global models cannot capture the variation of the
interpretation for all local models. Because of this, Lin et al. [44] advocate mixed-effect modeling
that considers individual projects and contexts.

3.6.4 Design for Software Development Process and Data. JIT-SDP aims to support quality assurance
activities for software development and we cannot divorce it from software development process
and practice and the characteristics of the data originated from the process and practice.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:17

Concept Drift. A necessary condition that underlies JIT-SDP models is that there are some
regularities in historical software changes and defects that can be translated to future software
change data. Therefore, a JIT-SDP model can discover the regularities from the historical data via a
training process and predict defect proneness for future changes. Concept drift is the phenomenon
that the regularities in the data gradually change or shift. In a probabilistic model, we can define
concept drift more formally as “changes in the underlying joint probability distribution of the
problem [13].” McIntosh and Kamei [47] are the first to investigate the concept drift problem
in JIT-SDP. Via a longitudinal study of the QT and OpenStack systems. They show that the
characteristics of software change data fluctuate during the life cycle of software so significantly
that the performance and interpretation of JIT-SDP models trained on old software change data
can degrade greatly. Bennin et al. [4] experiment on a different set of software projects, and in
essence confirm McIntosh and Kamei [47]’s finding.

McIntosh and Kamei [47] address the problem by providing a guideline on how to select recent
software change data to train a JIT-SDP model. A different approach to tackle the problem is via an
incremental learning or an online learning where we update the model via learning from newly
arrived data as proposed by Cabral et al. [7] and Tabassum et al. [68]. Cabral et al. [7] investigate
a specific type of concept drift, the evolution of the unbalanced status of software change data.
Additionally, for CP-JIT-SDP, Tabassum et al. [68] examine how the software change and defect
data from the source projects can help prevent sudden drops in the predictive performance of
the target projects, which may otherwise be the result of concept drift. These studies conclude
that simply re-building classifiers from scratch over time is not enough to obtain good predictive
performance over time; and without addressing the class imbalance evolution, a model can get a
high rate of false alarms or miss a substantial amount of defect-inducing software changes. They
also suggest ways of combining project data to improve or to stabilize the performance over time
in the cross-project prediction setting.

Verification Latency. A defect-inducing change always appears before its defect-fixing change.
To identify a defect-inducing change in the data set we must first observe the commit containing
the fix (Section 3.4). In reality, defects are not found and fixed immediately and, therefore, there
exists a verification latency, i.e., a lag time between when a defect-inducing change is committed to
the SCM and identified as such. Cabral et al. [7] show that the verification latency ranges from 1 to
410 days among the 10 open source projects that they examine; and they assert that verification
latency is more likely to affect newer changes than older ones.
The JIT-SDP model is impacted by verification latency by a reduction in the generality of the

model as the training data and the testing data may contain falsely labeled instances. As a result,
typical cross-validation, e.g., a k-fold validation may indicate a better predictive performance when
all data is available. For instance, Tan et al. [69] find that among the 6 open-source and 1 proprietary
projects, the precision of their cross-validation without considering the verification is 55.5%–72.0%
while it is only 18.5%—59.9% with a time-sensitive validation considering the verification latency for
the same data. Cabral et al. [7] factor in both class imbalance evolution, a specific type of concept
drift and the verification latency in their model. Their results further confirm that it is important to
take verification latency into account when we evaluate and select a JIT-SDP model.

Types of Defect. How do the types of defect impact JIT-SDP? One aspect is about the quality of
data, such as, some types of defect may be more noisy than the other. Intrinsic defects stem from
the code found in the project’s SCM; while extrinsic ones the results of external factors, such as,
errors in an external API [63]. The extrinsic defect do not have defect-inducing changes in the
project’s history although often reported in the project’s ITS as defects, leading to misidentified
defect-inducing changes by SZZ. Rodriguez-Perez et al. [63]’s investigation show that extrinsic

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:18 Zhao, Damevski, and Chen

defects negatively impact JIT-SDP models and a close examination is necessary. Quach et al. [59]
study performance and non-performance defects motivated by the intuition that SZZ is more
error-prone to identify defect-inducing changes for performance defects than non-performance
ones. Their results are nuanced in that correcting SZZ errors on performance defects can indeed
improve model performance; however, combining all SZZ identified defect-inducing labels, correct
or wrong, yields the best predictive performance, in the absence of a large set of correctly labeled
performance defect-inducing changes. The other aspect is, can we predict certain type of defect of
our interest? Security audit of software code is a labor intensive endeavor. With a JIT-SDP model
and the metrics designed to predict software vulnerability defect, Yang et al. [81] demonstrate
that they can inspect more defects with less effort and their model can assist as an early step of
continuous security inspections as it provides “just-in-time” feedback to the developers.

Other Data Characteristics. Jiang et al. [29] argue that different developers have different coding
styles, commit frequencies, and experience levels and exhibit different defect patterns in the software
change data. They propose developer-specific JIT-SDP models (or personalized models) and show
that the personalized models can predict more defects than non-personalized one.
Can we predict defectiveness of a software change better by selecting a model trained using a

subset of the data similar to the software change considering that there are variations in the data?
We can address this problem by using Menzies et al. [48]’s concept of local model and global model.
Yang et al. [84]’s empirical results show that local models underperform the global model for defect
prediction and outperform them for effort-aware prediction.
Gesi et al. [19] argue that we should pay attention to other type of imbalance of the data other

than class imbalance. For instance, software change data can be biased along other dimensions,
such as, File Count, Edit Count, Multiline Comments, Inward Dependency Sum. They propose a
deep neural network model called SifterJIT combining Siamese network and DeepJIT [24] and the
model outperforms DeepJIT [24] and CC2Vec [24] due to the proposed model’s few-shot learning
capability.
Software projects use branches to support ongoing software development and release. For

instance, some software projects maintain a “development” or a main branch for continuous
development and release branches to address issues occurred post-release. Duan et al. [14] observe
that developers may apply duplicate fixes to multiple branches. They suggest that more accurate
evaluation of JIT-SDP can be conducted by removing duplicate changes.

3.6.5 Debate on Complex and Simple Models. Should we use a simple or a complex model? As
Breiman puts, “Occam’s Razor, long admired, is usually interpreted to mean that simpler is better.
Unfortunately, in prediction, accuracy and simplicity (interpretability) are in conflict [6].” Past
JIT-SDP studies appear to exemplify this argument or debate.

There have been a growing number of studies using complex machine learning techniques, e.g.,
deep neural networks, to build complex JIT-SDP models [19, 24, 25, 78, 92, 93]. These works show
improved predictive performance over prior models. Recently Pornprasit et al. [57] design a Random
Forest model (called JITLine) and Zeng et al.[89] a Logistic Regression model (LAPredict). Their
models not only yield better predictive performance than but also multiple orders of magnitude
faster than the state-of-the-art deep neural network models. The debate goes on.

3.7 Evaluation
Depending on the learning setting, there have been several evaluation strategies and sets of
evaluation criteria in the literature. First, we discuss the performance metrics (i.e., evaluation
criteria) for JIT-SDP, specifically for defect proneness prediction, effort-aware prediction, and
online learning. Second, we summarize the evaluation strategies used for JIT-SDP.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:19

3.7.1 Evaluation Criteria for Defect Prediction. The dependent variable in JIT-SDP is usually defect
proneness, i.e., the probability that a change is defect-inducing, or defect inducing, i.e., defective or
clean. To evaluate that for a JIT-SDP model, researchers commonly adopt the evaluation criteria for
binary classification. The common evaluation criteria include accuracy, precision, recall, F-measure
(e.g., F1 or F2 score), and AUC-ROC. Hall et al. [21] provide a thorough investigation about this in
the context of SDP. The evaluation here is similar to that of SDP. Readers should refer to Hall et al.
for the definitions of these evaluation criteria.

3.7.2 Evaluation Criteria for Effort-Aware Prediction. There are several evaluation criteria to assess
effectiveness of JIT-SDP models in terms of QA effort. These criteria include 𝑃𝑜𝑝𝑡 and 𝑅𝑒𝑐𝑎𝑙𝑙@20%.
𝑃𝑜𝑝𝑡 is the area under the normalized cost-effectiveness curve [11, 17, 28, 32, 42, 45, 73, 86, 91]. For

model𝑚 it is, as [45], 𝑃𝑜𝑝𝑡 (𝑚) = 1−(𝐴𝑟𝑒𝑎(𝑚𝑜𝑝𝑡𝑖𝑚𝑎𝑙) −𝐴𝑟𝑒𝑎(𝑚))/(𝐴𝑟𝑒𝑎(𝑚𝑜𝑝𝑡𝑖𝑚𝑎𝑙) −𝐴𝑟𝑒𝑎(𝑚𝑤𝑜𝑟𝑠𝑡))
The optimal model𝑚𝑜𝑝𝑡𝑖𝑚𝑎𝑙 corresponds to the one that is to sort all changes in descending

order by the actual defect density. The worst model𝑚𝑤𝑜𝑟𝑠𝑡 is to sort all changes in ascending order
by the actual defect density. In the predicted model𝑚, we sort all the changes in descending order
by the predicted defect density or in an order specified in a model by a proposed defect score or
rank [32, 42]. 𝑃𝑜𝑝𝑡 is a threshold-free evaluation criteria.

In the literature, there are several evaluation criteria based on a threshold of the amount of QA
effort, such as, 20% of QA effort. A common definition of the total QA effort is the sum of all code
churns for all changes in the test data set, i.e., 𝐸𝑡𝑜𝑡𝑎𝑙 =

∑𝑁𝑡𝑒𝑠𝑡

𝑖=1 Churn(𝑐𝑖) where 𝑐𝑖 , 𝑖 = 1, 2,. . . , 𝑁𝑡𝑒𝑠𝑡

are the changes in the test data set. Then, a 20% effort is 20%𝐸𝑡𝑜𝑡𝑎𝑙 .
𝑅𝑒𝑐𝑎𝑙𝑙@20% is to measure the ratio of defect-inducing changes when we spend 20% of total QA

effort [14, 15, 73]. Some studies refer to it as𝐴𝐶𝐶 [14, 15, 73] and others 𝑃𝑜 𝑓 𝐵@20 [29, 45, 82, 83, 94].
“PofB20” is from the phrase “the Percent of Buggy changes at 20% of effort”.

To estimate 𝑅𝑒𝑐𝑎𝑙𝑙@20%, we spend 20% of QA effort reviewing the predicted defect-inducing
software changes and count the actual ones. We call this count 𝑁𝑜𝑓 𝐵20 (the Number of Buggy
changes at 20% of effort) and use this to compute the Recall (i.e., 𝑁𝑜𝑓 𝐵20/𝑁𝑃 where 𝑁𝑃 is the
number of known defect-inducing changes. 𝑁𝑜𝑓 𝐵20 is equivalent to True Positives within 20%
QA effort. Similarly, we can also use this effort threshold to form a confusion matrix to compute
precision, F1 score, and so on and we would have precision@20%, F1-score@20%, and so on [80].
Huang et al. [27, 28] propose two evaluation criteria, 𝑃𝐶𝐼@20 and 𝐼𝐹𝐴. The motivation for

𝑃𝐶𝐼@20 is from the following observation. The distribution of change size, i.e., code churn is highly
skewed and it is typical that a significant portion of changes are small. A JIT-SDP model, such
as, Yang et al. [86]’s unsupervised models like LT and AGE can yield high effort-aware recall, e.g.,
𝑅𝑒𝑐𝑎𝑙𝑙@20; however, they may require developers to review significantly more but smaller changes
than alternate models, such as, Kamei et al. [32]’s EALR. Due to the frequent context switches when
reviewing the numerous but small changes, developers may have low productivity due to fatigue.
Huang et al. [27, 28] argue that frequently switching between reviewing many small changes

may lower a developer’s productivity compared to infrequently switching between reviewing fewer,
larger changes. They define 𝑃𝐶𝐼@20 to account for the effects of context switching on developers
who inspect the changes. 𝑃𝐶𝐼@20 is the Proportion of Changes Inspected when inspecting 20%
lines of code of the changeset.
Another problem is related to false positives, in particular, when reviewing numerous small

changes. Due to the false alarms, some developers may choose to give up, which is the so-called
“tool abandonment problem.” To account for this, they define 𝐼𝐹𝐴 as the number of the Initial False
Alarms encountered before we find the first defect. A high 𝐼𝐹𝐴 may lead to abandonment of the
QA tool built using a JIT-SDP model.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:20 Zhao, Damevski, and Chen

3.7.3 Evaluation Criteria for Online and Time-Sensitive Learning. In an online learning JIT-SDP
model, an evaluation criterion can be a function of time. Cabral et al. [7] and Tabassum et al. [68]
propose a time-varying G-mean of 𝑅𝑒𝑐𝑎𝑙𝑙0 and 𝑅𝑒𝑐𝑎𝑙𝑙1, where 𝑅𝑒𝑐𝑎𝑙𝑙0 is Recall of the clean class
and 𝑅𝑒𝑐𝑎𝑙𝑙1 is Recall of the defect-inducing class. The time-varying G-mean, denoted as 𝑐𝐺 (𝑡)
is, 𝑐𝐺 (𝑡) = (𝑐𝑅𝐶0 (𝑡)𝑐𝑅𝐶1 (𝑡))

1
2 where 𝑐𝑅𝐶0 (𝑡) is 𝑅𝑒𝑐𝑎𝑙𝑙0 and 𝑐𝑅𝐶1 (𝑡) 𝑅𝑒𝑐𝑎𝑙𝑙1 at time 𝑡 . Cabral et

al. [7] and Tabassum et al. [68] compute 𝑅𝑒𝑐𝑎𝑙𝑙0 and 𝑅𝑒𝑐𝑎𝑙𝑙1 prequentially and use a fading
(or decay) factor to enable tracking changes in predictive performance over time, i.e., 𝑐𝑅𝐶𝑖 (𝑡) =
𝜃𝑐𝑅𝐶𝑖 (𝑡 − 1) + (1 − 𝜃)1�̂�=𝑖 , 𝑖 = 0, 1 where 𝑦 ∈ {0, 1} is the predicted class label, 1�̂�=𝑖 is the indicator
function that evaluates to 1 if 𝑦 = 𝑖 is true or 0 otherwise, and 𝜃 , 0 ≤ 𝜃 ≤ 1 is the fading or decay
factor. Tabassum et al. [68] choose 𝜃 = 0.99 in their study while Cabral et al. [7] vary it among
{0.9, 0.99, 0.99} to examine its effect.

3.7.4 Validation Strategies and Evaluation Settings. Validation is important to assess the ability of
generalization of a model, i.e., the ability that the model can yield a predictive performance on test
data similar to that on training data.
We divide the validation strategies into two broad categories, time-insensitive evaluation and

time-sensitive evaluation. In time-insensitive evaluation, there is no assumed order in changeset
instances while in time-sensitive evaluation there is.
A frequently adopted time-insensitive evaluation strategy is cross-validation, suitable for the

batch learning JIT-SDP models. The k-fold cross validation [30] is the most common one. Most
studies choose 𝑘 = 10, the rest 𝑘 = 5 [24, 25], 𝑘 = 2, 3, . . . , 10 [87], or unstated [93]. Some studies
also adopt the leave-one-out evaluation, essentially, a k-fold cross validation with 𝑘 = 𝑁𝑑𝑎𝑡𝑎

where 𝑁𝑑𝑎𝑡𝑎 is the number of changeset instances in the whole data set (training and testing data
sets) [9]. Another time-insensitive evaluation strategy favored by several studies is out-of-sample
bootstrap [14, 15]. Using the out-of-sample bootstrap, we form a set of bootstrap samples from
drawing from the changeset data, use a subset of the bootstrap samples to train the model, and test
the model using the unused instances from the bootstrap samples.

An implicit assumption in the batch learning evaluation strategies like the k-fold cross validation,
the leave-one-out validation, and the bootstrap validation is that data instances are independent, i.e.,
software changes are independent to each other when we use these validation strategies for JIT-SDP.
However, software changes are inter-dependent. For instance, there is a verification latency between
a defect-inducing change and its defect-fixing change, i.e., we can only know and label a change
as defect-inducing after we observe a defect-fixing change and trace back to the defect-inducing
change [7, 69]. As discussed in Section 3.6.4, several studies examine this type of inter-dependent
relationship of software changes, and propose time-sensitive change classifications or evaluate
their models in a time-sensitive setting [7, 69, 86].
An additional dimension emerges when we examine CP-JIT-SDP. An evaluation setting is to

conduct cross-project validation, such as, the 10-fold cross-project prediction evaluation [86].
Besides, several studies suggest that software projects exhibit temporal variances in their defect

characteristics, and recommend evaluations that differentiate a short-period or a long-period
prediction in the context of JIT-SDP [24, 47, 73]1.

1Kamei et al. [32] use the term short-term prediction for JIT-SDP while long-term prediction Release SDP [32]. So do
Pascarella et al. [55]. Nevertheless, we should not confuse the meaning of the short-term and long-term prediction in those
works with the short-period and long-period evaluations here.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:21

4 ANALYSIS AND OPEN QUESTIONS
In this section, we analyze existing JIT-SDP studies in order to gain insights into several questions2,
such as, what is the predictive performance of JIT-SDP models, and for what types of software projects
are JIT-SDP models more likely to be effective?

To answer these questions, we adopt the approach by Hall et al. [21] and Hosseini et al. [26] in
synthesizing the prior research in JIT-SDP. Section 4.1 discusses the method to select articles for
the synthesis. From the selected article, we extract the performance data reported in each of the
selected papers and visualize the data. A method of visualization is violin plots, which illustrate the
distribution of the predictive performance. A violin plot is like a box plot that reports summary
statistics such as minima, maxima, and median, but is also more informative than a box plot since
the violin plot also shows the distribution of the data. The form of the violin plots we render in
this section is as follows. The left and right contours of a plot exhibit the distribution of the data.
The upper and lower limits of the plot show the maximum, and the minimum and the middle bar
the average. The upper and lower limits of the filled rectangle inside the plot are the 3rd and 1st
quantile while the hollow circle is the median (i.e., the 2nd quantile).

4.1 Study Selection Criteria
First, we establish that each selected study must present predictive performance and include
sufficient descriptions of data processing, model building, and evaluation method. Second, we must
have sufficient studies to synthesize. As the result, we select from the 67 studies only those with
tabular performance results, which yields 48. To ensure that the performance results are comparable,
we only select the batch learning studies with cross-validation or alike evaluations. This is because
there are only one, two, or three studies in other predictive and evaluation settings and these studies
are significantly different and too few to examine in isolation. Since our analysis is to show the
distribution of the performance via the violin plots (i.e., Sections 4.2 and 4.3) or to show a trend via
a context factor (i.e., Section 4.4), we exclude the studies that do not have sufficient performance
results, i.e., report performance results on three or fewer software projects. The final results are 22
articles. We summarize the results of the article selecting process in Table 7. To discern each of
the synthesized studies easily, we assign each a short name, as shown in Table 8. To compare the
defect proneness and effort-aware predictive performance in Sections 4.2 and 4.3 and to analyze
the relationship between the performance results and the context factors in Section 4.4, we rely
on the articles that use an identical data set with similar evaluation settings. The most frequently
referenced data set is the one availed by Kamei et al. [32] (the Kamei-2012 data set). To indicate
those studies using the Kamei-2012 data set, we shade the violin plots for the studies.

Table 7. Selecting Studies for Meta-Analysis

JIT-SDP Studies Tabular Results Batch Learning Cross-Validation Evaluation Sufficient Performance Results

67 48 42 31 22

4.2 Performance of Defect Prediction
In this section, we examine the within-project predictive performance trends in the JIT-SDP models
presented by researchers. First, we identify the evaluation criteria to contract the models. Since
defect prediction (including both defect proneness prediction and defect inducing classification)
is commonly conceptualized as binary classification, as discussed in Section 3.7.1, F1-score is the
2The data and the scripts used in this section is at our Github repository at https://github.com/huichen-cs/jitsdpsurvey.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

https://github.com/huichen-cs/jitsdpsurvey

0:22 Zhao, Damevski, and Chen

Table 8. Short Name Assignment of Synthesized Studies and Additional Notes

Short Name Study Short Name Study Short Name Study

Chen18(MULTI) Chen et al. [11] Duan21 Duan et al. [14] Fan19 Fan et al. [15]
Huang17(CBS) Huang et al. [27] Huang19(CBS+) Huang et al. [28] Kamei12(DPLR) Kamei et al. [32]
Kamei12(EALR) Kamei et al. [32] Kang20(Maritime) Kang et al. [33] Li20(EATT) Li et al. [42]
Liu17(CCUM) Liu et al. [45] Jiang13(PCC+) Jiang et al. [29] Pascarella119 Pascarella et al. [55]
Qiao19(FCNN) Qiao et al. [58] Tourani16 Tourani and Adams [74] Yang15(Deeper) Yang et al. [83]
Yang17(TLEL) Yang et al. [82] Young18(DSL) Young et al. [87] Yang16(LT) Yang et al. [86]
Yan20(Alibaba) Yan et al. [80] Yang20(DEJIT) Yang et al. [85] Zhu18 Zhu et al. [95]

Zhu20 Zhu et al. [94]

“Kamei12(DPLR):OS” refers to the result obtained from the Logistic Regression model using the six open-source projects
in Kamei et al. [32]. This model servers as a baseline model in several studies. We add “Z-BL”to a short name, e.g., as in
“Kamei12(DPLR):OS:Z-BL” to indicate that model Kamei12(DPLR):OS is serving as the baseline model in Zhu et al. [94], and
“Y-BL” Yang et al. [83].
Six studies are the data sources for Figure 5. These studies are Kamei et al. [32], Yang et al. [83], Kamei et al. [30], Yang et
al. [82], Young et al. [87], and Li et al. [42].

most commonly reported evaluation criterion – 14 studies report F1-score, 12 studies precision and
recall (in addition to F1-score), and 6 studies AUC-ROC. There is an additional advantage in using
F1-score, i.e., F1-score is the harmonic mean of both precision and recall and therefore provides
a more complete picture than either of the two constituent metrics alone. Second, among the 14
studies, there are 6 studies that use the identical data set and features, i.e., the 14 change metrics of
6 open-source projects shared by Kamei et al. [32]. Each of these 6 studies also computes F1-score
via k-fold cross-validation, most with 𝑘 = 10. Directly comparing the F1-scores of the 6 studies and
those of Kamei et al. [32] is thus the most meaningful; for convenience, in the following, we refer
to these changesets and metrics as the Kamei-2012 data set.

Figure 3 shows the violin plots of F1 score in the selected JIT-SDP studies; the filled violin plots
represent the studies that use the Kamei-2012 data set. For clarity, we sort the filled violin plots by
the median F1-scores reported in those studies. Although 14 studies report F1-scores, we exclude
the study by Trautsch et al. [75] from the figure since it only gives a single mean and standard
deviation of the 39 projects evaluated, which is not sufficient to produce a violin plot.

Our observations based on Figure 3 are as follows. The study by Zhu et al. [94] appears to be an
outlier in that it offers by far the best performance on the Kamei-2012 data set. However, in their
study, Zhu et al. [94] show widely improved performance for the baseline as well, indicating that
the reported performance may not be comparable. More specifically, as a baseline, Zhu et al. [94]
reproduced Kamei et al. [32]’s model using the same data set, parameters and features. Kamei et
al. [32]’s model as reproduced by Zhu et al. [94] has a mean F1 score of 0.646 ± 0.044. In contrast,
in the original work by Kamei et al. [32], the mean F1 score is 0.452 ± 0.139. The reason for this
discrepancy is unclear to us. Several other studies have also reproduced the identical baseline model
of Kamei et al. [32], reporting similar F1 scores as those seen in the original work, e.g., Yang et
al. [83] report a F-score of the model of Kamei et al. [32]’s as 0.439 ± 0.144.

There is an improvement in the defect prediction as the trajectory of the F1 scores of the models
of Kamei et al. [32], Yang et al. [83], Yang et al. [82], and Young et al. [87] demonstrate in Figure 3.
However, the improvement appears to have plateaued with smaller improvements with each new
study. At present, it appears that the ensemble models by Yang et al. [82] and Young et al. [87]
offer the best F1-score performance, both of these models leverage on model bagging and stacking
(Section 3.6).

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:23

Another clear observation from Figure 3 is that the F1-score varies greatly across different
software projects, as shown in the unfilled violin plots, which makes the direct comparison of the
models’ predicative performance across different projects difficult.

Liu
17

(CCUM)

*Ka
mei1

2(D
PLR

):O
S:Y

-BL

Li2
0(E

AT
T)

Yan
g1

5(D
ee

pe
r)

Ka
mei1

2(D
PLR

):O
S

You
ng

18
(DSL)

Yan
g1

7(T
LEL

)

*Ka
mei1

2(D
PLR

):O
S:Z

-BL
Zhu

20

Ka
mei1

2(D
PLR

)

Jian
g1

3(P
CC+)

Tou
ran

i16
Zhu

18

Pas
car

ella
19

Fan
19

Ka
ng

20
(M

ari
tim

e)

Dua
n2

1

Studies

0.0

0.5

1.0

F1

Fig. 3. Comparison of F1 scores of defect prediction where filled violin plots are those studies that use the
Kamei-2012 data set while the unfilled differ by evaluation data sets. The models starting with an asterisk are
reproductions of the original model conducted by other researchers.

Findings. Our synthesis of the reported performance in the prior JIT-SDP studies indicates that
defect prediction models DSL and TLEL appear to outperform the others. Both DSL and TLEL are
ensemble models. Ensemble model can learn different and complementary patterns from data,
offering an advantage over standalone learning algorithms. The Random Forest classifier is also
an ensemble model based on decision trees. Kamei et al. [30] and Fukushima et al. [18] favor the
Random Forest classifier in their studies, and Duan et al. [14] and Fan et al. [15] demonstrate that it
yields a superior predictive performance over Logistic Regression and Naive Bayes.

Based on the trends in the current set of studies of JIT-SDP, ensemble models perform the
best at predicting defectiveness of software changes. However, improvements in predictive
performance seem to have plateaued in recent approaches.

Open Questions. How can we continue to improve defect prediction performance? There have
been several recent directions that may markedly improve JIT-DSP. First, models based on deep
learning, e.g., convolutional neural networks, show promising results [24, 25]. Since there is a
significant variation in JIT-SDP predictive performance among different software projects, we have
yet to observe how deep learning models would perform on a broader variety of projects. Second,
researchers are investigating different types of software change metrics and additional sources of
data of software changes to help improve predictive performance [40, 74, 75].

4.3 Performance of Effort-Aware Prediction
Next, we investigate the performance of within-project effort-aware prediction. The most frequently
reported evaluation criteria for effort aware JIT-SDP are 𝑃𝑜𝑝𝑡 and 𝑅𝑒𝑐𝑎𝑙𝑙@20% – 6 studies report
𝑃𝑜𝑝𝑡 while 11 𝑅𝑒𝑐𝑎𝑙𝑙@20%. The former is an effort-aware threshold free evaluation criterion while
the later is computed at the threshold of 20% of the review effort.

Figure 4 shows violin plots of 𝑅𝑒𝑐𝑎𝑙𝑙@20% and 𝑃𝑜𝑝𝑡 for the selected studies. Again, several studies
use the Kamei-2012 data set for evaluation, which, as before, we highlight with filled violin plots.
Our observations are as follows.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:24 Zhao, Damevski, and Chen

Similar to defect proneness prediction, there is a significant variance of the effort-aware prediction
performance as illustrated by the violin plots. However, different from it, the filled violin plots show
that there is a clearer improvement trend for effort-aware prediction performance. For instance,
the EATT model by Li et al. [42] has the highest 𝑅𝑒𝑐𝑎𝑙𝑙@20% and 𝑃𝑜𝑝𝑡 and CCUM by Liu et al. [45] is
a close second.
The relationship between the performance of a model for defect prediction and effort-aware

prediction can be inversely proportional, i.e., when one gets better, the other gets worse [86]. In
other words, when examining both Figure 3 and 4 together, we observe that CCUM and EATT have
poorer F1-scores for defect prediction than many of the other defect prediction models, however,
their 𝑅𝑒𝑐𝑎𝑙𝑙@20% and 𝑃𝑜𝑝𝑜𝑡 are the best. This is likely due to the size distribution (or the review
effort distribution) among the software changes. In particular, the change defect density tends to
be higher among the smaller changes [86].

Ka
mei1

2(E
ALR

):O
S

Yan
g1

6(L
T,A

GE)

Hua
ng

17
(CBS

)

Yan
g1

5(D
ee

pe
r)

Hua
ng

19
(CBS

+)

Che
n1

8(M
ULTI

)

Yan
g1

7(T
LEL

)

Yan
g2

0(D
EJI

T)

Qiao
19

(FC
NN)

Liu
17

(CCUM)

Li2
0(E

AT
T)

Ka
mei1

2(E
ALR

)

Jian
g1

3(P
CC+)

Fan
19

Yan
20

(Aliba
ba

)

Studies

0.0

0.2

0.4

0.6

0.8

Re
ca

ll@
20

%

(a) 𝑅𝑒𝑐𝑎𝑙𝑙@20%

Ka
mei1

2(E
ALR

):O
S

Yan
g1

6(L
T,A

GE)

Che
n1

8(M
ULTI

)

Qiao
19

(FC
NN)

Yan
g2

0(D
EJI

T)

Liu
17

(CCUM)

Li2
0(E

AT
T)

Ka
mei1

2(E
ALR

)

Studies

0.0

0.2

0.4

0.6

0.8

1.0

P o
pt

(b) 𝑃𝑜𝑝𝑡

Fig. 4. Comparison of 𝑅𝑒𝑐𝑎𝑙𝑙@20% and 𝑃𝑜𝑝𝑡 of effort-aware prediction. As before, the filled violin plots are
those studies that use the Kamei-2012 data set while the unfilled differ by evaluation data sets.

Findings. The three models, TLEL, CCUM, and EATT, appear to be the best performing effort-aware
models. CCUM is a simple searching-based unsupervised model that does not rely on any learning
algorithms. Yan et al. [80] show that the CCUM is the model that has the best 𝑅𝑒𝑐𝑎𝑙𝑙@20% among 14
proprietary projects from the Alibaba company.

The models TLEL and EATT are ensemble models that can take advantage of either the diversity
of patterns in data or the diversity of learning capability. TLEL is an ensemble model that explores
the diversity in data while EATT the diversity of learning capability. Since, as observed in Section 4.2,
ensemble models also have superior defect prediction, it seems likely that supervised ensemble
models like TLEL are likely to be the most versatile ones if there is a need to solve both the
effort-aware and non-effort-aware JIT-SDP problems simultaneously.

Ensemble models are also the best effort-aware models for JIT-SDP. Searching-based unsu-
pervised models yield effort-aware predictive performance similar to the ensemble models,
however, they perform much worse on defect predictions than ensembles.

Open Questions. One of the important limitation in prior research in JIT-SDP is the lack of a
shared benchmark. While several studies use the Kamei-2012 data set, considering the difference in
the remaining (unfilled) violin plots, it is unclear that the conclusions drawn from the models using

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:25

the Kamei-2012 evaluation data set are applicable to the other studies with different evaluation data
sets. This indicates that there may be a need for a standard data set with greater variety of projects.

4.4 Context Factors of Software Project and Changeset Data
Hall et al. [21] indicate the importance of software project context factors in understanding SDP
model performance. Context factors presented in prior studies include: the number of commits, the
ratio of the defective changes, average change size, average number of developers per modified file,
and several others [32]. Table 5 shows several of the context factors for the 6 open source software
projects from Kamei et al. [32].
To understand how software project context factors impact the predictive performance of JIT-

SDP, we combine the results from JIT-SDP studies that evaluate their models with the Kamei-2012
data set. In Figure 5 we contrast the combined F1 scores of these JIT-SDP studies to 4 commonly
mentioned context factors.
In Figures 5(a) and 5(b) we observe that the F1-scores correlate with the number of changes

and the ratio of defective changes. Figure 5(a) shows a trend of F1-scores getting smaller when
the number of commits increases while in Figure 5(b), F1-scores getting bigger when the ratio of
defect-inducing changes becomes greater. The number of changes can be considered as a measure
for project maturity for JIT-SDP, and the ratio of defect-inducing changes as a measure of project
quality. In the remaining plots, Figure 5(c) and Figure 5(d) , do not show a relationship between
the F1-scores with the two context factors, the average change size and the average number of
developers per modified file in commits. These observations are consistent with the Spearman
correlation coefficients between F1 and the context factors as shown in Table 9.

Next, we try to confirm the above observations from the other individual studies that use different
software projects, i.e., not only the Kamei-2012 data set. Needless to say that these studies differ
greatly from each other, and therefore, we do not aggregate them but plot each individual study as
a line showing the average F1-scores versus the defect ratios of software projects used in the study.

We present these results in Figure 6 and Table 10. The results indicate that half of these studies
appear to confirm the observation in the above, namely, the F1 scores in Tourani and Adams [74],
in Fan et al. [15], and in Duan et al. [14] increase as the defective ratio rises and the F1 scores are
also strongly correlate with the defective ratio. The study by Zhu et al. [95] only weakly confirm
the observation due to a smaller correlation and a large p-value. The studies by Jiang et al. [29] and
Pascarella et al. [55] are unclear or do not support this conclusion at all.

Table 9. Spearman Correlations between F1 and Context Factors

F1 vs. # of Changes F1 vs. Ratio of Defective Changes F1 vs. Change Size F1 vs. # of Developers Per File
Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value

-0.886 0.019 0.986 0.000 -0.200 0.704 -0.029 0.957

Findings. The most important finding in this analysis is the observation that the predictive
performance appears to correlate with the ratio of defect-inducing changes in the software project.

In most studies, the predictive performance of JIT-SDP positively correlates with the defect
ratio of changes in the software project, i.e., projects with more defects are easier for JIT-SDP
to predict defect-inducing changes.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:26 Zhao, Damevski, and Chen

Colu
mba

Bug
zill

a

Pos
tgr

eS
QL JDT

Pla
tfo

rm
Mozi

lla

Studies

0.0

0.2

0.4

0.6

0.8

1.0

F1

0.0

0.2

0.4

0.6

0.8

1.0

of

 C
ha

ng
es

1e5
of Changes

(a) F1 versus number of changes

Mozi
lla JDT

Pla
tfo

rm

Pos
tgr

eS
QL

Colu
mba

Bug
zill

a

Studies

0.0

0.2

0.4

0.6

0.8

1.0

F1

1

2

3

De
fe

ct
 R

at
io

1e 1
Defect Ratio

(b) F1 versus ratio of defective changes

Bug
zill

a JDT

Pla
tfo

rm

Pos
tgr

eS
QL

Mozi
lla

Colu
mba

Studies

0.0

0.2

0.4

0.6

0.8

1.0

F1

0.50

0.75

1.00

1.25

1.50

Ch
an

ge
 S

ize

1e2
Change Size

(c) F1 versus change size

Colu
mba

Pla
tfo

rm JDT

Pos
tgr

eS
QL

Mozi
lla

Bug
zill

a

Studies

0.0

0.2

0.4

0.6

0.8

1.0

F1
2

4

6

8

of

 D
ev

el
op

er
s/

Fil
e# of Developers/File

(d) F1 versus number of developers per file

Fig. 5. F1 scores versus context factors. Sources of F1-scores are in Table 8.

0.1 0.2 0.3 0.4 0.5
Defect Ratio

0.3

0.4

0.5

0.6

0.7

0.8

F1 Jiang13(PCC+)
Tourani16
Zhu18
Pascarella119
Fan19
Duan21

Fig. 6. F1 versus ratio of defective changes of selected
studies

Table 10. Spearman Correlations of F1 and Ratio of
Defective Changes

Study Coefficient p-value

Jian13(PCC+) 0.49 0.321
Tourani16 0.80 0.000
Zhu18 0.53 0.117
Pascarella119 -0.42 0.229
Fan19 0.91 0.000
Duan21 0.76 0.028

Open Questions. There are several context factors that have not been reported or explored
in JIT-SDP studies. For instance, for which application domain do we obtain better predicative
performance, do programming languages matter for JIT-SDP, and does project maturity impact
performance? When assembling the prior studies to conduct this meta analysis, we notice that
although several studies evaluate their models with multiple software projects, many potential
context factors about the software projects are not reported.

5 IDEAS AND CONSIDERATIONS FOR FUTURE RESEARCH
Based on the survey and analysis of JIT-SDP techniques presented up to this point, in this section,
we identify a set of novel research directions and a few key considerations for researchers that we
believe to be important in the context of JIT-SDP.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:27

5.1 JIT-SDP Application Domain
Several studies have emphasized the importance of application domains of defect prediction models
(e.g., is the model used for prioritizing maintenance effort, cost prediction, resource allocation,
and reducing technical debt). For instance, Zeller et al. [88] argue that we should ground SDP in
practice, consider what developers think about the models and the results, and how the models and
the results help the developers in their daily work. Wan et al. [76] carry out a study to investigate
what practitioners think, behave, and expect when it comes to defect prediction. As a result, they
detail a few recommendations. More investigations along this direction would help researches in
SDP, including both Release SDP and JIT-SDP, to make SDP easier to adopt, i.e., to improve the
quality of developer experience in using SDP.
JIT-SDP is not a debugging technique, as it does not reveal the type of defects, the symptom of

the defects, and the condition under which the defects occur. Rather, JIT-SDP is a risk assessment
technique, as it reports a likelihood that a defect may occur. In order for this risk assessment
to provide developers with high quality of user experience, we need to have a reasonably high
predictive performance, however, what exactly the level of performance is required to make a
specific practical application of JIT-SDP work? It requires a careful analysis for each application
domain.

To further understand the importance of the application domain of a JIT-SDP model, we examine
one application scenario: QA resource allocation. Let us consider that we build a JIT-SDP model
to allocate QA resources for a software project that has 𝑁 new software changes. The model
predicts 𝑁𝑇𝑃+𝐹𝑃 = 𝑁𝑇𝑃 + 𝑁𝐹𝑃 changes as defect prone, where 𝑁𝑇𝑃 is the number of true positives
(a predicted defective change indeed has a defect) and 𝑁𝐹𝑃 the number of false positives (no defects
found in a predicted defective change). From prior model validation, we know the precision 𝑐𝑃𝑅 ,
which we assume holds for the new changes. Thus, we can anticipate that 𝑁𝑇𝑃 = 𝑐𝑃𝑅𝑁𝑇𝑃+𝐹𝑃
changes are actually defective since 𝑐𝑃𝑅 = 𝑁𝑇𝑃/𝑁𝑇𝑃+𝐹𝑃 . An estimate of the required QA effort is
𝐸𝑄𝐴 = 𝑒𝑟𝑒𝑣𝑖𝑒𝑤𝑁𝑇𝑃+𝐹𝑃 + 𝑒𝑓 𝑖𝑥𝑖𝑛𝑔𝑁𝑇𝑃 = 𝑒𝑟𝑒𝑣𝑖𝑒𝑤𝑁𝑇𝑃+𝐹𝑃 + 𝑒𝑓 𝑖𝑥𝑖𝑛𝑔𝑐𝑃𝑅𝑁𝑇𝑃+𝐹𝑃 , where 𝑒𝑟𝑒𝑣𝑖𝑒𝑤 is the effort
to review a change and 𝑒𝑓 𝑖𝑥𝑖𝑛𝑔 is the effort to fix the actual defect induced by the change. In this
scenario, both of the accuracy of 𝑐𝑃𝑅 and the magnitude of 𝑁𝑇𝑃+𝐹𝑃 matter.
Let 𝐸𝑓 𝑖𝑥𝑖𝑛𝑔 = 𝑒𝑓 𝑖𝑥𝑖𝑛𝑔𝑐𝑃𝑅𝑁𝑇𝑃+𝐹𝑃 . Due to the nature of randomness, the actual defects vary from

the anticipated 𝑐𝑃𝑅𝑁𝑇𝑃+𝐹𝑃 . Denote the difference as a ratio 𝛿 that the user can determine. If the
actual outcome is 𝐸𝑓 𝑖𝑥𝑖𝑛𝑔 |−𝛿 = 𝑒𝑓 𝑖𝑥𝑖𝑛𝑔 (1 − 𝛿)𝑐𝑃𝑅𝑁𝑇𝑃+𝐹𝑃 , we may over-allocate QA resources; if the
actual outcome is 𝐸𝑓 𝑖𝑥𝑖𝑛𝑔 |𝛿 = 𝑒𝑓 𝑖𝑥𝑖𝑛𝑔 (1 + 𝛿)𝑐𝑃𝑅𝑁𝑇𝑃+𝐹𝑃 , we may under-allocate QA resources. What
is the probability that we allocate the appropriate amount of resources?
To answer this question, we assume that it is an independent event that each predicted defect

prone change is actually defective. We could model an event that a defect prone change 𝐶 is an
actual defective one following the Bernoulli distribution with probability 𝑝 = 𝑐𝑃𝑅 , i.e., 𝑃 (𝐶 =

defective) = 𝑃 (𝐶 = 1) = 𝑝 and 𝑃 (𝐶 = clean) = 𝑃 (𝐶 = 0) = 1 − 𝑝 . For convenience, let𝑀 = 𝑁𝑇𝑃+𝐹𝑃 ,
𝑆 = 𝐶1 +𝐶2 + . . . +𝐶𝑀 =

∑𝑀
𝑖=1𝐶𝑖 where we denote𝐶𝑖 ∈ {0, 1} as the random variable corresponding

to the label of a change, 𝑆𝐿 = (1 − 𝛿)𝑝𝑀 , and 𝑆𝐻 = (1 + 𝛿)𝑝𝑀 . Since 𝐶 follows the Bernoulli
distribution, the variance of random variable𝐶 is Var [𝐶] = 𝜎2 = 𝑝 (1−𝑝) and the mean is E [𝐶] = 𝑝 .
It follows that E [𝑆] = 𝑝𝑀 and Var [𝑆] = 𝜎2

𝑆
= 𝑝 (1 − 𝑝)𝑀 . Then, according to the Central Limit

Theorem, we have:

𝑃 (𝑆𝐿 ≤ 𝑆 ≤ 𝑆𝐻) = 𝑃

(
−𝛿

(
𝑝𝑀

1 − 𝑝

) 1
2

≤ 𝑧 ≤ 𝛿

(
𝑝𝑀

1 − 𝑝

) 1
2
)

(1)

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:28 Zhao, Damevski, and Chen

where 𝑧 = (𝑆 − E [𝑆])/𝜎𝑆 follows the Normal distribution 𝑁 (0, 1). Since 𝑃 (𝑆𝐿 ≤ 𝑆 ≤ 𝑆𝐻) is the
probability at which the project has the satisfactory resource allocation for QA, both 𝑝 = 𝑐𝑃𝑅 and
𝑀 = 𝑁𝑇𝑃+𝐹𝑃 matter to the project where 𝑝 is ultimately determined by the capability of the defect
prediction algorithm and𝑀 the size of the project. Although in the above analysis we fix 𝑆𝐿 and
𝑆𝐻 , we can influence these two in order to have a larger 𝑃 (𝑆𝐿 ≤ 𝑆 ≤ 𝑆𝐻), signifying a greater
likelihood we allocate appropriate amount of QA resources. From equation (1), the greater𝑀 (i.e.,
a larger project) and 𝑝 (i.e., a better JIT-SDP algorithm) are, the larger the probability at which we
will successfully allocate QA resources; however, we can compensate a small 𝑝 with a large𝑀 and
vice versa, which implies that we can apply JIT-SDP for QA resources allocation equally well for a
larger project with a weaker JIT-SDP algorithm and vice versa.
The above analysis shows that with a JIT-SDP model with a moderate precision, we can still

successfully allocate QA resources for a large collections of software changes. More broadly it
demonstrates that each individual application domain (e.g., prioritizing maintenance tasks, planning
activities to reduce technical debt) has its own specific demands from a JIT-SDP model. Finally, what
predictive performance we need from a JIT-SDP model is dependent on its planned application.

5.2 Relationship of Defects to Software Use
Software defects are often the root case of a software failure. Failures negatively impact the reliability
and thus the quality of the software. Since JIT-SDP techniques are primarily targeted towards
improving software quality, we must pay attention to the relationship of defects (via failures) on
software quality, i.e., the impact of the specific defects on the actual reliability of the software. To
clarify these concepts, let us examine the relationship among defect, error, and failure.

We illustrate the relationship of defects, failures, and errors in Figure 7(a). Defects cause errors
where an error is the deviation of the system state from the desired one [60, 65]. However, an error
may or may not lead to a failure. Whether a defect manifests itself as a software failure depends
on how the user executes the code that has the defect, i.e., depends on the current system state
and the specific input. To understand this relationship, following the spirit of the example given
by Salfner et al. [65], we consider the code snippet in Listing 7(b), which is a C code snippet from
the SEI CERT C Coding Standard [66]. This example is not compliant with the C Coding Standard.
The function call to malloc() at line 5 allocates an object referenced by pointer text_buffer. It
fails to free the object before text_buffer reaches the end of its lifetime. Therefore, the object
will remain in the heap of the process’ address space until the process terminates. This is a defect
caused by missing the free(text_buffer) statement that should have been at line 9. This defect
causes an error, i.e., an unreachable address block in the process’s address space after the control
of the process returns to the caller invoking the function f(). If the process invokes the function
f() repeatedly, a failure may occur, i.e., the system may become slower (an observable symptom)
due to excessive paging or the process may crash due to a failed memory allocation as the process
exhausts its free address space in the heap. However, whether this failure occurs depends on many
factors, e.g., the number of invocations to the function f(), the availability of free heap address
space, and the available physical memory. For instance, if the process is short-lived with a limited
invocation of the function f(), there wouldn’t be any noticeable misbehavior in the system, in
particular, after the operating system frees the memory allocated to the process as the process
terminates.
Since defects are root cause of failures, reducing defects, in turn, reduces failures. It is not

always simple to apply this principle to QA. Defects and failures have a non-trivial relationship as
illustrated in the above example. Fenton and Neil observe that failures caused by defects have a
significant variance in the mean time to failure [16]. Clearly, it is of little practical value to examine

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:29

Requirement Fault
(Requirement Defect)

Design Fault
(Design Defect)

Software
Error

Software
Failure

Observed
Symptoms

Observed
Misbehavior

causes

causes

triggers

yields evidenced by

(a) Relations of software defects (faults), errors, and
failures.

1 #include <stdlib.h>
2 enum { BUFFER_SIZE = 32 };
3
4 int f(void) {
5 char *text_buffer = (char *) malloc(BUFFER_SIZE);
6 if (text_buffer == NULL) {
7 return -1;
8 }
9
10 return 0;
11 }

(b) A code snippet showing a memory allocation
defect [66]

Fig. 7. Relationship of defect, error, and failure and an example of defective code

defects that almost never manifest themselves as software failures, and it is of great urgency to remove
a defect that causes software failure daily, even at a significant QA effort.
Therefore, we should consider JIT-SDP defects, not in isolation, but, combine with common

patterns of software usage. For instance, Tian et al. [73] have recently begun to investigate JIT-SDP
as it relates to software reliability. More studies like this may be an important direction in JIT-SDP.
For instance, in the future, researchers can study how to link software changes with different types
of defects, or how to associate different defects with software usage patterns.

5.3 Quantifying Effort in JIT-SDP
Fenton and Neil [16] divide software defects into two broad categories, requirement defects, i.e.,
the defects in software requirements, and design defects, i.e., the defects in design specification,
implementation, and maintenance. Requirement defects lead to validation failures while design
defects verification failures. As, generally, requirement defects are more costly to fix than design
defects, we should reexamine how to quantify effort for effort-aware JIT-SDP.

In effort-aware JIT-SDP, the quality assurance effort is measured as the lines of code reviewed [32].
Future JIT-SDP may consider alternative quality assurance effort measures, such as, by differentiating
the efforts to address validation failures and those to address verification failures. For instance,
researchers can attempt to use traceability analysis approaches that link “high-level” artifacts,
e.g., requirements, to “low-level”, e.g., software code [50]. As another alternative, several studies
examine software faults and failure types and their occurrences in different phases of software
development life cycle processes [22].

5.4 UncertaintyQuantification in JIT-SDP
JIT-SDP is affected by the uncertain quality of the input data used to build the model [31]. In
the context of Release SDP, Kamei and Shihab [31] argue that “the distribution of metrics can
vary among releases” and the training and testing data sets may not have similar distributions,
i.e., the data used to train the SDP model no longer reflects the current project data. This type of
uncertainty that Kamei and Shihab [31] describe is also found in JIT-SDP. For instance, Bennin
et al. [4] formulate the significant change in statistical distribution over time found in software
change history data as a “concept drift” and investigate its impact on JIT-SDP. Several studies also
address the concept drift problem in the context of online learning in JIT-SDP [7, 68].
Another type of uncertainty in JIT-SDP has recently come into attention in several studies. As

discussed in Section 3.4, JIT-SDP requires the SZZ algorithm to determine whether a software
change is defect-inducing given a defect-fixing change. Recent studies of SZZ, e.g., Fan et al. [15] and

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:30 Zhao, Damevski, and Chen

Rosa et al. [64], indicate that the algorithm is not always reliable, which can introduce downstream
errors in JIT-SDP.

A direction of research we propose is to quantify these different types of uncertainties in JIT-SDP
and use them to convey the magnitude of uncertainty to JIT-SDP users. In this way, the users
can obtain an accurate “error bar” for each prediction made by a JIT-SDP model that can serve to
enhance how the model is used and which recommendation is taken.

5.5 Explainable and Actionable Prediction
Tantithamthavorn and Hassan [70] point out that the value of defect prediction models is not only
in predicting which software artifacts are more defect prone than the others, but also, perhaps
even more importantly, in deriving empirical theories and in providing a guidance on operational
decisions about software quality. Zeller et al. [88] express a similar opinion and argue that “an
empirical finding is the more valuable the more actionable it is” and the examples of actions
include how a developing team changes their future practice and what the risk of the changes is.
Importantly, these actionable insights once confirmed by future practice and the practice can help
unearth the systemic factors that drive software quality. As a full circle, these actionable insights in
turn can help us design and build superior defect prediction models.
How do we make our defect prediction results actionable? It begins with making the prediction

results explainable [34]. One approach is to link the prediction results with context factors of
the data sets. Hall et al. [21] note that without the context factors of the data sets it becomes
difficult to understand the implications of SDP models and results. They list several such factors,
e.g., project age, maturity, programming language, and application domain. Recent JIT-SDP studies
have included some context factors, however, software projects have diverse context factors and it
remains unclear what context factors best characterize a software project [90]. Perhaps, relevant
project context factors can vary from project to project and from application domain to application
domain. Another approach is to link the prediction results with software metrics. Recent works in
JIT-SDP also indicate that a variety of software metrics from a variety of data sources in addition
to software changes can help boost defect predictive performance [40, 74, 75]. Therefore, there is a
need to continue exploring project context factors and software metrics, and their relationship with
defection prediction results.
An important and related question is, how can we make a complex JIT-SDP model explainable?

Recently, deep learning models have found their success in both of Release SDP and JIT-SDP [10, 24,
25]. These models offer superior predictive performance. In particular, these models often take an
“end-to-end” approach, e.g., in the context of JIT-SDP, taking directly software changes and commit
messages as the input and predict defect prone changes. Xie et al. [77] provide an overview about
building explainable deep learning models. Leveraging this research and alike, future research
directions may include the design of explainable deep neural network models for JIT-SDP.
Finally, we would like to emphasize what Zeller et al. [88] have cautioned us, i.e., “being non-

actionable may still be better than suggesting the wrong actions” and argue that we should be
careful when using complexity metrics or overly simple features in defect prediction since we may
more easily arrive at suggesting wrong actions. Similar in spirit, we should also caution about
complex models. Is the superior predictive power of a complex model the result of overfitting or
the result of a superior model underpinned by the systemic factors driving software quality?

5.6 Beyond Predicting Defects
SDP models estimate defect risk or the probability that a software artifact or a software change is
defect inducing. Effort-aware models are a direct extension of defect proneness prediction. Tan-
tithamthavorn and Hassan indicate that there might be some other prediction dependent variables

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:31

worthy of investigating [70]. For instance, they argue that change risk is worthy of modeling where
they define the change risk as any changes that might lead to a schedule slippage [70]. Also, in
Release SDP, some studies investigate the problem of predicting defect severity and model it as a
multi-class classification problem [21]; however, contrasted to Release SDP, there not yet been a
JIT-SDP study whose dependent variable is defect severity.
A broader question for JIT-SDP researchers is as follows. Are there any other defect related

dependent variables that we should investigate? Perhaps, this requires us to think beyond statistical
modeling and machine learning and to interrogate more closely the key factors influencing the
software development process.

6 CONCLUSION
This article presents a systematic survey of Just In Time Software Defect Prediction (JIT-SDP), a
sub-area of Software Defect Prediction (SDP). SDP is a long standing research topic within Software
Engineering with a large corpus of research. The two branches of SDP, Release SDP and JIT-SDP,
are complementary to each other. Wan et al. [76] define Release SDP as predicting defects occurring
in software artifacts, i.e., files, packages, and subsystems, that can help developers gain insights into
overall software quality, while JIT-SDP predicts the likelihood of defect occurrences in software
changes, a finer granularity and can aid practitioners in quickly locating defects. Both Release SDP
and JIT-SDP are primarily risk assessment techniques and not debugging aids.

In our literature survey, we discuss the major achievement of JIT-SDP research in context of the
entire workflow of JIT-SDP. Different from Release SDP where the input is software snapshots,
the input to JIT-SDP is the software’s change history. As such, JIT-SDP studies frequently leverage
software change metrics as input features and, as output, predict defect proneness, change defect
density, or scores for effort-aware defect prediction. From the perspective of modeling, JIT-SDP
has at least one distinct characteristic different from Release SDP, i.e., software change data is
intertwined with a dual arrival process, the arrivals of software changes and the arrivals of software
change labels (i.e., defect-inducing or clean). The former arrival process is the result of implementing
the software; while the later the result of validating or verifying the software. Emerging studies
have noted the impact of this distinct characteristic on JIT-SDP models and evaluations, and have
begun to investigate online learning, verification latency, and time-sensitive evaluation. JIT-SDP
studies have experimented with a broad range of preprocessing techniques and machine learning
algorithms. As Box suggests, “all models are wrong, some are useful [5]”, some JIT-SDP studies
focus on usefulness of models for effort-aware defect prediction in software changes, and propose
simple unsupervised models. Some of these unsupervised models are “searching-based” without
using any machine learning techniques and produce effort-aware prediction, sometimes comparable
to sophisticated supervised machine learning algorithms.
With the aim at understanding the state-of-the-art of the JIT-SDP models’ performance, we

conduct a meta-analysis of existing studies. In conducting the meta-analysis, we encounter the
same difficulties as Hall et al. [21] and Hosseini et al. [26], such as, insufficient methodological
information, incomplete evaluation criteria, and lack of consistent benchmark data sets. Despite
these difficulties, our meta-analysis indicates that (1) there has been an improvement of predictive
performance over early JIT-SDP studies although the improvement appears to have plateaued;
(2) ensemble models appear to be the best performing models, and (3) the performance of JIT-SDP
models appears to correlative positively with the ratio of defective changes in a software project.
Last, but not least, considering the findings and the insights from prior research, we point out

several research directions and considerations for future research. These directions and consid-
erations include, among others, consideration for the application domain where JIT-SDP is to be

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

0:32 Zhao, Damevski, and Chen

applied, differentiating defects based on software use, explainable and actionable predictions, and
quantifying uncertainty in JIT-SDP.

REFERENCES
[1] Pasquale Ardimento, Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, and Martina Iammarino. 2021. Just-in-time

software defect prediction using deep temporal convolutional networks. Neural Computing and Applications (2021),
1–21.

[2] Lerina Aversano, Luigi Cerulo, and Concettina Del Grosso. 2007. Learning from bug-introducing changes to prevent
fault prone code. In Ninth international workshop on Principles of software evolution: in conjunction with the 6th ESEC/FSE
joint meeting. 19–26.

[3] Jacob G Barnett, Charles K Gathuru, Luke S Soldano, and Shane McIntosh. 2016. The relationship between commit
message detail and defect proneness in java projects on github. In 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR). IEEE, 496–499.

[4] Kwabena E Bennin, Nauman bin Ali, Jürgen Börstler, and Xiao Yu. 2020. Revisiting the impact of concept drift on
just-in-time quality assurance. In 2020 IEEE 20th International Conference on Software Quality, Reliability and Security
(QRS). IEEE, 53–59.

[5] George EP Box. 1979. Robustness in the strategy of scientific model building. In Robustness in statistics. Elsevier,
201–236.

[6] Leo Breiman. 2001. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical
science 16, 3 (2001), 199–231.

[7] George G Cabral, Leandro L Minku, Emad Shihab, and Suhaib Mujahid. 2019. Class imbalance evolution and verifica-
tion latency in just-in-time software defect prediction. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 666–676.

[8] Cagatay Catal. 2011. Software fault prediction: A literature review and current trends. Expert systems with applications
38, 4 (2011), 4626–4636.

[9] Gemma Catolino, Dario Di Nucci, and Filomena Ferrucci. 2019. Cross-project just-in-time bug prediction for mobile
apps: an empirical assessment. In 2019 IEEE/ACM 6th International Conference on Mobile Software Engineering and
Systems (MOBILESoft). IEEE, 99–110.

[10] Jinyin Chen, Keke Hu, Yue Yu, Zhuangzhi Chen, Qi Xuan, Yi Liu, and Vladimir Filkov. 2020. Software visualization
and deep transfer learning for effective software defect prediction. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. 578–589.

[11] Xiang Chen, Yingquan Zhao, Qiuping Wang, and Zhidan Yuan. 2018. MULTI: Multi-objective effort-aware just-in-time
software defect prediction. Information and Software Technology 93 (2018), 1–13.

[12] Daniel Alencar da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta Coelho, and Ahmed E Hassan. 2016. A
framework for evaluating the results of the SZZ approach for identifying bug-introducing changes. IEEE Transactions
on Software Engineering 43, 7 (2016), 641–657.

[13] Honghui Du, Leandro L Minku, and Huiyu Zhou. 2019. Multi-source transfer learning for non-stationary environments.
In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[14] Ruifeng Duan, Haitao Xu, Yuanrui Fan, and Meng Yan. 2021. The impact of duplicate changes on just-in-time defect
prediction. IEEE Transactions on Reliability (2021).

[15] Yuanrui Fan, Xin Xia, Daniel Alencar da Costa, David Lo, Ahmed E Hassan, and Shanping Li. 2019. The impact of
changes mislabeled by SZZ on just-in-time defect prediction. IEEE transactions on software engineering (2019).

[16] Norman E Fenton and Martin Neil. 1999. A critique of software defect prediction models. IEEE Transactions on software
engineering 25, 5 (1999), 675–689.

[17] Wei Fu and Tim Menzies. 2017. Revisiting unsupervised learning for defect prediction. In Proceedings of the 2017 11th
joint meeting on foundations of software engineering. 72–83.

[18] Takafumi Fukushima, Yasutaka Kamei, ShaneMcIntosh, Kazuhiro Yamashita, and Naoyasu Ubayashi. 2014. An empirical
study of just-in-time defect prediction using cross-project models. In Proceedings of the 11th Working Conference on
Mining Software Repositories. 172–181.

[19] Jiri Gesi, Jiawei Li, and Iftekhar Ahmed. 2021. An Empirical Examination of the Impact of Bias on Just-in-time
Defect Prediction. In Proceedings of the 15th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). 1–12.

[20] Trisha Greenhalgh and Richard Peacock. 2005. Effectiveness and efficiency of search methods in systematic reviews of
complex evidence: audit of primary sources. Bmj 331, 7524 (2005), 1064–1065.

[21] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. 2011. A systematic literature review on fault
prediction performance in software engineering. IEEE Transactions on Software Engineering 38, 6 (2011), 1276–1304.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:33

[22] Maggie Hamill and Katerina Goseva-Popstojanova. 2009. Common trends in software fault and failure data. IEEE
Transactions on Software Engineering 35, 4 (2009), 484–496.

[23] Kim Herzig, Sascha Just, and Andreas Zeller. 2016. The impact of tangled code changes on defect prediction models.
Empirical Software Engineering 21, 2 (2016), 303–336.

[24] Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu Ubayashi. 2019. DeepJIT: an end-to-end
deep learning framework for just-in-time defect prediction. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 34–45.

[25] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. 2020. CC2Vec: Distributed representations of code changes.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 518–529.

[26] Seyedrebvar Hosseini, Burak Turhan, and Dimuthu Gunarathna. 2017. A systematic literature review and meta-analysis
on cross project defect prediction. IEEE Transactions on Software Engineering 45, 2 (2017), 111–147.

[27] Qiao Huang, Xin Xia, and David Lo. 2017. Supervised vs unsupervised models: A holistic look at effort-aware just-in-
time defect prediction. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE,
159–170.

[28] Qiao Huang, Xin Xia, and David Lo. 2019. Revisiting supervised and unsupervised models for effort-aware just-in-time
defect prediction. Empirical Software Engineering 24, 5 (2019), 2823–2862.

[29] Tian Jiang, Lin Tan, and Sunghun Kim. 2013. Personalized defect prediction. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE). Ieee, 279–289.

[30] Yasutaka Kamei, Takafumi Fukushima, Shane McIntosh, Kazuhiro Yamashita, Naoyasu Ubayashi, and Ahmed E Hassan.
2016. Studying just-in-time defect prediction using cross-project models. Empirical Software Engineering 21, 5 (2016),
2072–2106.

[31] Yasutaka Kamei and Emad Shihab. 2016. Defect prediction: Accomplishments and future challenges. In 2016 IEEE 23rd
international conference on software analysis, evolution, and reengineering (SANER), Vol. 5. IEEE, 33–45.

[32] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris Mockus, Anand Sinha, and Naoyasu Ubayashi.
2012. A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on Software Engineering 39, 6
(2012), 757–773.

[33] Jonggu Kang, Duksan Ryu, and Jongmoon Baik. 2020. Predicting just-in-time software defects to reduce post-release
quality costs in the maritime industry. Software: Practice and Experience (2020).

[34] Chaiyakarn Khanan, Worawit Luewichana, Krissakorn Pruktharathikoon, Jirayus Jiarpakdee, Chakkrit Tantithamtha-
vorn, Morakot Choetkiertikul, Chaiyong Ragkhitwetsagul, and Thanwadee Sunetnanta. 2020. JITBot: An explainable
just-in-time defect prediction bot. In 2020 35th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1336–1339.

[35] Sunghun Kim, E JamesWhitehead, and Yi Zhang. 2008. Classifying software changes: Clean or buggy? IEEE Transactions
on Software Engineering 34, 2 (2008), 181–196.

[36] Sunghun Kim, Thomas Zimmermann, Kai Pan, E James Jr, et al. 2006. Automatic identification of bug-introducing
changes. In 21st IEEE/ACM international conference on automated software engineering (ASE’06). IEEE, 81–90.

[37] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing systematic literature reviews in software
engineering. Technical Report EBSE-2007-01. School of Computer Science and Mathematics, Keele University.

[38] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, and Stephen Linkman. 2009.
Systematic literature reviews in software engineering – A systematic literature review. Information and Software
Technology 51, 1 (2009), 7 – 15. https://doi.org/10.1016/j.infsof.2008.09.009 Special Section - Most Cited Articles in
2002 and Regular Research Papers.

[39] Barbara Ann Kitchenham, David Budgen, and Pearl Brereton. 2015. Evidence-based software engineering and systematic
reviews. Vol. 4. CRC press.

[40] Masanari Kondo, Daniel M German, Osamu Mizuno, and Eun-Hye Choi. 2020. The impact of context metrics on
just-in-time defect prediction. Empirical Software Engineering 25, 1 (2020), 890–939.

[41] Ning Li, Martin Shepperd, and Yuchen Guo. 2020. A systematic review of unsupervised learning techniques for
software defect prediction. Information and Software Technology (2020), 106287.

[42] Weiwei Li, Wenzhou Zhang, Xiuyi Jia, and Zhiqiu Huang. 2020. Effort-aware semi-supervised just-in-time defect
prediction. Information and Software Technology 126 (2020), 106364.

[43] Zhiqiang Li, Xiao-Yuan Jing, and Xiaoke Zhu. 2018. Progress on approaches to software defect prediction. IET Software
12, 3 (2018), 161–175.

[44] Dayi Lin, Chakkrit Tantithamthavorn, and Ahmed E Hassan. 2021. The Impact of Data Merging on the Interpretation
of Cross-Project Just-In-Time Defect Models. IEEE Transactions on Software Engineering (2021).

[45] Jinping Liu, Yuming Zhou, Yibiao Yang, Hongmin Lu, and Baowen Xu. 2017. Code churn: A neglected metric in effort-
aware just-in-time defect prediction. In 2017 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE, 11–19.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

https://doi.org/10.1016/j.infsof.2008.09.009

0:34 Zhao, Damevski, and Chen

[46] Ruchika Malhotra. 2015. A systematic review of machine learning techniques for software fault prediction. Applied
Soft Computing 27 (2015), 504–518.

[47] Shane McIntosh and Yasutaka Kamei. 2017. Are fix-inducing changes a moving target? a longitudinal case study of
just-in-time defect prediction. IEEE Transactions on Software Engineering 44, 5 (2017), 412–428.

[48] Tim Menzies, Andrew Butcher, David Cok, Andrian Marcus, Lucas Layman, Forrest Shull, Burak Turhan, and Thomas
Zimmermann. 2012. Local versus global lessons for defect prediction and effort estimation. IEEE Transactions on
software engineering 39, 6 (2012), 822–834.

[49] Audris Mockus and David M Weiss. 2000. Predicting risk of software changes. Bell Labs Technical Journal 5, 2 (2000),
169–180.

[50] Kevin Moran, David N Palacio, Carlos Bernal-Cárdenas, Daniel McCrystal, Denys Poshyvanyk, Chris Shenefiel, and
Jeff Johnson. 2020. Improving the effectiveness of traceability link recovery using hierarchical bayesian networks. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 873–885.

[51] Keita Mori and Osamu Mizuno. 2015. An Implementation of Just-in-Time Fault-Prone Prediction Technique Using
Text Classifier. In 2015 IEEE 39th Annual Computer Software and Applications Conference, Vol. 3. IEEE, 609–612.

[52] Edmilson Campos Neto, Daniel Alencar da Costa, and Uirá Kulesza. 2018. The impact of refactoring changes on the
SZZ algorithm: An empirical study. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 380–390.

[53] Yusuf Sulistyo Nugroho, Hideaki Hata, and Kenichi Matsumoto. 2020. How different are different diff algorithms in
Git? Empirical Software Engineering 25, 1 (2020), 790–823.

[54] Matheus Paixao, Jens Krinke, Donggyun Han, and Mark Harman. 2018. CROP: Linking code reviews to source code
changes. In Proceedings of the 15th International Conference on Mining Software Repositories. 46–49.

[55] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. 2019. Fine-grained just-in-time defect prediction. Journal of
Systems and Software 150 (2019), 22–36.

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[57] Chanathip Pornprasit and Chakkrit Tantithamthavorn. 2021. JITLine: A Simpler, Better, Faster, Finer-grained Just-In-
Time Defect Prediction. arXiv preprint arXiv:2103.07068 (2021).

[58] Lei Qiao and Yan Wang. 2019. Effort-aware and just-in-time defect prediction with neural network. PloS one 14, 2
(2019), e0211359.

[59] Sophia Quach, Maxime Lamothe, Bram Adams, Yasutaka Kamei, and Weiyi Shang. 2021. Evaluating the impact of
falsely detected performance bug-inducing changes in JIT models. Empirical Software Engineering 26, 5 (2021), 1–32.

[60] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. 2013. Software fault prediction metrics: A
systematic literature review. Information and software technology 55, 8 (2013), 1397–1418.

[61] Foyzur Rahman, Sameer Khatri, Earl T Barr, and Premkumar Devanbu. 2014. Comparing static bug finders and
statistical prediction. In Proceedings of the 36th International Conference on Software Engineering. 424–434.

[62] Zhi-Yong Ran and Bao-Gang Hu. 2017. Parameter identifiability in statistical machine learning: a review. Neural
Computation 29, 5 (2017), 1151–1203.

[63] Gema Rodriguez-Perez, Meiyappan Nagappan, and Gregorio Robles. 2020. Watch out for extrinsic bugs! A case study of
their impact in just-in-time bug prediction models on the OpenStack project. IEEE Transactions on Software Engineering
(2020).

[64] Giovanni Rosa, Luca Pascarella, Simone Scalabrino, Rosalia Tufano, Gabriele Bavota, Michele Lanza, and Rocco Oliveto.
2021. Evaluating SZZ Implementations Through a Developer-informed Oracle. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE.

[65] Felix Salfner, Maren Lenk, and Miroslaw Malek. 2010. A survey of online failure prediction methods. ACM Computing
Surveys (CSUR) 42, 3 (2010), 1–42.

[66] SEI Authors. 2016. SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems.
[67] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do changes induce fixes? ACM sigsoft software

engineering notes 30, 4 (2005), 1–5.
[68] Sadia Tabassum, Leandro L Minku, Danyi Feng, George G Cabral, and Liyan Song. 2020. An investigation of cross-

project learning in online just-in-time software defect prediction. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE, 554–565.

[69] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. Online defect prediction for imbalanced data. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2. IEEE, 99–108.

[70] Chakkrit Tantithamthavorn and Ahmed E Hassan. 2018. An experience report on defect modelling in practice: Pitfalls
and challenges. In Proceedings of the 40th International conference on software engineering: Software engineering in
practice. 286–295.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction 0:35

[71] Alexander Tarvo, Nachiappan Nagappan, Thomas Zimmermann, Thirumalesh Bhat, and Jacek Czerwonka. 2013.
Predicting risk of pre-release code changes with checkinmentor. In 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 128–137.

[72] Hailemelekot Demtse Tessema and Surafel Lemma Abebe. 2021. Enhancing Just-in-Time Defect Prediction Using
Change Request-based Metrics. In 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 511–515.

[73] Yuli Tian, Ning Li, Jeff Tian, and Wei Zheng. 2020. How Well Just-In-Time Defect Prediction Techniques Enhance
Software Reliability?. In 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS).
IEEE, 212–221.

[74] Parastou Tourani and Bram Adams. 2016. The impact of human discussions on just-in-time quality assurance: An
empirical study on openstack and eclipse. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. IEEE, 189–200.

[75] Alexander Trautsch, Steffen Herbold, and Jens Grabowski. 2020. Static source code metrics and static analysis warnings
for fine-grained just-in-time defect prediction. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 127–138.

[76] Zhiyuan Wan, Xin Xia, Ahmed E Hassan, David Lo, Jianwei Yin, and Xiaohu Yang. 2018. Perceptions, expectations,
and challenges in defect prediction. IEEE Transactions on Software Engineering 46, 11 (2018), 1241–1266.

[77] Ning Xie, Gabrielle Ras, Marcel van Gerven, and Derek Doran. 2020. Explainable deep learning: A field guide for the
uninitiated. arXiv preprint arXiv:2004.14545 (2020).

[78] Zhou Xu, Kunsong Zhao, Tao Zhang, Chunlei Fu, Meng Yan, Zhiwen Xie, Xiaohong Zhang, and Gemma Catolino.
2021. Effort-Aware Just-in-Time Bug Prediction for Mobile Apps Via Cross-Triplet Deep Feature Embedding. IEEE
Transactions on Reliability (2021).

[79] Meng Yan, Xin Xia, Yuanrui Fan, Ahmed E Hassan, David Lo, and Shanping Li. 2020. Just-in-time defect identification
and localization: A two-phase framework. IEEE Transactions on Software Engineering (2020).

[80] Meng Yan, Xin Xia, Yuanrui Fan, David Lo, Ahmed E Hassan, and Xindong Zhang. 2020. Effort-aware just-in-time
defect identification in practice: a case study at Alibaba. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. 1308–1319.

[81] Limin Yang, Xiangxue Li, and Yu Yu. 2017. Vuldigger: a just-in-time and cost-aware tool for digging vulnerability-
contributing changes. In GLOBECOM 2017-2017 IEEE Global Communications Conference. IEEE, 1–7.

[82] Xinli Yang, David Lo, Xin Xia, and Jianling Sun. 2017. TLEL: A two-layer ensemble learning approach for just-in-time
defect prediction. Information and Software Technology 87 (2017), 206–220.

[83] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. 2015. Deep learning for just-in-time defect prediction. In
2015 IEEE International Conference on Software Quality, Reliability and Security. IEEE, 17–26.

[84] Xingguang Yang, Huiqun Yu, Guisheng Fan, Kai Shi, and Liqiong Chen. 2019. Local versus global models for just-in-time
software defect prediction. Scientific Programming 2019 (2019).

[85] Xingguang Yang, Huiqun Yu, Guisheng Fan, and Kang Yang. 2020. A differential evolution-based approach for
effort-aware just-in-time software defect prediction. In Proceedings of the 1st ACM SIGSOFT International Workshop on
Representation Learning for Software Engineering and Program Languages. 13–16.

[86] Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu, Baowen Xu, and Hareton Leung. 2016.
Effort-aware just-in-time defect prediction: simple unsupervised models could be better than supervised models. In
Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering. 157–168.

[87] Steven Young, Tamer Abdou, and Ayse Bener. 2018. A replication study: just-in-time defect prediction with ensemble
learning. In Proceedings of the 6th International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering. 42–47.

[88] Andreas Zeller, Thomas Zimmermann, and Christian Bird. 2011. Failure is a four-letter word: A parody in empirical
research. In Proceedings of the 7th International Conference on Predictive Models in Software Engineering. 1–7.

[89] Zhengran Zeng, Yuqun Zhang, Haotian Zhang, and Lingming Zhang. 2021. Deep just-in-time defect prediction: how far
are we?. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis. 427–438.

[90] Feng Zhang, Audris Mockus, Iman Keivanloo, and Ying Zou. 2016. Towards building a universal defect prediction
model with rank transformed predictors. Empirical Software Engineering 21, 5 (2016), 2107–2145.

[91] Wenzhou Zhang, Weiwei Li, and Xiuyi Jia. 2019. Effort-Aware Tri-Training for Semi-supervised Just-in-Time Defect
Prediction. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 293–304.

[92] Kunsong Zhao, Zhou Xu,Meng Yan, Lei Xue,Wei Li, and GemmaCatolino. 2021. A compositional model for effort-aware
Just-In-Time defect prediction on android apps. IET Software (2021).

[93] K. Zhao, Z. Xu, T. Zhang, Y. Tang, and M. Yan. 2021. Simplified Deep Forest Model Based Just-in-Time Defect Prediction
for Android Mobile Apps. IEEE Transactions on Reliability (2021), 1–12. https://doi.org/10.1109/TR.2021.3060937

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

https://doi.org/10.1109/TR.2021.3060937

0:36 Zhao, Damevski, and Chen

[94] Kun Zhu, Nana Zhang, Shi Ying, and Dandan Zhu. 2020. Within-project and cross-project just-in-time defect prediction
based on denoising autoencoder and convolutional neural network. IET Software 14, 3 (2020), 185–195.

[95] Xiaoyan Zhu, Binbin Niu, E James Whitehead Jr, and Zhongbin Sun. 2018. An empirical study of software change
classification with imbalance data-handling methods. Software: Practice and Experience 48, 11 (2018), 1968–1999.

ACM Comput. Surv., Vol. Vol, No. Num, Article 0. Publication date: 2022.

1

A Systematic Survey of Just-In-Time Software Defect
Prediction: Online Supplement

YUNHUA ZHAO, CUNY Graduate Center, USA
KOSTADIN DAMEVSKI, Virginia Commonwealth University, USA
HUI CHEN∗†, CUNY Brooklyn College, USA

CCS Concepts: • Software and its engineering→ Software defect analysis; Risk management; • Com-
puting methodologies→ Cross-validation; Learning settings; Learning paradigms.

ACM Reference Format:
Yunhua Zhao, Kostadin Damevski, and Hui Chen. 2022. A Systematic Survey of Just-In-Time Software
Defect Prediction: Online Supplement. ACM Comput. Surv. Vol, Num, Article 1 (January 2022), 23 pages.
https://doi.org/xx.xxxx/xxyyzza.aabbcde

This is an supplement that accompanies survey article with the same title. For convenience, we use
“this survey” or “the survey” to refer to the survey article, an “this supplement” or “the supplement”
this online supplement.

In the supplement, Section 1 details themethodology of this systematic survey, Section 2 illustrates
the number of JIT-SDP studies over time, Section 3 lists the software projects used for evaluating
JIT-SDP models in the surveyed JIT-SDP studies, Section 4 gives additional and detailed information
about software metrics (features or independent variables), Section 5 lists machine learning models
that the JIT-SDP studies are based on, Section 6 examines the availability of replication packages in
the JIT-SDP studies, finally, Section 7 lists the surveyed JIT-SDP studies and provides a one-sentence
summary describing the primary topic of each study.

1 REVIEWMETHODOLOGY
Kitchenham et al. [39, 40] advocate a systematic literature review method in software engineering
aiming at providing scientific value to the research community. According to Kitchenham et
al. [38, 40], a systematic literature review process consists of the stages of planning the review
(including identifying the need for the review, specifying the research questions, and developing a
review protocol), conducting the review, and reporting the review.

∗The corresponding author
†Also with CUNY Graduate Center, Department of Computer Science.

Authors’ addresses: Yunhua Zhao, Department of Computer Science, CUNY Graduate Center, 365 5th Avenue, New York, NY,
USA, 10016, yzhao5@gradcenter.cuny.edu; Kostadin Damevski, Department of Computer Science, Virginia Commonwealth
University, 401 West Main Street, Richmond, VA, USA, 23284, damevski@acm.org; Hui Chen, Department of Computer &
Information Science, CUNY Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY, USA, 11210, huichen@acm.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0360-0300/2022/1-ART1 $15.00
https://doi.org/xx.xxxx/xxyyzza.aabbcde

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

https://doi.org/xx.xxxx/xxyyzza.aabbcde
https://doi.org/xx.xxxx/xxyyzza.aabbcde

1:2 Zhao, Damevski, and Chen

1.1 Literature Search
Through the systematic literature review process, we use two methods to identify relevant studies,
digital library keyword search and literature snowballing.

1.1.1 Digital Library Keyword Search. To locate existing surveys and papers, we use the digital
libraries listed in Table 1. These digital libraries archive and index leading journals and conference
proceedings in Software Engineering and the related. For instance, they index and archive the
conference proceedings and journals in Table 2. Not surprisingly, existing software engineering
research surveys also reference to these digital libraries. For instance, Li et al. [42] cite digital
libraries 1–4 as the digital libraries to carry out their survey while Zakari el al. [79] 1–5.

Table 1. Digital Libraries

Digital Libraries URL to Query User Interface

1. ACM https://dl.acm.org/
2. IEEE Xplore https://ieeexplore.ieee.org/
3. ScienceDirect https://www.sciencedirect.com/search/
4. SpringerLink https://link.springer.com/
5. Wiley https://onlinelibrary.wiley.com/

1.1.2 Literature Snowballing. The digital library keyword search may not identify all of the relevant
studies. To alleviate this problem, we use the snowball method to discover new studies starting
with the selected articles from the previous step. We consider a variant of the snowball method
called the backward (or reverse) snowball where we examine the references of an identified article.
Empirical evidence suggests that the snowball method should be effective to locate “high quality
sources in obscure locations [20].”

1.2 Planning
Kitchenham et al.[37, 38] published a guideline in 2007 and refined it in 2013. Applying the method
by Kitchenham et al., we begin this research with an exploratory phase, an informal search and
examination of literature about defect prediction. This belongs to the planning stage of Kitchenham
et al.’s systematic method.
Software defect prediction (SDP) has been a long standing research subject for nearly half a

century since 1970s. Not only have researches in this area evolved and taken different directions,
but also there are relevant systematic surveys in the literature developed over time. Following
the exploration phase, we proceed to the second phase of the planning stage, i.e., we carry out
a meta-survey whose process we describe in Section 1.2.1 of this supplement. Kitchenham et al.
term this type of survey as a tertiary survey, a systematic survey of systematic surveys [38] and
argue that it is potentially less resource intensive to conduct a tertiary survey than conduct a
new systematic review of primary studies in order to answer wider research questions [38]. In
this meta-survey phase, we investigate existing surveys on SDP. As the result of this phase, we
articulate the need to conduct this literature review on Just-In-Time Defect Prediction (JIT-SDP) in
Section 1 of this survey and define the research questions in Section 1.3.1 of this supplement.
Following the planning stage, we turn our focus to a systematic literature review on JIT-SDP

and describe the process in Section 1.3 of this supplement. With this focused survey, we answer
the research questions in Sections 3, 4, and 5 of the survey.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

https://dl.acm.org/
https://ieeexplore.ieee.org/
https://www.sciencedirect.com/search/
https://link.springer.com/
https://onlinelibrary.wiley.com/

A Systematic Survey of Just-In-Time Software Defect Prediction: Online Supplement 1:3

Query 1. Semantics of digital library keyword search query for meta survey

(

(

(fault OR defect OR bug OR exception OR failure OR error)

AND

(prediction OR model))

)

OR

(

(fault OR defect OR bug OR exception OR failure OR error)

AND

risk

AND

(assessment OR prediction OR model)

)

)

AND

(

review OR survey OR mapping OR progress OR accomplishment OR critique

)

1.2.1 Meta-Survey. The goal of themeta survey is to define the scope of SDP, to learn its relationship
with the related areas, to understand the topics surveyed in prior literature surveys or reviews on
SDP.
Researchers and practitioners have used a range of terms to refer the scenarios that software

exhibit undesired behavior or outputs. These terms include “defect”, “fault“, “bug”, “error”, “failure”,
and “exception”. These occur in either a piece of “software” or in a “program”. Based on these, we
construct Query 1. The digital libraries in Table 1 vary by their user interfaces and the query is to
convey the semantics of our queries using the digital libraries.

Survey Article Publication Venues. Kitchenham et al. points out that the quality of tertiary surveys
depends on the quantity and quality of systematic reviews [38]. In order to control the quality of
the meta-survey, we choose only survey papers from the most significant software engineering
journals and conferences by consulting Google Scholar1 , the Computing Research and Education
Association of Australasia (CORE)2, Microsoft Academic where we select the “Topic” “Computer
science” and its subtopic “Software engineering”3, and journals and conferences cited by prior
surveys. These journals and conferences are in Table 2.

1.2.2 Results of Literature Search for Meta-Survey. We list in Table 3 the prior surveys on SDP
that we identify. These SDP surveys have focused on a variety of aspects of the SDP problem,
including the specific definition of the problem (e.g., predicting a probability or binary value),
selected features, data granularity, training and test datasets, model design and evaluation metrics.
While some of the surveys mention JIT-SDP, they focus only on the difference in data type (i.e.,
JIT-SDP uses software changes), but fail to provide coverage of the more nuanced aspects of the
problem. For instance, JIT-SDP introduces a label identification latency stemming from the fact

1See https://scholar.google.com/citations?view_op=top_venues&vq=eng_softwaresystems
2See http://portal.core.edu.au/jnl-ranks/?search=software&by=all&source=CORE2020&sort=arank&page=1
3See https://academic.microsoft.com/

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

https://scholar.google.com/citations?view_op=top_venues&vq=eng_softwaresystems
http://portal.core.edu.au/jnl-ranks/?search=software&by=all&source=CORE2020&sort=arank&page=1
https://academic.microsoft.com/

1:4 Zhao, Damevski, and Chen

Table 2. Selected Software Engineering Conferences and Journals

Publication
Type

Publication

Conferences

ACM/IEEE International Conference on Software Engineering (ICSE)
ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE)
ACM/IEEE International Conference on Automated Software Engineering (ASE)
ACM/IEEE International Conference on Mining Software Repositories (MSR)
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM)
IEEE International Conference on Software Maintenance and Evolution (ICSME)
IEEE International Conference on Software Quality, Reliability and Security (QRS)

Journals

ACM Transactions on Software Engineering and Methodology (TSEM)
IEEE Transactions on Software Engineering (TSE)
IEEE Transactions on Reliability (TR)
(Elsevier) Journal of Systems and Software (JSS)
(Elsevier) Information and Software Technology (IST)
(Elsevier) Applied Soft Computing
(Springer) Empirical Software Engineering (ESE)
(Wiley) Software Testing, Verification & Reliability (STVR)
(Wiley) Software: Practice and Experience

This table is for filtering the digital library search results to identify SDP surveys. It is not for identifying JIT-SDP studies

that it takes time for developers to identify defects, which, in turn, changes certain past software
changesets from clean to defect-inducing.

Table 3. Summary of Software-Defect Prediction Surveys

No. Authors Survey Coverage
Duration # of Articles Surveyed Survey Topic

SV1 Li et al. [42] 2000–2018 49 Unsupervised SDP
SV2 Li et al. [44] 2014–2017 70 Comprehensive
SV3 Hosseini et al. [26] 2002–2017 46 Cross-project SDP
SV4 Kamei and Shihab [32] 1992–2015 65 Comprehensive
SV5 Malhotra [47] 1995–2013 64 Within-project & cross-project SDP
SV6 Radjenović et al. [56] 1991–2011 106 Software metrics for SDP
SV7 Hall et al. [22] 2000–2010 208 Within-project & cross-project SDP
SV8 Catal et al. [9]1 1990–2009 68 Datasets, metrics, and models
SV9 Fenton and Neil [16]2 1971–1999 55 Defect, failure, quality, complexity,

metrics, and models
1Catal et al. [9] investigate 90 software defect/fault prediction papers in their survey, but only cite 68. We use
this as the number of papers studied in their survey.
2 Fenton and Neil [16] do not list explicitly the paper surveyed, and we only count the papers relevant to software
metrics, defects, faults, quality, and failures.

As the result of the meta survey, we are able 1) to justify the need for a focused survey on
JIT-SDP; 2) to provide background information for JIT-SDP, such as, clear definitions of defect and
SDP; and 3) to determine the distinct aspects of JIT-SDP to focus our survey on.

1.3 Focused Survey on JIT-SDP
Upon the completion of the meta-survey, we commerce the focused survey on JIT-SDP.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction: Online Supplement 1:5

1.3.1 Research Questions. Our end goal is to provide a comprehensive understanding of the state
of the art of JIT-SDP. For this, we define and answer the following research questions.

RQ.1 What is the scope of the SDP research? Our literature search results in several related terms or
areas about predicative modeling for quality assurance in software engineering. These terms
include software reliability prediction, software failure prediction, software fault prediction,
and software defect prediction. It begs the question how we define SDP, what the scope of
SDP is, and how we differentiate it from the related areas.

RQ.2 What is the scope of the JIT-SDP research? JIT-SDP is an area in SDP. To comprehend the
studies in JIT-SDP and present our understanding of it in a way complementary to other than
repeating prior surveys in SDP, we need to identify the scope of JIT-SDP and to differentiate
JIT-SDP from SDP that has been investigated in prior surveys, and present our understanding
in the context of SDP, a larger area than JIT-SDP.

RQ.3 What are input data and the features or the independent variables in JIT-SDP? A necessary
type of data to JIT-SDP is software changesets. Are there any other types of data that can
help improve JIT-SDP? What are the features that we can extract from the input data? How
do these features impact JIT-SDP performance? These are not only helpful to build JIT-SDP
models, but also potentially aid our understanding on the relationship between factors in
the software development life cycle process and defect occurrences, which help produce
explainable and actionable models and insights.

RQ.4 On what target do we make predictions and what are the dependent variables in JIT-SDP?
JIT-SDP is to predict defects on software changes. Are software changes the only target on
which we predict defects?What are we really predicting? In another word, is defect proneness
the only dependent variable? Understanding these is important to understand the limitation
and the potential of existing model techniques.

RQ.5 What are the modeling techniques in JIT-SDP? Statistical analysis and machine learning are
important model building techniques for JIT-SDP. What are the machine learning techniques
used in JIT-SDP and how do they compare, such as, in terms of predicative performance? This
helps address several issues. First, what machine learning techniques should we explore to
continue to improve JIT-SDP? Second, which machine learning technique should we choose
as a baseline to compare with if we are to build a new model? Third, if a user wishes to
use JIT-SDP to help QA, which machine learning model should the user choose. Last, but
not the least, is machine learning the only way to build JIT-SDP models? If not, how do the
alternative approaches perform when compared with machine learning?

RQ.6 What are the evaluation strategies and criteria used in the existing JIT-SDP models? First,
to understand the strength and the limitation of a JIT-SDP model, we need to know how
we evaluate it. Second, to be able to assemble and compare existing models, we need to
understand the evaluation criteria and strategies.

RQ.7 How is performance of JIT-SDPmodels with respect to the evaluation criteria?Which JIT-SDP
model performs the best? This helps researchers to develop new models and compare it with
the existing ones and helps users to select existing ones to build applications of JIT-SDP.

RQ.8 How are the JIT-SDP researches address the reproducibility (or replication) problem? Repro-
ducibility is an important problem that has garnered increased scrutiny from the research
community and the public in empirical research. JIT-SDP is an empirical research. Repro-
ducibility is an important concern. How is the practice of the prior JIT-SDP studies with
regard to facilitating replication to examine whether a JIT-SDP research is reproducible.

We focus our survey on JIT-SDP. The answer to RQ. 1 is thus out of scope of this survey. The
answer to RQ.2 is in Section 3.1 of the survey where we define Release SDP and JIT-SDP. Sections 3.2

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

1:6 Zhao, Damevski, and Chen

Query 2. Semantics of digital library keyword search query for JIT-SDP

(

(

(fault OR defect OR bug OR exception OR failure OR error)

AND

(prediction OR model))

)

OR

(

(fault OR defect OR bug OR exception OR failure OR error)

AND

risk

AND

(assessment OR prediction OR model)

)

)

AND

(just -in -time OR change)

AND

(year >= 2000)

and 3.3 of the survey answer RQ.3. In Sections 3.6.1 and 3.6.2 of the survey, we divide JIT-SDP
models into two categories, defect prediction and effort-aware prediction based on dependent
variables, which is an answer to RQ.4. Section 3.6 of the survey documents modeling techniques,
thus answers RQ. 5. For RQ.6, we report JIT-SDP evaluation strategies in Section 3.7 of the survey.
Through a synthesis of the prior JIT-SDP studies, we provide an answer to RQ.7. In Section 6 of
this online supplement, we collect and discuss replication package and data, which is an answer to
RQ.8.

1.3.2 Digital Library Keyword SearchQuery for JIT-SDP. Kamei et al. coined the term “Just-in-time”
Quality Assurance in their 2012 article [33]. JIT-SDP is the change-level SDP, i.e., is to predict
existence of defects in software changes. Mockus and Weiss appear to be the first to examine
change-level defect prediction [49] in year 2000. Following Query 2, we search the digital libraries
in Table 1.

1.3.3 Literature Selection via 2-Pass Review. We combine all of the search results from the digital
libraries and remove duplicates and divide the set of articles among the authors of this survey to
evaluate whether to include or discard an article. The division ensures that we assign each article
to two of the three authors and each article goes through two reviews by the two assigned authors
(thus, the 2-pass review). Each author follows the following process. First, we remove any article
whose title clearly indicates that it is not relevant. Second, for the remaining articles, we evaluate
whether or not to include them by reading the abstract. Finally, we convene a meeting and resolve
the difference via a discussion.

1.3.4 Exclusion and Inclusion Criteria. We include only articles written in English that study
predictive modeling for JIT-SDP whose prediction is on the level or sub-level of software changes.
For instance, we exclude Amasaki et al. [2] because they make predictions on the level of software
component albeit claiming that they study JIT-SDP. We also exclude non-peer reviewed articles,
posters, and abstract-only articles.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction: Online Supplement 1:7

1.3.5 Results of Literature Search for JIT-SDP. We search JIT-SDP studies published from 2000 and
completed our literature search in November 2021. Table 4 summarizes the literature search process
and the results. The digital library keyword search yield 881 entries. After we remove duplicates,
complete a two-pass review, we identify 55 JIT-SDP articles. We then begin the snowballing process
on these 55 JIT-SDP articles. As shown in Table 4, these 55 JIT-SDP papers lists in total 2563 entries
in their reference sections. After removing duplicates and a two-pass review, we find 12 additional
JIT-SDP articles. Table 15 in Section 7 lists these 67 articles and provides a one-sentence summary
describing the primary topic of each study.

Table 4. JIT-SDP Literature Search Results

Digital Library &
Sources

Additional Constraint # of Articles

Library Search or Snowballing JIT-SDP after
2-Pass Review

ACM – 196

55
IEEE Xplore – 55
ScienceDirect Research articles 269
SpringerLink – 334
Wiley Computer Science 27

Snowballing On 55 JIT-SDP papers 2563 12

2 PUBLICATIONS TREND
Figure 1 plots the number of selected JIT-SDP papers versus publication year4. It shows that there
has been an elevated interest in JIT-SDP in recent years.

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Publication Year

0.0

2.5

5.0

7.5

10.0

12.5

of

 P
ap

er
s

Fig. 1. The number of selected JIT-SDP papers over publication year

3 EVALUATION DATA
Table 5 is a summary of software projects used for evaluating JIT-SDP models. Most studies use
open source projects. As shown in Table 5, 11 studies include proprietary/commercial projects
among the 67 papers surveyed (listed in Table 15).

4The publication year is from the online publication date if available. The online publication date may be different from the
bibliographic or the final publication date.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

1:8 Zhao, Damevski, and Chen

Table 5. Software Projects Used for Evaluation in JIT-SDP Studies

Begin of Table

Count Projects Study
Total(Proprietary)

11(5) Bugzilla, Eclipse JDT, Eclipse Platform, Mozilla, Columba, Post-
greSQL; 5 commercial projects

Kamei et al. [33]

6(0) Bugzilla, Columba, Eclipse JDT, Eclipse Platform, Mozilla, Post-
greSQL

Yang et al. [73]
Yang et al. [77]
Fu and Menzies [17]
Huang et al. [27]
Liu et al. [46]
Yang et al. [72]
Young et al. [78]
Albahli [1]
Qiao and Wang [54]
Yang et al. [76]
Yang et al. [74]
Zhang et al. [81]
Huang et al. [28]
Chen et al. [11]
Li et al. [43]
Yang et al. [75]
Zhu et al. [85]

5(0) Bugzilla, Columba, Eclipse Platform, Mozilla, PostgreSQL Bennin et al. [6]
4(0) Eclipse Platform, Eclipse JDT, Mozilla, PostgreSQL Jahanshahi et al. [29]
4(0) Bugzilla, Eclipse Platform, Eclipse JDT, Mozilla Tessema et al. [64]
11(0) Bugzilla, Columba, Eclipse JDT, Eclipse Platform, Mozilla, Post-

greSQL; Gimp, Maven-2, Perl, Ruby on Rails, Rhino
Kamei et al. [31]

Fukushima et al. [18]
2(0) QT, OpenStack McIntosh and Kamei [48]

Hoang et al. [24]
Rodriguezperez et al. [58]
Hoang et al. [25]
Gesi et al. [19]
Pornprasit et al. [53]
Zeng et al. [80]

15(0) Android Firewall, Alfresco, Android Sync, Android Wallpaper,
AnySoft Keyboard, Apg, Applozic Android SDK, Chat Secure An-
droid, Delta Chat, Android Universal Image Loader, Kiwix, Observ-
able Scroll View, Own Cloud Android, Page Turner, Notify Reddit

Catolino et al. [10]
Zhao et al. [83]
Zhao et al. [82]
Zhao et al. [84]

19(0) Android Firewall, Alfresco, Android Sync, Android Wallpaper,
AnySoft Keyboard, Apg, Applozic Android SDK, Chat Secure An-
droid, Delta Chat, Android Universal Image Loader, Kiwix, Observ-
able Scroll View, Own Cloud Android, Page Turner, Notify Reddit,
Facebook Android SDK, Lottie, Atmosphere, Telegram

Xu et al. [68]

10(0) Apache ActiveMQ, Camel, Derby, Geronimo, Hadoop Common,
HBase, Mahout, OpenJPA, Pig, Tuscany

Fan et al. [15]

8(0) Apache ActiveMQ, Camel, Derby, Geronimo, Hadoop Common,
HBase, OpenJPA, Pig

Duan et al. [12]

18(0) Apache ActiveMQ, Ant, Camel, Derby, Geronimo, Hadoop, HBase,
IVY, JCR, JMeter, LOG4J2, LUCENE, Mahout, OpenJPA, Pig, POI,
VELOCITY, Xerces-C++

Tian et al. [65]

To be continued

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction: Online Supplement 1:9

Continuation of Table 5

Count Projects Study

13(3) Apache Fabric8, Camel, Tomcat; JGroups; Brackets; OpenStack Neu-
tron, Nova; Spring-integration; Broadleaf Commerce; NPM; and 3
proprietary projects

Tabassum et al. [61]

Cabral et al. [8]
2(0) Apache Cassandra, Hadoop Quach et al. [55]
39(0) Apache Ant-Ivy, Archiva, Calcite, Cayenne, Commons BCEL, Com-

mons BeanUtils, Commons Codec, Commons Collections, Commons
Compress, Commons Configuration, Commons DBCP, Commons
Digester, Commons IO, Commons Jcs, Commons JEXL, Commons
Lang, Commons Math, Commons Net, Commons SCXML, Com-
mons Validator, Commons VFS, DeltaSpike, Eagle, Giraph, Gora,
JSPWiki, Knox, Kylin, Lens, Mahout, ManifoldCF, Nutch, OpenNLP,
Parquet-MR, Santuario-java, SystemML, Tika, Wss4j

Trautsch et al. [67]

10(0) Apache Lucene, Tomcat, jEdit, Ant, Synapse, Flink, Hadoop; Volde-
mort; iTextpdf; Facebook Buck

Zhu et al. [86]

20(0) Apache Accumulo, Camel, Cinder, Kylin, Log4j, Tomcat; Eclipse
Jetty; OpenStack Nova; Angular-js, Brackets, Bugzilla, Django, Fastj-
son, Gephi, Hibernate-ORM, Hibernate-Search, ImgLib2, osquery,
PostgresSQL, Wordpress

Lin et al. [45]

10(0) Apache Accumulo, Hadoop, OpenJPA; Angular-js; Bugzilla; Eclipse
Jetty; Gerrit; Gimp; JDeodorant; JRuby

Pascarella et al. [52]

6(0) ZooKeeper, Xerces-Java, JFreeChart, Jackson Data Format, Jackson
Core, Commons Imaging

Ardimento et al. [3]

14(0) Deeplearning4j, JMeter, H2O, LibGDX, Jetty, Robolectric, Storm, Jitsi,
Jenkins, Graylog2-server, Flink, Druid, Closure-compiler, Activemq

Yan et al. [69]

1(0) Jenkins Borg et al. [7]
5(0) Apache Hadoop, Camel; Gerrit; OsmAnd; Bitcoin; Gimp Kondo et al. [41]
1(0) Mozilla Firefox Yang et al. [71]
15(0) OpenStack Cinder, Devstack, Glance, Heat, Keystone, Neutron, Nova,

OpenStack-Manuals, Swift, Tempest; Eclipse CDT, EGit, JGit, Linux-
Tools, Scout.rt

Tourani and Adams [66]

3(0) Apache OpenJPA, James; Eclipse Birt Mori et al. [50]
6(0) Linux Kernel, PostgreSQL, Xorg Xserver, Eclipse JDT, Lucene,

Jackrabbit
Jiang et al. [30]

7(1) Linux Kernel, PostgreSQL, Xorg Xserver, Eclipse JDT, Lucene,
Jackrabbit; 1 Cisco project (proprietary)

Tan et al. [62]

12(0) Apache HTTP 1.3 Sever, Bugzilla, Columba, Gaim, GForge, jEdit,
Mozilla, Eclipse JDT, Plone, PostgreSQL, Scarab, Subversion

Kim et al. [36]

11(1) Apache HTTP 1.3 Server, Columba, Gaim, GForge, jEdit, Mozilla,
Eclipse JDT, Plone, PostgreSQL, Subversion; and a commercial
project (proprietary, in Java)

Shivaji et al. [60]

2(0) JHotDraw and DNS-Java Aversano et al. [4]
324(0) 324 unspecified repositories Barnett et al. [5]
21(0) 21 unspecified OSS projects Khanan et al. [35]
2(2) 2 maritime projects (proprietary) Kang et al. [34]
1(1) 1 unspecified project (proprietary) Eken et al. [14]

14(14) 14 unspecified Alibaba projects (proprietary, mainly in Java) Yan et al. [70]
0(1) 1 telecommunication project (proprietary) Eken et al. [13]

12(12) 12 Ubisoft projects (proprietary) Nayrolles et al. [51]
1(1) Windows Phone (proprietary) Tarvo et al. [63]
1(1) 5ESS®switching system software (proprietary) Mockus and Weiss [49]

End of Table

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

1:10 Zhao, Damevski, and Chen

4 SOFTWARE METRICS AND FEATURES FOR JIT-SDP
In Section 3.3 of this survey, we provide a table of categories of software metrics that prior studies
find useful for JIT-SDP. We provide a more detailed discussion for these categories of metrics.

4.1 Software Change Metrics
Kamei et al. summarize past studies on the relationship between the characteristics of software
changes and defects, and list 14 software change metrics that have been useful for JIT-SDP [33].
Liu et al. build an unsupervised effort-aware JIT-SDP model called CCUM and argue that the code
churn metric, i.e., the size of a code change is particularly useful for unsupervised models [46].
Kondo et al. argue that the context lines of a software change, i.e., the lines of code surround the
changed lines in a software change has an impact on defect proneness of the software change [41].
They propose and evaluate a suite of metrics called the context metrics, i.e, the metrics computed
from the context lines [41]. Additionally, they also adapt the indentation metric from Hindle et
al. [23] and propose two change complexity metrics [41].
Pascarella et al. investigate defect prediction on a finer granularity than software changes, i.e.,

to predict whether a specific file in the software change is defect prone [52]. They adapt the
process metrics in Rahman and Devanbu [57] and evaluate a suite of file-level process metrics
for changesets [52]. Table 7 summarizes file-level software change metrics; each of the metrics is
computed on a file in the changeset.

Table 6 lists the metrics by Kamei et al., Liu et al., and Kondo et al. [33, 41, 46] organized according
to different categories.

4.2 Commit Message Features
Since commit messages are in natural language text, features to encode them are usually borrowed
from the natural language processing literature. An example is term frequency (TF) that counts
the occurrences of a specific word in the commit message, e.g., used by Tan et al. [62]. A typical
workflow to compute the TF feature is to assemble the corpus of the commit messages, i.e., the
collection of all commit messages, to use a stemmer to obtain the root of each word, to remove stop
words or rare words, to obtain a word dictionary, to assign an index to each word in the dictionary,
and finally to form a vector recording occurrences of the dictionary words in a commit message.
The TF vector of a commit message is likely a sparse vector with most elements as 0. Barnett et
al. [5] hypothesize that the level of detail in commit messages is useful for JIT-SDP and confirm it
via their investigation of more than 300 repositories. For this, they propose two commit message
metrics, commit volume and commit content. The former is the number of words in a commit
message after the stop words are removed. The later is a score computed via a SPAM filter, and
this is in effect a feature representation of the commit message and a surrogate representing the
content of the commit message. Table 8 lists these metrics.

4.3 ITS Data Features
ITS data, such as, issue reports, issue discussions, change requests, and code reviews can be useful to
predict defects in future changes as the result of these data. Tourani and Adams [66] propose a suite
of issue discussion and code review discussion metrics that attempt to capture the characteristics
of these data sources other than actual textual content; Table 9 lists these metrics.
Tessema and Abebe [64] propose 6 metrics for change requests in ITS. They augment these

metrics with Kamei et al [33]’s software change metrics and show that the JIT-SDP models with
augmented metrics outperform those with the change metrics alone. Table 10 summarize the 6
change request metrics. These metrics are from the meta-data of the change requests.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction: Online Supplement 1:11

Table 6. Software Change Metrics [31, 33, 46]

Category Metric Description

Diffusion

NS Number of modified subsystems
ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across each file

Size
LA Lines of code added
LD Lines of code deleted
LT Lines of code in a file before the change

Purpose FIX Whether or not the change is a defect fix

History
NDEV The number of developers that changed the modified files
AGE The average time interval between the last and current change
NUC The number of unique changes to the modified files

Experience
EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on a sub-system

Size Churn Size of the change, i.e., LA + LD
RChurn Relative Churn, i.e., (LA + LD)/LT
RLA Relative LA, i.e., LA / LT
RLD Relative LD, i.e., LD / LT
RLT Relative LT, i.e., LT / NF

Change
Complexity
(Indentation)

AS Number of white spaces on all the “+” (added) lines in a commit
AB Sum of the difference of left-braces and right-braces on all the “+” lines in each

function in a commit

Change Context

NCW Number of words in context
NCKW Number of programming language keywords
NCCW number of words in the context and the changed lines
NCCKW Number of programming language keywords in the context and the changed

lines

4.4 Static Program Analysis Metrics
Trautsch et al. [67] collect static program analysis warning messages from two popular tools,
PMD and OpenStaticAnalyzer. From these warning messages, aimed at JIT-SDP, they derive the
warning density metrics listed in Table 11.

5 JIT-SDP MODELS
The prior JIT-SDP studies have examined a broad range of machine learning algorithms. As such,
one may argue that JIT-SDP is a microcosm of recent development in machine learning. It is
important to note that there have been several investigations of non-machine-learning algorithms
for JIT-SDP. We refer to this type of JIT-SDP models as searching-based models. Searching-based
models like those in Yang et al. [77] and Liu et al. [46] are unsupervised. Several studies extend
these unsupervised searching-based models by adding a supervised component to improve their
predictive performance. Table 12 lists the modeling techniques in the prior JIT-SDP studies. It shows
that Logistic Regression, Tree-based models (including Random Forest, C4.5 Decision Tree and
ADTree) and ensemble models (including Random Forest, XGBoost, and others) are more popular
modeling techniques and the use of neural network-based models (including deep neural networks)
is on the rise.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

1:12 Zhao, Damevski, and Chen

Table 7. Software File Change Metrics [41, 52]

Category Metric Description

Change Process

COMM Number of changes to the file up to the considered commit
ADEV Number developers who modified the file up to the considered commit
DDEV Cumulative number of distinct developers contributed to the file up to the considered

commit
ADD Number of lines added to the file in the considered commit
DEL Number of lines removed from the file in the considered commit
OWN Whether the commit is done by the owner of the file
MINOR Number of contributors who contributed less than 5% of the file up to the considered

commits
SCTR Number of packages modified by the committer in the commit
NADEV Number of developers who changed the files in the commits where the file has been

modified
NDDEV Cumulative number of distinct developers who changed the files in commits where

the file has been modified
NCOMM Number of commits made to files in commits where the file has been modified
NSCTR Number of different packages touched by the developer in commits where the file

has been modified
OEXP Percentage of lines authored in the project
AEXP Mean of the experiences of all the developers who touched the file

Table 8. Commit Message Metrics [5, 62]

Feature Description Study

CM-TF Term frequency of commit message Tan et al. [62]
CM-VOLUME Number of words in commit message excluding stop words Barnett et al. [5]
CM-SPAM Commit message content represented by SPAM score computed via a

SPAM filter
Barnett et al. [5]

Table 9. Issue Report, Issue Discussion, and Code Review Metrics [66]

Category Metric Description

Thread Focus

COMMEXP Commenter experience
RPTEXP Reporter experience
RVWEXP Reviewer experience
PATCHNUM Number of patch revisions
NINLCMMT Number of inline comments

Thread Length NUMCMMT Number of comments
LENCMMT Length of comments

Thread Time
RVWTIME Review time
FIXTIME Fix time
DISCLAG Average discussion lag

Sentiment CMMTSENT Comment sentiment

6 REPLICATION PACKAGES AND DATA
Reproducibility is an important issue in empirical studies [17]. Table 13 lists the studies that indicate
the availability of the replication packages among the 67 studies in Table 15. Among the studies, 2

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction: Online Supplement 1:13

Table 10. Change Request Metrics [64]

Metrics Description

CR-TTM Time span between submission of the change request to its resolution (a new change)
CR-NDA Number of developers involved in the change request
CR-PRIORITY Priorities assigned to the change request
CR-SEVERITY Severity assigned to the change request
CR-NC Number of comments about the change request
CR-DD Depth of discussion computed as the number of words used during the discussion of the change

request

Table 11. Static Program Analysis Metrics [67]

Category Metric Description

Program
Analysis

SysWD Warning density of the project
FSysWD Cumulative difference between warning density of the file and the project
AuDWD Cumulative sum of the changes in warning density by the author

replication packages appear no longer accessible and 2 are identical, which results in 26 accessible
replication packages.
Some of the replication packages have an impact not only on the reproducibility of the studies

that provide the packages, but also on generating new models or new insights or the both. For
instance, Kamei et al. [33] make available a replication package including both the source code and
the data sets. More than 10 studies take advantage of either the source code, the data set, or the
both. Yang et al. [77] include the the source code in their replication package and the code allows
Fu and Menzies [17] to quickly replicate the Yang et al.’s results and helps Fu and Menzies reach
new discovery. Table 14 provide several examples of those impactful studies and their replication
packages. The table also lists the studies that use the code of, or the data of, or the both code and
the data in the replication packages.
The research community has curated additional tools that facilitate the JIT-SDP research. Two

prime examples are Commit Guru and several SZZ implementations. Commit Guru [59] is a public
available tool to compute software change metrics for software projects whose source code is in a
Git repository. The studies that use the data extracted from Commit Guru include Tabassum et
al. [61], Cabral et al. [8], Khanan et al. [35], and Kondo et al. [41]. Public available SZZ tools have
made labeling of large collections of software changes feasible.

7 SELECTED JIT-SDP STUDIES

Table 15. JIT-SDP Studies and Primary Topics.

Begin of Table

ID Study Year𝑎 Primary Topics

P1 Ardimento et al. [3] 2021 applying temporal convolutional neural networks with hierarchical
attention layers to a set of 40+ production and process software metrics
data to predict defect proneness of SCM commits

P2 Duan et al. [12] 2021 modeling impact of duplicate changes, i.e., identical changes applied
to multiple SCM branches on prediction performance

𝑎The publication year is from the online publication date if available. The online publication date may be different
from the bibliographic or the final publication date.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

1:14 Zhao, Damevski, and Chen

Continuation of Table 15

ID Study Year𝑎 Primary Topics

P3 Eken et al. [14] 2021 deploying a JIT-SDP model to an industrial project (presumably closed
source and proprietary), comparing online and offline prediction set-
tings, presenting lessons learned

P4 Gesi et al. [19] 2021 addressing data imbalance beyond class label imbalance, i.e., data
bias along dimensions, such as, File Count, Edit Count, and Multiline
Comments on JIT-SDP predictive performance and proposing a few-
short learning JIT-SDP model (SifterJIT) combing Siamese networks
and DeepJIT [24]

P5 Lin et al. [45] 2021 investigating the impact of data merging on interpretation of cross-
project JIT-SDP models (e.g., most important independent variables),
and advocating mixed-effect models for sound interpretation.

P6 Pornprasit et al. [53] 2021 replicating CC2Vec [25] to contrast feature representation learning
when including and excluding test data set, which leads to a Random
Forest based JIT-SDP model (JITLine) to rank lines added in software
changes based on defect-inducing risk via a Local Interpretable Model-
Agnostic Explanations model (LIME)

P7 Quach et al. [55] 2021 observing SZZ’s weaker ability to identify performance defects than
do non-performance ones and studying impacts of non-performance
defects on predictive performance of JIT-SDP models

P8 Tessema and
Abebe [64]

2021 augmenting publicly available change metrics dataset with six change
request-based metrics collected from issue tracking systems and ex-
amining their impact on JIT-SDP predictive performance.

P9 Xu et al. [68] 2021 designing a deep neural network triplet loss function (called CDFE)
for cross-project JIT-SDP and learning high-level feature represen-
tations from software metrics data for improving defect prediction
performance for mobile apps

P10 Zeng et al. [80] 2021 replicating CC2Vec [25] and DeepJIT [24] to discover the role of high-
level feature about lines added to a software change, which leads to a
performant logistic regress-based JIT-SDP model (LAPredict)

P11 Zhao et al. [83] 2021 proposing a deep neural network JIT-SDP model (KPIDL) that employs
kernel-based PCA to learn high-level features from software metrics
data and addressing class imbalance problem with a custom cross-
entropy loss function and evaluating the model on Android apps

P12 Zhao et al. [82] 2021 proposing to address class imbalance problem using class weights,
realizing it with a cross-entropy loss function in a deep neural network
JIT-SDP model (IDL), and evaluating the model using software metrics
data from Android apps

P13 Zhao et al. [84] 2021 applying a custom deep forest model for high-level feature representa-
tion learning from software metrics data and evaluating the model on
Android apps

P14 Bennin et al. [6] 2020 investigating impact of concept drift in software change data on the
performance of JIT-SDP

P15 Hoang et al. [25] 2020 considering the hierarchical structure of diffs of software changes
and designing a feature representation learning framework (CC2Vec)
using a convolutional network with hierarchical attention layers, and
evaluating the framework using DeepJIT [24]

P16 Kang et al. [34] 2020 studying within and cross-project JIT-SDP for post-release changes
of maritime software and integrating a cost-benefit analysis in the
JIT-SDP models

P17 Khanan et al. [35] 2020 designing explainable JIT-SDP bot that uses a model-agnostic tech-
nique (LIME) to “explain” a defect proneness change prediction with
the “contribution” of software metrics

𝑎The publication year is from the online publication date if available. The online publication date may be different
from the bibliographic or the final publication date.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction: Online Supplement 1:15

Continuation of Table 15

ID Study Year𝑎 Primary Topics

P18 Li et al. [43] 2020 investigating semi-supervised effort-aware JIT-SDP using a tri-training
method (also see Zhang et al. [81])

P19 Rodriguez-Perez et
al. [58]

2020 studying the impact of extrinsic bugs in JIT-SDP and concluding that
extrinsic bugs negatively impact predictive performance of JIT-SDP
models

P20 Tabassum et al. [61] 2020 designing online cross-project JIT-SDP models and concluding that
combing incoming cross-project and within-project data can improve
G-mean and reduce performance drops due to concept drift

P21 Tian et al. [65] 2020 evaluating long-term JIT-SDP for reliability improvement and short-
term JIT-SDP for early defect prediction while considering the rela-
tionship of software usage and defect

P22 Trautsch et al. [67] 2020 designing static analysis warning message metrics, comparing two
software change labeling strategies (ad hoc SZZ and ITS SZZ), and
investigating predictive performance of sub-change-level (i.e., file in a
changeset) JIT-SDP

P23 Yan et al. [69] 2020 proposing a two-phase model, which in the first phase predicts defec-
tiveness of a software change and in the second phase rank defect in-
ducing risks of lines added in predicted defect prone software changes
via a probabilistic model

P24 Yan et al. [70] 2020 investigating the effectiveness of supervised (CBS+, OneWay, and EALR)
and unsupervised (LT and Code Churn) effort-aware JIT-SDP models
in an industry setting (on Alibaba projects)

P25 Yang et al. [75] 2020 proposing an effort-aware JIT-SDP model (DEJIT) that uses a differen-
tial evolution algorithm to optimize density-percentile-average (DPA)
objective function, purposely designed for effort-aware prediction

P26 Zhu et al. [85] 2020 proposing a deep neural networkmodel (DAECNN-JDP) based on denois-
ing autoencoder and convolutional neural network and investigating
the predictive performance of the model using software metrics data

P27 Albahli [1] 2019 devising an ensemble JIT-SDP model whose base classifiers are Ran-
dom forest, XGBoost, and Multi-layer perceptron

P28 Borg et al. [7] 2019 presenting an open-source implementation of SZZ (SZZ Unleashed)
and illustrating the use of it by applying a Random Forest classifier to
predict defective commits in the Jenkins project

P29 Cabral et al. [8] 2019 investigating the problems of class imbalance evolution and verifica-
tion latency in software change data and proposing an online JIT-SDP
model based on Oversampling Online Bagging (ORB) to tackle these
problems

P30 Catolino et al. [10] 2019 investigating cross-project JIT-SDP models for mobile apps and com-
paring model performance of four classifiers and four ensemble tech-
niques

P31 Eken et al. [13] 2019 applying JIT-SDP to an industrial project of a telecommunication com-
pany in Turkey, for which, extracting features from multiple sources
(software changes and commit messages)

P32 Fan et al. [15] 2019 investigating labeling errors of SZZ variants and their impacts on
predictive performance of JIT-SDP

P33 Hoang et al. [24] 2019 proposing an “end-to-end” JIT-SDP model (DeepJIT) that learns fea-
ture representations from tokenized software changes (diffs) and
commit messages and evaluating the predictive performance in the
cross-validation, short-term, and long-term prediction settings

P34 Jahanshahi et al. [29] 2019 investigating concept drift by replicating the study by McIntosh and
Kamei [48] using the data sets in Kamei et al. [33]

𝑎The publication year is from the online publication date if available. The online publication date may be different
from the bibliographic or the final publication date.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

1:16 Zhao, Damevski, and Chen

Continuation of Table 15

ID Study Year𝑎 Primary Topics

P35 Kondo et al. [41] 2019 designing and investigating “context metrics”, metrics that measure
the complexity or the number of the surrounding lines of a change for
JIT-SDP

P36 Pascarella et al. [52] 2019 designing JIT-SDP models to predict defectives of files in a commit and
investigating the models using the product and the process metrics

P37 Qiao and Wang [54] 2019 applying a fully-connected neural network for effort-aware JIT-SDP
P38 Yang et al. [76] 2019 addressing limited training data problem by applying progressive

sampling to identify a small but sufficient set of data for training
JIT-SDP models

P39 Yang et al. [74] 2019 comparing local and global JIT-SDP models where local models are
those trained using a subset of homogeneous data and global models
trained using all of the training data

P40 Zhang et al. [81] 2019 investigation of semi-supervised effort-aware JIT-SDP model (EATT)
using a tri-training method (also see Li et al. [43])

P41 Huang et al. [28] 2018 investigating a supervised effort-aware model (called CBS) combining
Kamei et al.’s supervised EALRmodel [33] and Yang et al.’s unsupervised
LT [77]

P42 Nayrolles et al. [51] 2018 designing a two-phase approach (called CLEVER) that in the first phase
predicts defect risks of SCM commits and in the second phase suggests
a possible fix by comparing with known fix-commits, also presenting
lessons learned by deploying it to software company Ubisoft

P43 Young et al. [78] 2018 comparing the prediction of defect-prone changes using traditional
machine learning techniques and ensemble learning algorithms by a
replicating study

P44 Zhu et al. [86] 2018 experimenting class imbalance handing methods (resampling and en-
semble learning methods) across learning algorithms for JIT-SDP, and
examining effort-aware and defect proneness predictive performance
and model interpretation (effects of contribution of different groups
of change features on dependable variables)

P45 Yang et al. [71] 2017 proposing a model (VulDigger) that predicts vulnerability defect-
inducing changes with a Random Forest classifier using software
change metrics derived from both software defect prediction and vul-
nerability prediction

P46 Chen et al. [11] 2017 formulating JIT-SDP as a dual-objective optimization problem based
on logistic regression and NSGA-II to balance the benefit, i.e., the
number of predicted defective changes and the cost (the efforts of
reviewing the software changes for quality assurance)

P47 Fu and Menzies [17] 2017 investigating Yang et al.[77]’s unsupervised models (e.g., LT) and
proposing an effort-aware JIT-SDP model (OneWay) that uses the super-
vised models to prune unsupervised models before employing Yang et
al.’s approach

P48 Huang et al. [27] 2017 investigating a supervised effort-aware model (called CBS) combining
Kamei et al.’s supervised EALRmodel [33] and Yang et al.’s unsupervised
models, such as, LT [77]

P49 Liu et al. [46] 2017 investigating the effectiveness of the code churn metric based unsu-
pervised defect prediction model (CCUM) for effort-aware JIT-SDP

P50 McIntosh and
Kamei [48]

2017 investigating evolving nature of software project leading to fluctua-
tions of software metrics data (or concept drift) and presenting insights,
such as, JIT models that should be retrained using recently recorded
data

P51 Yang et al. [72], 2017 proposing and investigating a two-layer ensemble model (TLEL) for
effort-aware JIT-SDP

𝑎The publication year is from the online publication date if available. The online publication date may be different
from the bibliographic or the final publication date.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction: Online Supplement 1:17

Continuation of Table 15

ID Study Year𝑎 Primary Topics

P52 Barnett et al. [5] 2016 investigating the usefulness of SCM commit message volume and
commit message content for JIT-SDP and showing benefits by adding
commit message features to software change defect prediction

P53 Kamei et al. [31] 2016 examining cross-project JIT-SDP and providing insights and guidelines
to improve predictive performance (also see Fukushima et al. [18])

P54 Tourani and
Adams [66]

2016 investigating usefulness of ITS data, such as, issue reports, issue dis-
cussions, and code reviews and designing ITS data metrics for JIT-SDP

P55 Yang et al. [77] 2016 investigating the predictive power of simple unsupervised models,
such as, LT and AGE in effort-aware JIT defect prediction and comparing
these simple models with supervised models

P56 Mori et al. [50] 2015 applying text classifiers (i.e., spam filter) to software changes to assess
the probability of files in changesets to be defect-inducing

P57 Rosen et al. [59] 2015 describing a publicly available defect prediction tool called Commit
Guru

P58 Tan et al. [62] 2015 investigating two problems, the class imbalance problem and the prob-
lem about cross-validation, and proposing online change classification
for JIT-SDP using resampling and updatable classification techniques

P59 Yang et al. [73] 2015 proposing a model called Deeper consisting of a deep belief network
and a logistic regression classifier to predict defect proneness of soft-
ware changes

P60 Fukushima et al. [18] 2014 examining cross-project JIT-SDP and showing its feasibility by demon-
strating that models trained using historical data from other projects
can be as accurate as JIT-SDP models that are trained on a single
project (also see Kamei et al. [31])

P61 Jiang et al. [30] 2013 building (file) change-level defect prediction model for each developer
from file modification histories (i.e., a personalized defect prediction)

P62 Tarvo et al. [63] 2013 using a classification model to identify those pre-release code changes
that can cause post-release failures using code metrics, change size,
historical code churn, and organization metrics, and also investigating
impacts of changes on trunk and branches

P63 Kamei et al. [33] 2012 predicting defect-proneness of software changes with logistic regres-
sion and quality assurance effort of software changes with linear
regression (EALR) from software change metrics

P64 Shivaji et al. [60] 2012 investigating feature selection techniques for change-level defect pre-
diction

P65 Kim et al. [36] 2008 proposing a JIT-SDPmodel based on Support VectorMachine (SVM) and
using the bag-of-words features to classify whether software changes
are defect-inducing or clean

P66 Aversano et al. [4] 2007 studying defect inducing change prediction by representing software
snapshots as TF-IDF vectors and software changes as vector differ-
ences of two snapshots and by comparing multiple classification and
clustering algorithms

P67 Mockus and
Weiss [49]

2000 predicting from software change metrics with logistic regression
the defect-proneness of the Initial Modification Requests (IMR) in 5ESS
network switch project

End of Table
𝑎The publication year is from the online publication date if available. The online publication date may be different
from the bibliographic or the final publication date.

REFERENCES
[1] Saleh Albahli. 2019. A deep ensemble learning method for effort-aware just-in-time defect prediction. Future Internet

11, 12 (2019), 246.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

1:18 Zhao, Damevski, and Chen

Table 12. JIT-SDP Modeling Techniques

Algorithm Studies

K-Nearest Neighbor Bennin et al. [6], Kang et al. [34], Tian et al. [65], Aversano et al. [4]
Linear Regression Kamei et al. [33], Tian et al. [65], Yan et al. [70]
Non-linear Regression Rodriguezperez et al. [58], McIntosh and Kamei [48]
Logistic Regression Duan et al. [12], Lin et al. [45], Zeng et al. [80] Yang et al. [75], Kang et al. [34], Li et al. [43],

Trautsch et al. [67], Yan et al. [69], Yan et al. [70], Catolino et al. [10], Fan et al. [15], Huang
et al. [28], Kondo et al. [41], Yang et al. [74], Chen et al. [11], Huang et al. [27], Tourani and
Adams [66], Rosen et al. [59], Jiang et al. [30], Tarvo et al. [63], Kamei et al. [33], Aversano
et al. [4], Mockus and Weiss [49], Tessema et al. [64]

Naive Bayes Duan et al. [12], Eken et al. [14], Bennin et al. [6], Kang et al. [34], Tian et al. [65], Catolino
et al. [10], Fan et al. [15], Zhu et al. [86], Barnett et al. [5], Jiang et al. [30], Shivaji et al. [60]

Decision Table Catolino et al. [10],
C4.5 Decision Tree Zhu et al. [86] Tarvo et al. [63], Aversano et al. [4]
Alternating Decision
Tree (ADTree)

Tan et al. [62], Jiang et al. [30]

Random Forest Fukushima et al. [18], Kamei et al. [31], Yang et al. [71], Nayrolles et al. [51], Zhu et al. [86],
Borg et al. [7], Catolino et al. [10], Fan et al. [15], Jahanshahi et al. [29], Kondo et al. [41],
Pascarella et al. [52], Yang et al. [76], Bennin et al. [6], Kang et al. [34], Khanan et al. [35],
Li et al. [43], Trautsch et al. [67], Tian et al. [65], Duan et al. [12], Lin et al. [45], Pornprasit
et al. [53], Quach et al. [55], Tessema et al. [64]

Support Vector Ma-
chine

Kang et al. [34], Li et al. [43], Catolino et al. [10], Zhu et al. [86], Shivaji et al. [60], Kim et
al. [36], Aversano et al. [4]

Neural Network &
Deep Neural Network

Yang et al. [73], Hoang et al. [24], Qiao and Wang [54], Bennin et al. [6], Hoang et al. [25],
Kang et al. [34], Tian et al. [65], Zhu et al. [85], Tessema et al. [64] Ardimento et al. [3],
Gesi et al. [19], Xu et al. [68], Zeng et al. [80], Zhao et al. [83], Zhao et al. [82],

Deep Forest Zhao et al. [84]
Ensemble (XGBoost) Bennin et al. [6], Eken et al. [13], Tessema et al. [64]
Ensemble (others) Aversano et al. [4] Yang et al. [72], Young et al. [78], Albahli [1], Cabral et al. [8], Catolino

et al. [10], Zhang et al. [81], Li et al. [43], Tabassum et al. [61], Tian et al. [65], Tessema et
al. [64]

Spam Filter (Text Clas-
sifier)

Mori et al. [50]

Searching-based Algo-
rithm

Liu et al. [46] Yang et al. [77]

Supervised Learning +
Searching-based Algo-
rithm

Yan et al. [70], Huang et al. [28], Huang et al. [27], Fu and Menzies [17]

[2] Sousuke Amasaki, Hirohisa Aman, and Tomoyuki Yokogawa. [n.d.]. A Preliminary Evaluation of CPDP Approaches
on Just-in-Time Software Defect Prediction. In 2021 47th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE, 279–286.

[3] Pasquale Ardimento, Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, and Martina Iammarino. 2021. Just-in-time
software defect prediction using deep temporal convolutional networks. Neural Computing and Applications (2021),
1–21.

[4] Lerina Aversano, Luigi Cerulo, and Concettina Del Grosso. 2007. Learning from bug-introducing changes to prevent
fault prone code. In Ninth international workshop on Principles of software evolution: in conjunction with the 6th ESEC/FSE
joint meeting. 19–26.

[5] Jacob G Barnett, Charles K Gathuru, Luke S Soldano, and Shane McIntosh. 2016. The relationship between commit
message detail and defect proneness in java projects on github. In 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR). IEEE, 496–499.

[6] Kwabena E Bennin, Nauman bin Ali, Jürgen Börstler, and Xiao Yu. 2020. Revisiting the impact of concept drift on
just-in-time quality assurance. In 2020 IEEE 20th International Conference on Software Quality, Reliability and Security
(QRS). IEEE, 53–59.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction: Online Supplement 1:19

Table 13. Replication Packages of JIT-SDP Studies

No. Study Year Replication Package Remark

1 Lin et al. [45] 2021 https://github.com/SAILResearch/suppmaterial-19-dayi-
risk_data_merging_jit

2 Pornprasit et al. [53] 2021 http://doi.org/10.5281/zenodo.4433498
3 Quach et al. [55] 2021 https://github.com/senseconcordia/Perf-JIT-Models
4 Xu et al. [68] 2021 https://figshare.com/search?q=10.6084/m9.figshare.

13635347
5 Zeng et al. [80] 2021 https://github.com/ZZR0/ISSTA21-JIT-DP
6 Zhao et al. [83] 2021 https://github.com/sepine/IET-2021
7 Duan et al. [12] 2021 https://github.com/deref007/Duplicate-change-TR
8 Rodriguezperez et

al. [58]
2020 https://gemarodri.github.io/2019-Study-of-Extrinsic-

Bugs/
9 Yan et al. [69] 2020 https://github.com/MengYan1989/JIT-DIL
10 Hoang et al. [25] 2020 https://github.com/CC2Vec/CC2Vec
11 Tian et al. [65] 2020 https://github.com/lining-nwpu/JiTReliability
12 Trautsch et al. [67] 2020 https://doi.org/10.5281/zenodo.3974204
13 Li et al. [43] 2020 https://github.com/NJUST-IDAM/EATT
14 Borg et al. [7] 2019 https://github.com/wogscpar/SZZUnleashed
15 Qiao and Wang [54] 2019 https://github.com/donaldjoe/Effort-Aware-and-Just-in-

Time-Defect-Prediction-with-Neural-Network
16 Yang et al. [74] 2019 https://github.com/yangxingguang/LocalJIT
17 Fan et al. [15] 2019 https://github.com/YuanruiZJU/SZZ-TSE
18 Hoang et al. [24] 2019 https://github.com/AnonymousAccountConf/
19 Pascarella et al. [52] 2019 not found
20 Huang et al. [28] 2018 https://doi.org/10.5281/zenodo.1432582
21 Cabral et al. [8] 2019 https://doi.org/10.5281/zenodo.2555695
22 Zhang et al. [81] 2019 https://github.com/NJUST-IDAM/EATT identical to Li

et al. [43]
23 Guo et al. [21] 2018 https://github.com/yuchen1990/EAposter
24 Chen et al. [11] 2017 https://github.com/Hecoz/Multi-Project-Learning
25 Fu and Menzies [17] 2017 https://github.com/WeiFoo/RevisitUnsupervised
26 McIntosh and

Kamei [48]
2017 https://github.com/software-rebels/JITMovingTarget

27 Huang et al. [27] 2017 https://doi.org/10.5281/zenodo.836352
28 Yang et al. [77] 2016 http://ise.nju.edu.cn/yangyibiao/jit.html inaccessible
29 Kamei et al. [33] 2012 http://research.cs.queensu.ca/~kamei/jittse/jit.zip

Table 14. Use of Replication Packages

Replication
Package Name Original Study Dependent Study

Kamei-2012 Kamei et al. [33] Fukushima et al. [18], Yang et al. [73], Kamei et al. [31], Yang et
al. [77], Huang et al. [27], Liu et al. [46], Guo et al. [21], Young et
al. [78], Chen et al. [11], Jahanshahi et al. [29], Huang et al. [28],
Albahli [1], Bennin et al. [6], Li et al. [43], Yang et al. [75], Tessema
et al. [64]

Yang-2016 Yang et al. [77] Fu and Menzies [17]
McIntosh-2017 McIntosh et al. [48] Hoang et al. [24], Hoang et al. [25], Rodriguezperez et al. [58]
Catolino-2019 Catolino et al. [10] Xu et al. [68], Zhao et al. [83], Zhao et al. [82], Zhao et al. [84]
Hoang-2019,
Hoang-2020

Hoang et al. [25] and Hoang
et al. [24]

Gesi et al. [19], Pornprasit et al. [53], Zeng et al. [80]

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

https://github.com/SAILResearch/suppmaterial-19-dayi-risk_data_merging_jit
https://github.com/SAILResearch/suppmaterial-19-dayi-risk_data_merging_jit
http://doi.org/10.5281/zenodo.4433498
https://github.com/senseconcordia/Perf-JIT-Models
https://figshare.com/search?q=10.6084/m9.figshare.13635347
https://figshare.com/search?q=10.6084/m9.figshare.13635347
https://github.com/ZZR0/ISSTA21-JIT-DP
https://github.com/sepine/IET-2021
https://github.com/deref007/Duplicate-change-TR
https://gemarodri.github.io/2019-Study-of-Extrinsic-Bugs/
https://gemarodri.github.io/2019-Study-of-Extrinsic-Bugs/
https://github.com/MengYan1989/JIT-DIL
https://github.com/CC2Vec/CC2Vec
https://github.com/lining-nwpu/JiTReliability
https://doi.org/10.5281/zenodo.3974204
https://github.com/NJUST-IDAM/EATT
https://github.com/wogscpar/SZZUnleashed
https://github.com/donaldjoe/Effort-Aware-and-Just-in-Time-Defect-Prediction-with-Neural-Network
https://github.com/donaldjoe/Effort-Aware-and-Just-in-Time-Defect-Prediction-with-Neural-Network
https://github.com/yangxingguang/LocalJIT
https://github.com/YuanruiZJU/SZZ-TSE
https://github.com/AnonymousAccountConf/
https://doi.org/10.5281/zenodo.1432582
https://doi.org/10.5281/zenodo.2555695
https://github.com/NJUST-IDAM/EATT
https://github.com/yuchen1990/EAposter
https://github.com/Hecoz/Multi-Project-Learning
https://github.com/WeiFoo/RevisitUnsupervised
https://github.com/software-rebels/JITMovingTarget
https://doi.org/10.5281/zenodo.836352
http://ise.nju.edu.cn/yangyibiao/jit.html
http://research.cs.queensu.ca/~kamei/jittse/jit.zip

1:20 Zhao, Damevski, and Chen

[7] Markus Borg, Oscar Svensson, Kristian Berg, and Daniel Hansson. 2019. SZZ Unleashed: An open implementation
of the szz algorithm-featuring example usage in a study of just-in-time bug prediction for the jenkins project. In
Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality
Evaluation. 7–12.

[8] George G Cabral, Leandro L Minku, Emad Shihab, and Suhaib Mujahid. 2019. Class imbalance evolution and verifica-
tion latency in just-in-time software defect prediction. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 666–676.

[9] Cagatay Catal. 2011. Software fault prediction: A literature review and current trends. Expert systems with applications
38, 4 (2011), 4626–4636.

[10] Gemma Catolino, Dario Di Nucci, and Filomena Ferrucci. 2019. Cross-project just-in-time bug prediction for mobile
apps: an empirical assessment. In 2019 IEEE/ACM 6th International Conference on Mobile Software Engineering and
Systems (MOBILESoft). IEEE, 99–110.

[11] Xiang Chen, Yingquan Zhao, Qiuping Wang, and Zhidan Yuan. 2018. MULTI: Multi-objective effort-aware just-in-time
software defect prediction. Information and Software Technology 93 (2018), 1–13.

[12] Ruifeng Duan, Haitao Xu, Yuanrui Fan, and Meng Yan. 2021. The impact of duplicate changes on just-in-time defect
prediction. IEEE Transactions on Reliability (2021).

[13] Beyza Eken, RiFat Atar, Sahra Sertalp, and Ayşe Tosun. 2019. Predicting Defects with Latent and Semantic Features
from Commit Logs in an Industrial Setting. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering Workshop (ASEW). IEEE, 98–105.

[14] Beyza Eken, Selda Tufan, Alper Tunaboylu, Tevfik Guler, Rifat Atar, and Ayse Tosun. 2021. Deployment of a change-
level software defect prediction solution into an industrial setting. Journal of Software: Evolution and Process 33, 11
(2021), e2381.

[15] Yuanrui Fan, Xin Xia, Daniel Alencar da Costa, David Lo, Ahmed E Hassan, and Shanping Li. 2019. The impact of
changes mislabeled by SZZ on just-in-time defect prediction. IEEE transactions on software engineering (2019).

[16] Norman E Fenton and Martin Neil. 1999. A critique of software defect prediction models. IEEE Transactions on software
engineering 25, 5 (1999), 675–689.

[17] Wei Fu and Tim Menzies. 2017. Revisiting unsupervised learning for defect prediction. In Proceedings of the 2017 11th
joint meeting on foundations of software engineering. 72–83.

[18] Takafumi Fukushima, Yasutaka Kamei, ShaneMcIntosh, Kazuhiro Yamashita, and Naoyasu Ubayashi. 2014. An empirical
study of just-in-time defect prediction using cross-project models. In Proceedings of the 11th Working Conference on
Mining Software Repositories. 172–181.

[19] Jiri Gesi, Jiawei Li, and Iftekhar Ahmed. 2021. An Empirical Examination of the Impact of Bias on Just-in-time
Defect Prediction. In Proceedings of the 15th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). 1–12.

[20] Trisha Greenhalgh and Richard Peacock. 2005. Effectiveness and efficiency of search methods in systematic reviews of
complex evidence: audit of primary sources. Bmj 331, 7524 (2005), 1064–1065.

[21] Yuchen Guo, Martin Shepperd, and Ning Li. 2018. Bridging effort-aware prediction and strong classification: a just-
in-time software defect prediction study. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings. 325–326.

[22] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. 2011. A systematic literature review on fault
prediction performance in software engineering. IEEE Transactions on Software Engineering 38, 6 (2011), 1276–1304.

[23] Abram Hindle, Michael W Godfrey, and Richard C Holt. 2008. Reading beside the lines: Indentation as a proxy for
complexity metric. In 2008 16th IEEE International Conference on Program Comprehension. IEEE, 133–142.

[24] Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu Ubayashi. 2019. DeepJIT: an end-to-end
deep learning framework for just-in-time defect prediction. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 34–45.

[25] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. 2020. CC2Vec: Distributed representations of code changes.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 518–529.

[26] Seyedrebvar Hosseini, Burak Turhan, and Dimuthu Gunarathna. 2017. A systematic literature review and meta-analysis
on cross project defect prediction. IEEE Transactions on Software Engineering 45, 2 (2017), 111–147.

[27] Qiao Huang, Xin Xia, and David Lo. 2017. Supervised vs unsupervised models: A holistic look at effort-aware just-in-
time defect prediction. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE,
159–170.

[28] Qiao Huang, Xin Xia, and David Lo. 2019. Revisiting supervised and unsupervised models for effort-aware just-in-time
defect prediction. Empirical Software Engineering 24, 5 (2019), 2823–2862.

[29] Hadi Jahanshahi, Dhanya Jothimani, Ayşe Başar, and Mucahit Cevik. 2019. Does chronology matter in JIT defect
prediction? A Partial Replication Study. In Proceedings of the Fifteenth International Conference on Predictive Models and

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction: Online Supplement 1:21

Data Analytics in Software Engineering. 90–99.
[30] Tian Jiang, Lin Tan, and Sunghun Kim. 2013. Personalized defect prediction. In 2013 28th IEEE/ACM International

Conference on Automated Software Engineering (ASE). Ieee, 279–289.
[31] Yasutaka Kamei, Takafumi Fukushima, Shane McIntosh, Kazuhiro Yamashita, Naoyasu Ubayashi, and Ahmed E Hassan.

2016. Studying just-in-time defect prediction using cross-project models. Empirical Software Engineering 21, 5 (2016),
2072–2106.

[32] Yasutaka Kamei and Emad Shihab. 2016. Defect prediction: Accomplishments and future challenges. In 2016 IEEE 23rd
international conference on software analysis, evolution, and reengineering (SANER), Vol. 5. IEEE, 33–45.

[33] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris Mockus, Anand Sinha, and Naoyasu Ubayashi.
2012. A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on Software Engineering 39, 6
(2012), 757–773.

[34] Jonggu Kang, Duksan Ryu, and Jongmoon Baik. 2020. Predicting just-in-time software defects to reduce post-release
quality costs in the maritime industry. Software: Practice and Experience (2020).

[35] Chaiyakarn Khanan, Worawit Luewichana, Krissakorn Pruktharathikoon, Jirayus Jiarpakdee, Chakkrit Tantithamtha-
vorn, Morakot Choetkiertikul, Chaiyong Ragkhitwetsagul, and Thanwadee Sunetnanta. 2020. JITBot: An explainable
just-in-time defect prediction bot. In 2020 35th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1336–1339.

[36] Sunghun Kim, E JamesWhitehead, and Yi Zhang. 2008. Classifying software changes: Clean or buggy? IEEE Transactions
on Software Engineering 34, 2 (2008), 181–196.

[37] Barbara Kitchenham and Pearl Brereton. 2013. A systematic review of systematic review process research in software
engineering. Information and software technology 55, 12 (2013), 2049–2075.

[38] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing systematic literature reviews in software
engineering. Technical Report EBSE-2007-01. School of Computer Science and Mathematics, Keele University.

[39] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, and Stephen Linkman. 2009.
Systematic literature reviews in software engineering – A systematic literature review. Information and Software
Technology 51, 1 (2009), 7 – 15. https://doi.org/10.1016/j.infsof.2008.09.009 Special Section - Most Cited Articles in
2002 and Regular Research Papers.

[40] Barbara Ann Kitchenham, David Budgen, and Pearl Brereton. 2015. Evidence-based software engineering and systematic
reviews. Vol. 4. CRC press.

[41] Masanari Kondo, Daniel M German, Osamu Mizuno, and Eun-Hye Choi. 2020. The impact of context metrics on
just-in-time defect prediction. Empirical Software Engineering 25, 1 (2020), 890–939.

[42] Ning Li, Martin Shepperd, and Yuchen Guo. 2020. A systematic review of unsupervised learning techniques for
software defect prediction. Information and Software Technology (2020), 106287.

[43] Weiwei Li, Wenzhou Zhang, Xiuyi Jia, and Zhiqiu Huang. 2020. Effort-aware semi-supervised just-in-time defect
prediction. Information and Software Technology 126 (2020), 106364.

[44] Zhiqiang Li, Xiao-Yuan Jing, and Xiaoke Zhu. 2018. Progress on approaches to software defect prediction. IET Software
12, 3 (2018), 161–175.

[45] Dayi Lin, Chakkrit Tantithamthavorn, and Ahmed E Hassan. 2021. The Impact of Data Merging on the Interpretation
of Cross-Project Just-In-Time Defect Models. IEEE Transactions on Software Engineering (2021).

[46] Jinping Liu, Yuming Zhou, Yibiao Yang, Hongmin Lu, and Baowen Xu. 2017. Code churn: A neglected metric in effort-
aware just-in-time defect prediction. In 2017 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE, 11–19.

[47] Ruchika Malhotra. 2015. A systematic review of machine learning techniques for software fault prediction. Applied
Soft Computing 27 (2015), 504–518.

[48] Shane McIntosh and Yasutaka Kamei. 2017. Are fix-inducing changes a moving target? a longitudinal case study of
just-in-time defect prediction. IEEE Transactions on Software Engineering 44, 5 (2017), 412–428.

[49] Audris Mockus and David M Weiss. 2000. Predicting risk of software changes. Bell Labs Technical Journal 5, 2 (2000),
169–180.

[50] Keita Mori and Osamu Mizuno. 2015. An Implementation of Just-in-Time Fault-Prone Prediction Technique Using
Text Classifier. In 2015 IEEE 39th Annual Computer Software and Applications Conference, Vol. 3. IEEE, 609–612.

[51] Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. 2018. CLEVER: combining code metrics with clone detection
for just-in-time fault prevention and resolution in large industrial projects. In Proceedings of the 15th International
Conference on Mining Software Repositories. 153–164.

[52] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. 2019. Fine-grained just-in-time defect prediction. Journal of
Systems and Software 150 (2019), 22–36.

[53] Chanathip Pornprasit and Chakkrit Tantithamthavorn. 2021. JITLine: A Simpler, Better, Faster, Finer-grained Just-In-
Time Defect Prediction. arXiv preprint arXiv:2103.07068 (2021).

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

https://doi.org/10.1016/j.infsof.2008.09.009

1:22 Zhao, Damevski, and Chen

[54] Lei Qiao and Yan Wang. 2019. Effort-aware and just-in-time defect prediction with neural network. PloS one 14, 2
(2019), e0211359.

[55] Sophia Quach, Maxime Lamothe, Bram Adams, Yasutaka Kamei, and Weiyi Shang. 2021. Evaluating the impact of
falsely detected performance bug-inducing changes in JIT models. Empirical Software Engineering 26, 5 (2021), 1–32.

[56] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. 2013. Software fault prediction metrics: A
systematic literature review. Information and software technology 55, 8 (2013), 1397–1418.

[57] Foyzur Rahman and Premkumar Devanbu. 2013. How, and why, process metrics are better. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 432–441.

[58] Gema Rodriguez-Perez, Meiyappan Nagappan, and Gregorio Robles. 2020. Watch out for extrinsic bugs! A case study of
their impact in just-in-time bug prediction models on the OpenStack project. IEEE Transactions on Software Engineering
(2020).

[59] Christoffer Rosen, Ben Grawi, and Emad Shihab. 2015. Commit Guru: analytics and risk prediction of software commits.
In Proceedings of the 2015 10th joint meeting on foundations of software engineering. 966–969.

[60] Shivkumar Shivaji, E James Whitehead, Ram Akella, and Sunghun Kim. 2012. Reducing features to improve code
change-based bug prediction. IEEE Transactions on Software Engineering 39, 4 (2012), 552–569.

[61] Sadia Tabassum, Leandro L Minku, Danyi Feng, George G Cabral, and Liyan Song. 2020. An investigation of cross-
project learning in online just-in-time software defect prediction. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE, 554–565.

[62] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. Online defect prediction for imbalanced data. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2. IEEE, 99–108.

[63] Alexander Tarvo, Nachiappan Nagappan, Thomas Zimmermann, Thirumalesh Bhat, and Jacek Czerwonka. 2013.
Predicting risk of pre-release code changes with checkinmentor. In 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 128–137.

[64] Hailemelekot Demtse Tessema and Surafel Lemma Abebe. 2021. Enhancing Just-in-Time Defect Prediction Using
Change Request-based Metrics. In 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 511–515.

[65] Yuli Tian, Ning Li, Jeff Tian, and Wei Zheng. 2020. How Well Just-In-Time Defect Prediction Techniques Enhance
Software Reliability?. In 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS).
IEEE, 212–221.

[66] Parastou Tourani and Bram Adams. 2016. The impact of human discussions on just-in-time quality assurance: An
empirical study on openstack and eclipse. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. IEEE, 189–200.

[67] Alexander Trautsch, Steffen Herbold, and Jens Grabowski. 2020. Static source code metrics and static analysis warnings
for fine-grained just-in-time defect prediction. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 127–138.

[68] Zhou Xu, Kunsong Zhao, Tao Zhang, Chunlei Fu, Meng Yan, Zhiwen Xie, Xiaohong Zhang, and Gemma Catolino.
2021. Effort-Aware Just-in-Time Bug Prediction for Mobile Apps Via Cross-Triplet Deep Feature Embedding. IEEE
Transactions on Reliability (2021).

[69] Meng Yan, Xin Xia, Yuanrui Fan, Ahmed E Hassan, David Lo, and Shanping Li. 2020. Just-in-time defect identification
and localization: A two-phase framework. IEEE Transactions on Software Engineering (2020).

[70] Meng Yan, Xin Xia, Yuanrui Fan, David Lo, Ahmed E Hassan, and Xindong Zhang. 2020. Effort-aware just-in-time
defect identification in practice: a case study at Alibaba. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. 1308–1319.

[71] Limin Yang, Xiangxue Li, and Yu Yu. 2017. Vuldigger: a just-in-time and cost-aware tool for digging vulnerability-
contributing changes. In GLOBECOM 2017-2017 IEEE Global Communications Conference. IEEE, 1–7.

[72] Xinli Yang, David Lo, Xin Xia, and Jianling Sun. 2017. TLEL: A two-layer ensemble learning approach for just-in-time
defect prediction. Information and Software Technology 87 (2017), 206–220.

[73] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. 2015. Deep learning for just-in-time defect prediction. In
2015 IEEE International Conference on Software Quality, Reliability and Security. IEEE, 17–26.

[74] Xingguang Yang, Huiqun Yu, Guisheng Fan, Kai Shi, and Liqiong Chen. 2019. Local versus global models for just-in-time
software defect prediction. Scientific Programming 2019 (2019).

[75] Xingguang Yang, Huiqun Yu, Guisheng Fan, and Kang Yang. 2020. A differential evolution-based approach for
effort-aware just-in-time software defect prediction. In Proceedings of the 1st ACM SIGSOFT International Workshop on
Representation Learning for Software Engineering and Program Languages. 13–16.

[76] Xingguang Yang, Huiqun Yu, Guisheng Fan, Kang Yang, and Kai Shi. 2019. An Empirical Study on Progressive Sampling
for Just-in-Time Software Defect Prediction.. In QuASoQ@ APSEC. 12–18.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

A Systematic Survey of Just-In-Time Software Defect Prediction: Online Supplement 1:23

[77] Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu, Baowen Xu, and Hareton Leung. 2016.
Effort-aware just-in-time defect prediction: simple unsupervised models could be better than supervised models. In
Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering. 157–168.

[78] Steven Young, Tamer Abdou, and Ayse Bener. 2018. A replication study: just-in-time defect prediction with ensemble
learning. In Proceedings of the 6th International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering. 42–47.

[79] Abubakar Zakari, Sai Peck Lee, Rui Abreu, Babiker Hussien Ahmed, and Rasheed Abubakar Rasheed. 2020. Multiple
fault localization of software programs: A systematic literature review. Information and Software Technology (2020),
106312.

[80] Zhengran Zeng, Yuqun Zhang, Haotian Zhang, and Lingming Zhang. 2021. Deep just-in-time defect prediction: how far
are we?. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis. 427–438.

[81] Wenzhou Zhang, Weiwei Li, and Xiuyi Jia. 2019. Effort-Aware Tri-Training for Semi-supervised Just-in-Time Defect
Prediction. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 293–304.

[82] Kunsong Zhao, Zhou Xu, Meng Yan, Yutian Tang, Ming Fan, and Gemma Catolino. 2021. Just-in-time defect prediction
for Android apps via imbalanced deep learning model. In Proceedings of the 36th Annual ACM Symposium on Applied
Computing. 1447–1454.

[83] Kunsong Zhao, Zhou Xu,Meng Yan, Lei Xue,Wei Li, and GemmaCatolino. 2021. A compositional model for effort-aware
Just-In-Time defect prediction on android apps. IET Software (2021).

[84] K. Zhao, Z. Xu, T. Zhang, Y. Tang, and M. Yan. 2021. Simplified Deep Forest Model Based Just-in-Time Defect Prediction
for Android Mobile Apps. IEEE Transactions on Reliability (2021), 1–12. https://doi.org/10.1109/TR.2021.3060937

[85] Kun Zhu, Nana Zhang, Shi Ying, and Dandan Zhu. 2020. Within-project and cross-project just-in-time defect prediction
based on denoising autoencoder and convolutional neural network. IET Software 14, 3 (2020), 185–195.

[86] Xiaoyan Zhu, Binbin Niu, E James Whitehead Jr, and Zhongbin Sun. 2018. An empirical study of software change
classification with imbalance data-handling methods. Software: Practice and Experience 48, 11 (2018), 1968–1999.

ACM Comput. Surv., Vol. Vol, No. Num, Article 1. Publication date: January 2022.

https://doi.org/10.1109/TR.2021.3060937

	Abstract
	1 Introduction
	2 Review Methodology
	2.1 Identification of Research Articles for JIT-SDP Survey

	3 Just-in-Time Software Defect Prediction
	3.1 Definition and Overview of JIT-SDP
	3.2 Data Sources
	3.3 Feature Acquisition and Processing
	3.4 Defect-Inducing Label Assignment
	3.5 Data Transformation
	3.6 Modeling
	3.7 Evaluation

	4 Analysis and Open Questions
	4.1 Study Selection Criteria
	4.2 Performance of Defect Prediction
	4.3 Performance of Effort-Aware Prediction
	4.4 Context Factors of Software Project and Changeset Data

	5 Ideas and Considerations for Future Research
	5.1 JIT-SDP Application Domain
	5.2 Relationship of Defects to Software Use
	5.3 Quantifying Effort in JIT-SDP
	5.4 Uncertainty Quantification in JIT-SDP
	5.5 Explainable and Actionable Prediction
	5.6 Beyond Predicting Defects

	6 Conclusion
	References
	1 Review Methodology
	1.1 Literature Search
	1.2 Planning
	1.3 Focused Survey on JIT-SDP

	2 Publications Trend
	3 Evaluation Data
	4 Software Metrics and Features for JIT-SDP
	4.1 Software Change Metrics
	4.2 Commit Message Features
	4.3 ITS Data Features
	4.4 Static Program Analysis Metrics

	5 JIT-SDP Models
	6 Replication Packages and Data
	7 Selected JIT-SDP Studies
	References

