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Abstract

Code clone detection is a well-known software engineering problem that aims

to detect all the groups of code blocks or code fragments that are functionally

equivalent in a code base. It has numerous and wide ranging important uses

in areas such as software metrics, plagiarism detection, aspect mining, copy-

right infringement investigation, code compaction, virus detection, and detect-

ing bugs. A scalable code clone detection technique, able to process large source

code repositories, is crucial in the context of multi-project or Internet-scale code

clone detection scenarios. In this paper, we focus on improving the scalability of

code clone detection, relative to current state of the art techniques. Our adap-

tive prefix filtering technique improves the performance of code clone detection

for many common execution parameters, when tested on common benchmarks.

The experimental results exhibit improvements for commonly used similarity

thresholds of between 40% and 80%, in the best case decreasing the execution

time up to 11% and increasing the number of filtered candidates up to 63% .
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1. Introduction

Developers introduce clones in a code base mainly when reusing existing

code blocks without significant alteration, or when certain code blocks are im-
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plemented by developers following a common mental macro [1, 2, 3]. Researchers

have shown that developers tend to perform software maintenance tasks more

effectively when they have the results of code clone detection [4, 5]. Empirical

studies have noted that code clones are widespread, and that a significant por-

tion of source code (between 5% and 20%) is copied or modified from already

implemented code fragments or blocks [1, 6, 7].

Performing code clone detection across numerous software repositories is

a common use case. Specific applications for large scale code clone detection

include querying library candidates [8], categorizing copyright infringement and

license violations [9, 10], plagiarism detection [10, 9], finding product lines in

reverse engineering [11, 10], tracing the origin of a component [12], searching

for code blocks in large software repositories [13, 14], and spotting analogous

applications in Android markets [15, 16]. However, most existing code clone

detection techniques have difficulty scaling up to extremely large collections of

source code [17, 18].

Among the tools aimed towards large scale code clone detection, a common

limitation is in the complexity of differences among clones they can detect. For

instance, scalable token based approaches [3, 19, 8] have difficulty detecting

near miss (Type-3) code clones, which can occur more frequently than other

types of clones [18, 20, 21]. Parallel and distributed clone detection techniques

like D-CCFinder [22] can be more burdensome to manage, requiring specialized

hardware or software support, while tree based code clone detection technique,

such as Deckard [23], place higher demands on memory.

In this paper, we propose a token-based code clone detection technique aimed

at scalability and detecting Type-3 clones, consisting of two main steps: filtering

and verification. In the filtering step we aim to significantly reduce the number

of code blocks for comparison, removing from consideration blocks that do not

have any possibility of being code clones. In the verification step we determine

whether candidate pairs that survived the filtering step are really code clones.

This two step process greatly reduces the runtime of code clone detection, al-

lowing the technique to scale up to very large corpora. This technique is based

2



on the adaptive prefix filtering heuristic [24], which is an extended version of

prefix filtering heuristic [25] [26] previously applied towards code clone detec-

tion in SourcererCC [16]. To our knowledge, SourcererCC is the best scaling

code clone detection tool able to detect Type-3 clones. In this paper, we demon-

strate improvements in execution time relative to SourcererCC, while obtaining

the same accuracy, for many common similarity thresholds, when evaluated on

a large scale inter-project source code corpus [27].

A separate novel idea presented in this paper is the effective application of

our technique to code clone search, without modification, in addition to code

clone detection. Code clone search is a related problem to code clone detection

where the user specifies a single code block (i.e. query block) to search for in a

corpus of many code blocks. Once indexed, the corpus should be able to serve

numerous such queries. Ours is among few techniques that can be applied to

both of these problems. The contributions of this paper are the following:

• A novel code clone detection technique that can scale to very large scale

source code repositories (or sets of repositories) with the ability to detect

Type-1, Type-2, and Type-3 code clones, while maintaining high precision

and recall.

• An extension of our proposed technique so that it can be effectively utilized

for code clone search without modification.

We have organized the rest of this paper as follows. Section 2 describes

the background and related work in both code clone detection and code clone

search. Section 3 describes the adaptive prefix filtering heuristic, which we uti-

lized in our code clone detection approach. Section 4 describes the design of

a code clone detection system based on our technique, which includes several

necessary optimization steps. Section 5 describes the experimental results eval-

uating our proposed approach, as well as a comparison to the recent code clone

detection tool SourcererCC. Section 6 concludes the paper, summarizing it’s

contributions.
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2. Background and Related Work

Based on the nature of the similarity between code blocks, the software engi-

neering community has identified four types of code clones, by which code clone

detection techniques can be organized. Syntactically equivalent code blocks are

called Type-1 clones. Type-2 code clones are code blocks that are syntactically

comparable but are slightly contrasting in terms of variable names, function

names, or identifier names. If two code blocks contain statements that have

been inserted, altered, expunged, there is a gap in statements, or statement

order differs, then these are called Type-3 clones. Semantically equivalent code

blocks are called Type-4 clones [16].

Scaling code clone detection to work across multiple repositories is a specific

area of interest among researchers. Popular and notable examples of large-scale

code clone detection include CCFinderX [3], which is one of the foremost token

based code clone detection tools able to scale up to large repositories and detect

Type-1 and Type-2 code clones. In [19], an inverted index-based approach was

first proposed, detecting Type-1 and Type-2 clones. Deckard [23] is another tool

that aims to scale to large source code repositories. It uses a tree-based data

structure and detects clones by identifying similar subtrees and is able to detect

up to Type-3 code clones. NiCad [28] is a scalable code clone detection tool

that can detect Type-3 clones using a technique based on parsing, normalization

and filtering. When compared using similar execution parameters, CCFinderX

scales up to 100 million lines of code, Nicad scales up to 10 million lines of code,

while Deckard scales up to 1 million lines of code [16].

Parallel, distributed or online (i.e. incremental) techniques add another

dimension in examining scalable code clone detection technique. For instance,

iClone [29] is the first incremental code clone detection technique that detects

code clones in the current version of code repository by leveraging executions on

previous versions of the same repository. It uses a suffix tree-based and token-

based approach that can detect Type-1 and Type-2 code clones. A scalable

distributed code clone detection tool named D-CCFinder was proposed in [22],
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which can scale code clone detection in a distributed environment to detect

Type-1 and Type-2 clones. In [17] a scalable code clone detection technique

has been introduced where input files are partitioned into smaller subsets and

a shuffling framework is utilized to allow the clone detection tool to execute on

each of the subsets separately, enabling it to detect code clones in parallel.

Recently, the SourcererCC [16] code clone detection tool proposed a token-

based prefix filtering code clone detection technique, which greatly reduces the

number of candidate code clone pairs, enabling it to detect up to Type-3 clones

in Internet-scale source code repositories. SourcererCC is the best scaling tool

on a single machine that we are aware of. The approach described in this paper

extends SourcererCC with an adaptive approach that allows for even greater

gains in performance for large-scale source code datasets.

SourcererCC is based on two filtering heuristics, prefix filtering and token

position filtering, which reduce the number of candidate pairs that require costly

pairwise comparison of all of their tokens [25, 26]. These two filtering heuristics

attempt to rapidly, with few token comparisons, detect pairs of code blocks that

diverge very significantly from each other. To perform this task, a subset (or

prefix) is isolated in each of the two code blocks, where if there are no matching

tokens in the subsets then we can safely reject them as a candidate pair, without

proceeding further, and without attempting to compare all of their tokens. On

the other hand, a single matching token in the subset allows the pair to proceed

to further scrutiny as a code clone.

Recently, an extremely scalable code clone detection tool VUDDY [30] has

been presented. VUDDY’s purpose is to detect vulnerable code clones for se-

curity improvement. While VUDDY has been shown to be significantly faster

than SourcererCC it is designed to only detect Type-1 and Type-2 code clones.

So far, the precision and recall of VUDDY has only been evaluated for relatively

few instances of code with security vulnerabilities.

Wang et al. [24] recently proposed an additional filtering heuristic to those

used in SourcererCC, called adaptive prefix filtering. This technique posits that

deeper prefix lengths, which attempt more aggressive filtering at a higher perfor-
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mance cost, can achieve good performance on some types of input. An adaptive

prefix filtering technique attempts to estimate the right level of filtering for each

candidate by optimizing the trade-off between the cost of deeper filtering with

the benefit of reducing the number of candidates. This paper applies adaptive

prefix filtering to code clone detection, and evaluates it’s adequacy.

2.1. Code Clone Search

Code clone search is a related area of research where a single code block

is supplied as a query to be matched in large source code corpus, retrieving

a list of code clones. Code clone search requires the source code to be pre-

indexed, and for the similarity threshold between the query block and it’s clones

to be specified at query time, instead of, at indexing time. This twist makes it

challenging for typical code clone detection to be used without modification, and

requires a more flexible data structure. In this section we describe some of the

previous approaches directed towards code clone search, which are significantly

fewer than those that target code clone detection. Our technique targets both

code clone detection and code clone search.

Multidimensional indexing structures have previously been proposed for code

clone search. The technique proposed by Lee et al. [31] captures semantic in-

formation via a characteristic vector containing the occurrence counter of each

syntactic element. This technique also retrieves a ranked list of code clones for

each query, similar to typical information retrieval techniques. Another code

clone search approach that uses multi-level indexing to detect Type-1,Type-2,

Type-3 code clone was proposed by Kelvanloo et al. [14].

SeClone is a technique that targets code clone search [32] using a complex

workflow, which includes the creation of Java ASTs for each file, two types of

indices (code pattern index and type usage index), a tailored search algorithm for150

code search, and a post-processing step that leverages clone pair clustering and

grouping. Another complex technique Internet scale code clone search technique

has been recently proposed, performing an abstracted code search for working

code examples for reuse [33]. This technique uses an abstract representation of
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code snippets (using p-strings[34]), which are searched using frequent itemset

mining. The result set of working code example is ranked using relevance of

code patterns, popularity of abstract solutions, and similarity of code snippets

to the output code snippets [33].

A clone search technique proposed by Koschke et al. [35] detects clones

between two different systems. The technique uses a suffix tree to represent

the code base that is smaller between the two. Subsequently, every file of the

other system is compared against the suffix tree. A hash-based technique is

additionally used for reducing the number of file comparisons. The technique

only detects Type-1 and Type-2 code clones.

All of the above approaches towards code clone search utilize complex data

structures to represent code blocks and (or) leverage complicated indexing schemes.

Different from code clone detection, code clone search techniques typically do

not optimize the index building time, since it is considered to be a fixed cost.

Our proposed approach applies to both code clone search and code clone detec-

tion. Unlike other approaches for code clone search, it uses simple token-based

code block representation that is fast and scalable to build and also maintains

the ability to produce reasonable detection accuracy for Type-1, Type-2 and

Type-3 code clones.

3. Adaptive Prefix Filtering Technique

This paper centers on the combination of three filtering heuristics, two of

which have been previously proposed for token-based code clone detection: pre-

fix filtering, token position filtering and adaptive prefix filtering. Prefix filtering

was proposed by researchers so that number of candidate pairs in token based

code clone detection can be significantly reduced, improving performance and

scalability. As a complement to prefix filtering, token position filtering utilizes

the position of the tokens in the code block to further reduce the number of

candidate pairs. The third heuristic, adaptive prefix filtering is an extended

version of prefix filtering that looks for beneficial opportunities to filter candi-
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date pairs even more aggressively, aimed at even further improving performance

and scalability to large datasets. SourcererCC [16] has implemented the first

two heuristics, while in our proposed code clone detection technique we have ap-

plied all three heuristics. In this section, we describe the context for token-based

code clone detection, followed by an explanation of each of the three filtering

heuristics. As a running example that helps clearly explain our approach we

use 5 code blocks shown in Table 1.

//Code Block 1 (CB1)

public static int factorial(int result) {

if(result <= 1) return 1;

return result * factorial(result-1); }

//Code Block 2 (CB2)

public static int factorial(int n) {

int result = 1;

for(int i=1; i<=n; i++) {

result = result * i;

}

return result; }

//Code Block 3 (CB3)

public static int factorial(int n) {

if(n >= 0) {

result[0] = 1;

for(int i=1; i<=n; i++) {

result[i] = i * result[i-1];

}

return result[n]; } }

//Code Block 4 (CB4)

public static void main(String[] args) {

int result = 5;

int factorial = result;

for(int i=result-1; i>1; i--) {

factorial = factorial * i; } }

//Code Block 5 (CB5)

public int factorial(int result) {

if(result == 0) {

return 1;

} else {

return result * factorial(result-1); } }

Table 1: Code blocks for running example.

For a token-based approach of code clone detection, at first, we must convert

the source code into a set of tokens. To this end, we extract the set of string

literals, keywords, and identifiers in each code block, removing all the special

characters, operators and comments. Each of the extracted tokens can occur
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Code

Block
Sorted Tokens

CB1 if
{9}
{1,3} static

{10}
{1,4} public

{11}
{1,5} return

{13}
{2,6} factorial

{14}
{2,9} 1

{15}
{3,12} int

{17}
{2,14} result

{18}
{4,19}

CB2

for
{8}
{1,3} static

{10}
{1,4} public

{11}
{1,5} n

{12}
{2,6} return

{13}
{1,6} factorial

{14}
{1,9} 1

{15}
{2,12} i

{16}
{4,14}

int
{17}
{4,14} result

{18}
{4,19}

CB3

0
{7}
{2,3} for

{8}
{1,3} if

{9}
{1,3} static

{10}
{1,4} public

{11}
{1,5} n

{12}
{4,6} return

{13}
{1,6} factorial

{14}
{1,9} 1

{15}
{3,12}

i
{16}
{6,14} int

{17}
{3,14} result

{18}
{4,19}

CB4

5
{1}
{1,1} String

{2}
{1,1} args

{3}
{1,1} main

{5}
{1,1} void

{6}
{1,1} for

{8}
{1,3} static

{10}
{1,4} public

{11}
{1,5}

factorial
{14}
{3,9} 1

{15}
{2,12} i

{16}
{4,14} int

{17}
{3,14} result

{18}
{3,19}

CB5

else
{4}
{1,1} 0

{7}
{1,3} if

{9}
{1,3} public

{11}
{1,5} return

{13}
{2,6} factorial

{14}
{2,9} 1

{15}
{2,12} int

{17}
{2,14}

result
{18}
{4,19}

Table 2: Tokenized code blocks sorted based on global token ordering. Each token x is

represented as x
{m}
{l,g} where m is the global position (the position after sorting all the tokens

of all the code blocks based on global frequency), l is the local frequency of the token in the

code block, while g is the global frequency of token x in the corpus

several times in a code block so we annotate each token with it’s local occurrence

frequency. The sum of the local occurrence frequencies for a specific token across

all the code blocks in the corpus is it’s global occurrence frequency. We sort all

the tokens, in each code block, based their global frequency in ascending order.

When there is a tie, the tokens are arranged in alphabetical order. For instance,

in Table 2 we show the sorted token-based representation of the code blocks

from Table 1.

In token-based code clone detection techniques, two code blocks are classi-

fied as clones if they match a certain number of tokens. The required number

of matched tokens depends on the user defined threshold value θ, which ranges

between 1 and 10 (i.e. 10% to 100%), and the length of the code blocks. A sim-

ilarity function (e.g. edit, hamming) measures the degree of similarity between

two code blocks. In this paper we use the simple overlap similarity function that

measures the number of tokens in the intersection between two code blocks, i.e.

O(CB1, CB2) = |CB1 ∩ CB2|.

To determine whether code blocks CB1 and CB2 are code clones, we take

the maximum value between the number of tokens in each of the code blocks
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CB1 and CB2, t = max{length(CB1), length(CB2)}, and multiply it by the

similarity threshold value, θ. A code clone detection technique has to examine at

least i =
⌈
θ|t|
⌉

tokens to determine whether a pair of code blocks are code clones.

There is a significant performance cost in performing this token comparison for

a large source code repository containing numerous code blocks. The prefix

filtering heuristic improves on this by first determining if a strict comparison is

necessary, or if the pair of blocks can be filtered out. We describe this technique

in more detail next.

3.1. Prefix Filtering

According to this heuristic, if the sorted tokens (as shown in Table 2) of a

pair of code blocks match at least one token in their prefix then these blocks are

a code clone candidate pair, which we verify whether are really code clone to

each other in a subsequent verification step. On the other hand, if not a single

token is matched, then we can discard them from further consideration.

The prefix of each code block is of size |t| −
⌈
θ|t|
⌉

+ 1 where |t| is the total

number of tokens in the corresponding code blocks. In Table 3 we show the

prefixes of two code blocks from our running example, assuming a similarity

threshold value θ=0.8. For CB1, whose size is |t| = 16, Table 3 shows that it’s

prefix is computed as |t|−
⌈
θ|t|
⌉

+1 = 16−0.8∗16+1 = 4. In the fourth column

of this table all the extracted tokens within the prefix of CB1 are shown. It is

worth mentioning that although the prefix length is four we have extracted five

tokens because this metric ignores repeated tokens in the last position. Since

return(last token with 1-prefix length) has repeated twice in CB1 it is similarly

included in the prefix. Now, we only test whether at least one token is matched

in the two prefixes to determine if they need further scrutiny or if they can be

filtered out. We generalize this to Property 1 as follows.

Property 1: If two code blocks CB1 and CB2 consist of t terms each, which

follow an order O, and if |CB1 ∩CB2| ≥ i, then the sub-block CBsb1 consisting

of the first t − i + 1 terms of CB1 and the sub-block CBsb2 consisting of first

t− i+ 1 terms of CB2 must match at least one token.
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Code

Block

Size of

Code

Block

1-Prefix

Scheme
Tokens within Prefix

CB1 |t| = 16
|t| −

⌈
θ|t|
⌉

+ 1 =

16−0.8∗16+1 = 4
{if static public return return}

CB2 |t| = 21
|t| −

⌈
θ|t|
⌉

+ 1 =

21−0.8∗21+1 = 5
{for static public n n}

Table 3: Prefix filtering of CB1 and CB2

3.2. Token Position Filtering

For the second heuristic, token position filtering, we derive an upper bound

by summing of the number of current matched tokens and minimum number of

unseen tokens between two code blocks. If this upper bound is smaller than the

needed threshold we can safely reject this code block pair.

For code blocks CB1 and CB2, if we examine the position of the first match-

ing token static, we see that it is in position 2 for both code blocks. At position

2, the minimum number of unseen tokens is 14 for code block CB1 and 19 for

code block CB2, since the total number of tokens is 16 and 21 for code blocks

CB1 and CB2 respectively. We compute the upper bound between CB1 and

CB2 as {1 + min(14, 19)} = 15, to communicate the number of matching to-

kens, in the best case scenario, given the position of the match in the static

token. The upper bound in this case is lower than the required number of to-

kens (17) we needed to match, assuming the similarity threshold value of 0.8

(θ*{length(CB1), length(CB2)}=0.8 ∗ max(16, 21) = 17). Therefore, we can

reject this pair of code blocks without proceeding further. We derive property

2 for token position filtering, as follows.

Property 2: Let blocks CB1 and CB2 be ordered and ∃ token t at index

i in CB1, such that CB1 is divided in to two parts, where CB1(first) =

CB1[1...(i− 1)] and CB1(second) = CB1[i...(|CB1|)]. Now if |CB1| ∩ |CB2| ≥

θ * max(|CB1|, |CB2|), then ∀ t ∈ (CB1 ∩ CB2), |CB1(first) ∩ CB2(first)|

+ min(|CB1(second)|,

|CB2(second)|) ≥ θ ∗max(|CB1|, |CB2|).
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3.3. Adaptive Prefix Filtering

Adaptive prefix filtering heuristic is the extended version of prefix filtering

where rather than matching one token in the prefixes of code blocks, we match

more, while deepening the size of the prefixes. For example, instead of matching

only the token static in the prefix of CB1 and CB2 we can match multiple tokens.

This variant defines an `-prefix (instead of a 1-prefix scheme), where ` is the

number of tokens we want to match. The size of the prefix (i.e. number of

tokens within prefix) changes from |t| −
⌈
θ|t|
⌉

+ 1 to |t| −
⌈
θ|t|
⌉

+ `. Adaptive

prefix filtering reduces the number of candidates more aggressively, at the cost

of more comparisons in the filtering step. An advantageous value of ` can be

selected based on the cost calculation framework for each of the code block,

discussed in Section 4.2.

In Table 4 we have shown how the 1-prefix scheme in Table 3 can be pro-

longed to 2-prefix and 3-prefix schemes. For instance, for CB1 in Table 4 the

length of 2-prefix scheme is |t| −
⌈
θ|t|
⌉

+ 2 = 16 − 0.8 ∗ 16 + 2 = 5 resulting in

the shown set of tokens.

Code

Block

2-Prefix

Scheme

Tokens within

2-Prefix Scheme

3-Prefix

Scheme

Tokens within

3-Prefix Scheme

CB1

|t| −
⌈
θ|t|
⌉

+ 2 =

16− 0.8 ∗ 16 + 2 = 5

{if static public

return return

factorial factorial}

|t| −
⌈
θ|t|
⌉

+ 3 =

16− 0.8 ∗ 16 + 3 = 6

{if static public

return return

factorial factorial

1 1 1}

CB2

|t| −
⌈
θ|t|
⌉

+ 2 =

21− 0.8 ∗ 21 + 2 = 6

{for static

public n n return}

|t| −
⌈
θ|t|
⌉

+ 3 =

21− 0.8 ∗ 21 + 3 = 7

{for static public

n n

return factorial}

Table 4: Adaptive prefix filtering for CB1 and CB2

Here, factorial is the new token added in 2-prefix scheme which was not in-

cluded in 1-prefix scheme. For the 2-prefix scheme of CB1 and CB2, the number

of similar tokens between the prefixes is 3. These similar tokens are static, pub-

lic and return. It is worth mentioning that although return has repeated two

times in CB1 it has occurred only once in CB2 so we have to count it only once.

According to adaptive prefix filtering, for CB1 if we take 2-prefix scheme then
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we will keep CB1 and CB2 as candidate pairs because at least `=2 tokens are

matched in the prefixes of CB1 and CB2. This is generalized in Property 3 for

adaptive prefix filtering and Lemma 1, which assert that we can freely use an

`-prefix scheme in place of a 1-prefix scheme.

Property 3: If blocks CB1 and CB2 consisting of t terms each, which follow

an order O, and if |CB1 ∩CB2| ≥ i, then the sub-block CBsb1 consisting of the

first t− i+ ` terms of CB1 and the sub-block CBsb2 consisting of first t− i+ `

terms of CB2 will match at least ` tokens.

Lemma 1: For any code block pair (CB1, CB2) if P`(CB1)∩P`(CB2)<` then

|CB1 ∩ CB2|<
⌈
θ|t|
⌉

where t = max{length(CB1), length(CB2)} and θ is user

defined threshold value [24].

Here P`(CB1) and P`(CB2) denote the `-prefix set of CB1 and CB2 which

are the subsets of CB1 and CB2 respectively, and where each subset consists of

the first |t| −
⌈
θ|t|
⌉

+ ` elements.300

4. System Design for Adaptive Prefix Filtering

In this section, we describe how a system that uses adaptive prefix filtering

can be implemented in practice, which is crucial to making this technique useful.

A delta inverted index presents an efficient data structure for clone candidate

filtering, while prefix cost calculation is important in determining the size of the

prefix ` that optimizes the tradeoff between greater reduction in candidate pairs

and the added cost of deeper filtering. Both the data structure and cost calcu-

lation are crucial steps in implementing the adaptive prefix filtering heuristic in

practice.

4.1. Delta Inverted Index

An inverted index data structure is commonly used to retrieve matching

documents (i.e. code blocks) using a particular token as a query (implemented

in popular tools such as Apache Lucene [36]). For prefix filtering and token

position filtering only a single inverted index data structure is required. Instead
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of creating index for each document inverted index is creates based on each

token where it stores all the documents which contain that particular token.

Thats why it is named as inverted index. However, adaptive prefix filtering

requires a separate inverted index for each of the ` prefix schemes. A delta

inverted index [24] overcomes the repetition that would occur if a simple set of

inverted indices were used for adaptive prefix filtering. We describe this data

structure.

The requirement for inverted list I`(e) is to store all the code blocks whose

`-prefix set contains the token e. Similarly, I`+1(e) stores all code blocks whose

`+ 1 prefix set contains e, and I`(e) ⊆ I`+1(e). A delta inverted index ∆I`+1(e)

data structure eliminates repetition by only storing the different code blocks

between I`(e) and I`+1(e). At the outset, inverted index ∆I1(e) = I1(e), and

as l increases we create delta inverted indexes ∆I2(e), ∆I3(e), . . . , ∆It(e) for

I1(e), I2(e), I3(e), . . . , It(e) where (1≤`≤t-1).

The delta inverted index up to ` = 3 is shown in Figure 1 for threshold

value 0.8. Each of the three large boxes, ∆I1, ∆I2 and ∆I3, represents a delta

inverted index that can be queried separately, which contains a set of tokens

mapped to their respective containing code blocks. ∆I2 contains code blocks

that are not present in I1 but present in I2. Index ∆I3 contains code blocks

that are not in I1 and I2 but are present in I3. As an example, for token return

inverted index I1(return) contains CB1 and inverted index I2(return) contains

CB1, CB2 and CB5, while delta inverted index ∆I2(return) contains CB2 and

CB5.

4.2. Cost Calculation

In order to select the appropriate prefix length for each of the code blocks,

we need to optimize the trade-off between filtering cost (i.e. the cost of looking

up tokens deeper in the delta inverted index) and verification cost (i.e. the

cost of determining if a pair of code blocks are actual clones by comparing

all of the necessary tokens). The adaptive prefix filtering technique iteratively

estimates the cost for `-prefix scheme and `+1-prefix scheme, and if `+1-prefix
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Figure 1: Delta inverted index data structure for CB1 to CB5

scheme’s cost is greater than `-prefix scheme cost then we select `-prefix scheme

for that particular code block. Otherwise we continue to compute the next

prefix scheme’s cost. Prior results include the fact that this technique selects

a global minimum for the optimal prefix scheme [24]. Algorithm 1 lists steps

of cost calculation which is integral part of adaptive prefix filtering technique.

Without cost calculation this technique is not adaptive at all.

Suppose that for each code block CB ∈ R, where R is the repository of

all code blocks, F`(CB) is the filtering cost and V`(CB) is verification cost.

Therefore, for code block CB, we can derive following general equation for the

cost:

Total Cost` = F`(CB) + V`(CB) (1)

For each code block CB ∈ R, it is necessary to query the inverted list of

each token e ∈ P`(CB), where P`(CB) denotes the prefix set for the ` prefix

scheme for code block CB. We introduce a new notation Φ`(CB) to denote the

set of all delta inverted indices for `-prefix scheme used in the filtering step of

code block CB such that Φ`(CB) = {∆Ii(e)|e ∈ P`(CB), 1 ≤ i ≤ `}. Similarly,

let ∆Φ`(CB) denote the set of additional delta inverted lists to be processed

in ` prefix scheme comparing to ` − 1 prefix scheme. Assume C`(CB) is the

candidate set of code block CB, containing the code blocks that appear at least

` number of inverted lists of the elements in P`(CB).

Also, let costv(CB) be the average cost of verifying the candidate CB. Us-
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ing these abstractions, we can derive filter cost and verification cost using the

following equations:

F` =
∑

e∈P`(CB)

|I`(e)| (2)

V` = costv(CB) · |C`(CB)| (3)

As delta inverted index contains only the different code blocks in between

`-prefix scheme and `+1-prefix scheme, we do not need to calculate the filtering

cost from scratch every time, converting the previous filter cost equation to the

following variant.

F`(CB) = F`−1(CB) +
∑

∆I(e)∈∆Φ`(CB)

|∆I(e)| (4)

Prefix Scheme Filter Cost

1-Prefix |I1(if)|+ |I1(static)|+ |I1(public)|+ |I1(return)|

=3+3+4+1=11

2-Prefix |I1(if)|+ |I1(static)|+ |I1(public)|+ |I1(return)|+

|I1(factorial)|+ |∆I2(if)|+ |∆I2(static)|+

|∆I2(public)| + |∆I2(return)|+ |∆I2(factorial)|

=11+2+1=14

3-Prefix |I1(if)|+ |I1(static)|+ |I1(public)|+ |I1(return)|+

|I1(factorial)|+|I1(1)| + |∆I2(if)|+ |∆I2(static)|+

|∆I2(public)| + |∆I2(return)|+ |∆I2(factorial)|+

|∆I2(1)|+|∆I3(if)| + |∆I3(static)|+ |∆I3(public)|+

|∆I3(return)| + |∆I3(factorial)|+ |∆I3(1)|

=14+1+1+2+1=19

Table 5: Calculation of filter cost for CB1

In Table 5 we show the calculation of filter cost for different prefix schemes

for our running example, CB1. For instance, to calculate the filter cost for

prefix scheme ` = 2 we can use filter cost from prefix scheme ` = 1. So the filter

cost for prefix scheme ` = 2 (14) is the summation of filter cost of prefix scheme

` = 1 (i.e. 11) and the size of the delta inverted index of the tokens: {if, static,

public, return, factorial}.
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Algorithm 1 Pseudo-code of the cost calculation for each code block.
Input: CB=code block represented as a bag-of-tokens with tokens sorted according to their global frequency,

∆Φ`(CB)=set of additional delta inverted indices for `-prefix scheme comparing to (`-1)-prefix scheme of code block

CB , Φ`(CB)={∆Ii(e)|e ∈ P`(CB), 1 ≤ i ≤ `} where ∆Ii(e)=delta inverted index of i-prefix scheme, n=user-

defined maximum threshold scheme

Output: Total Cost of code block CB, prefix scheme ` with lowest cost for code block CB

Variables: T`=Total Cost of `-prefix scheme; F`=Filter Cost of `-prefix scheme; V`=Verification Cost of `-

prefix scheme; C`(CB)=candidate set of `-prefix scheme; H[CB]= Hashmap storing the number of processed lists

that contain code block CB; S=union set of multiple ∆I`(e); costv(CB)=average cost of verifying the candidate

CB; C=
`−1(CB)=set of code blocks that occur at least (` − 1) lists in Φ`−1(CB); C>

`−1
(CB)=set of code blocks

that appear in more than (` − 1) lists in Φ`−1(CB);

1: function Cost Calculation(CB,∆Φ`(CB))

2: H[CB] = 0

3: `=1

4: S=∅

5: while (` <= n) do

6: C=
`−1(CB)=∅

7: C>
`−1

(CB)=∅

8: tokensToBeIndexed = |CB| −
⌈
θ|CB|

⌉
+ `

9: for each token e∈CB[1:tokensToBeIndexed] do

10: F`=F`(CB) = F`−1(CB) +
∑

∆I(e)∈∆Φ`(CB) |∆I(e)| . calculation of filter cost

11: if (` == 1) then

12: C`(CB) = C`(CB) ∪∆I`(e)

13: for each code block CB ∈ ∆I`(e) do

14: H[CB] = H[CB] + 1

15: end for

16: else

17: S = S ∪∆I`(e) ∈ ∆Φ`(CB)

18: for each code block CB ∈ S do

19: if (H[CB] > (` − 1)) then

20: C>
`−1

(CB)= C>
`−1

(CB) ∪ CB

21: end if

22: if (H[CB] == (` − 1)) then

23: C=
`−1(CB)= C=

`−1(CB) ∪ CB

24: end if

25: end for

26: for each ∆I`(e) ∈ ∆Φ`(CB) do

27: for each code block CB ∈ ∆I`(e) do

28: H[CB] = H[CB] + 1

29: end for

30: end for

31: |C(`)(CB)| = |C>
(`−1)

(CB)| + |C=
(`−1)

(CB) ∩
⋃

∆I(e)∈∆Φ`(CB) ∆I(e)|

32: end if

33: end for

34: V`=costv(CB) · |C`(CB)| . calculation of verification cost

35: T`= F` + V` . calculation of total cost

36: if (T` > T`−1) then return T`−1, (` − 1)

37: end if

38: `++

39: end while

40: end function
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The average cost of verifying a code block CB is costv(CB). We compute

this cost using su and sl, the upper bound and lower bound of the sizes of all the

code blocks within code repository R. We express this via following equation:

costv(CB) = |CB|+
s|u| + s|l|

2
(5)

The average cost of verifying CB1, costv(CB1)=16+
16 + 28

2
=38. Here, 16

and 28 are the lower and upper bound of the size among the five code blocks in

our running example.

To estimate the candidate set size of 1-prefix scheme, C1(CB), we sim-

ply calculate the number of code blocks which appear in at least one inverted

list using the tokens within 1-prefix scheme. In Table 6, the first row shows

that CB1,CB2,CB3,CB5 have appeared in at least one inverted index of tokens

within 1-prefix scheme of CB1, and, therefore, the candidate set size is 4. For

computing the candidate set size |C`+1(CB)| of (` + 1)-prefix scheme we can

utilize the candidate set size of `-prefix scheme |C`(CB)|.

Those code blocks that appear in more than ` number of inverted lists of

tokens within `-prefix scheme, also appear in the candidate set of (`+ 1)-prefix

scheme. All other code blocks which appear in at least ` number of inverted

lists of tokens within `-prefix scheme can also appear in the candidate set of

(` + 1)-prefix scheme if and only if these code blocks appear in the additional

delta inverted lists of the (` + 1)-prefix scheme. We take the summation of

the size of these two sets where one set contains the intersection of the code

blocks appearing both in the `-number of inverted lists in `-prefix scheme and

the additional delta inverted lists of (` + 1) prefix scheme and the other set

contains the code blocks appearing in more than ` number of inverted lists in

`-prefix scheme.

Let C=
` (CB) represents the set of code blocks that occur at least ` list in

Φ`(CB) and let C>` (CB) represents the set of code blocks that appear in more

than ` lists in Φ`(CB). Using these, we can define the following candidate set
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equation.

|C(`+1)(CB)| = |C>` (CB)|+ |C=
` (CB) ∩

⋃
∆I(e)∈∆Φ`+1(CB)

∆I(e)| (6)

In Table 6 we show how we utilize the candidate set size |C1(CB1)| of 1-

prefix scheme to derive the candidate set size |C2(CB1)| of 2-prefix scheme for

code block CB1. For estimating candidate set size |C2(CB1)| first we have to

calculate the number of code blocks which appear in more than one inverted

lists of tokens within the 1-prefix scheme. In this case, we only need to consider

those code blocks which appear in ∆I2 which is the delta inverted list for 2-

prefix scheme of CB1. If we check all the tokens {if, static, public, return,

factorial} within 2-prefix scheme of CB1, we see only tokens {return ,factorial}

are in CB1,CB2,CB5 in the delta inverted list ∆I2. Since CB1,CB2,CB5 have

appeared in at least 2 inverted lists of the tokens within 1-prefix scheme of CB1,

these code blocks are the elements of set C>1 (CB1). Therefore code blocks

CB1,CB2,CB5 should be included in the candidate set C2(CB1) of 2-prefix

scheme of CB1.

Those code blocks which appear only in one inverted list of the tokens of

1-prefix scheme, are the elements of set C=
1 (CB1). If those code blocks of

C=
1 (CB1), also appear in the additional delta inverted list ∆Φ2(CB1) of 2-prefix

scheme then these code blocks are the elements of the candidate set C2(CB1)

of 2-prefix scheme. Therefore we have to take the intersection between two sets

where one set, C=
1 (CB1), contains the code blocks appearing in one inverted

list and the other set contains the code blocks appearing in the additional delta

inverted list ∆Φ2(CB1). For CB1 there are no code blocks that appear only in

one inverted list, and the intersection of these two sets is ∅.

Finally we take the summation of the size of those two sets. In Table 7, we

show the calculation of verification cost and total cost for our running example.

To calculate the verification cost of CB1 we have multiplied the average verifi-

cation cost by the candidate set size. As the 2-prefix scheme cost is smaller than

the 3-prefix scheme cost, we stop here and take ` = 2 as the preferred prefix

scheme.

19



Prefix Scheme Candidate Set Size

1-Prefix {|∆I1(if)|, |∆I1(static)|, |∆I1(public)|, |∆I1(return)|}=

{|(CB1, CB3, CB5)|,|(CB1, CB2, CB3)|

|(CB1, CB2, CB3, CB5)|,|(CB1)|}=

{|(CB1, CB2, CB3, CB5)| }=4

2-Prefix |C2(CB1)| = |C>1 (CB1)|+ |C=
1 (CB1) ∩

⋃
∆I(e)∈∆Φ2(CB1) ∆I(e)|

= |C>1 (CB1)|+ |C=
1 (CB1) ∩ {∆I2(if) ∪∆I2(static) ∪∆I2(public)∪

∆I2(return) ∪∆I2(factorial) ∪∆I1(factorial)}|

=|C>1 (CB1)|+ |C=
1 (CB1) ∩ {CB2 ∪ CB5 ∪ CB1}|

=|C>1 (CB1)|+ |∅ ∩ {CB2 ∪ CB5 ∪ CB1}|

=|{CB1, CB2, CB5}|+ |∅ ∩ {CB2 ∪ CB5 ∪ CB1}|

=3 + 0 = 3

3-Prefix |C3(CB1)| = |C>2 (CB1)|+ |C=
2 (CB1) ∩

⋃
∆I(e)∈∆Φ3(CB1) ∆I(e)|

= |C>2 (CB1)|+ |C=
2 (CB1) ∩ {∆I3(if) ∪∆I3(static) ∪∆I3(public)∪

∆I3(return) ∪∆I3(factorial) ∪∆I3(1) ∪∆I2(1) ∪∆I1(1)}|

=|C>2 (CB1)|+ |C=
2 (CB1) ∩ {CB4, CB3, CB2, CB5, CB1}|

=|C>2 (CB1)|+ |∅ ∩ {CB4, CB3, CB2, CB5, CB1}|

=|{CB1, CB2, CB3, CB5}|+ |∅ ∩ {CB4, CB3, CB2, CB5, CB1}|

=4 + 0 = 4

Table 6: Calculation of candidate set size for CB1

Prefix Scheme Filter Cost Verification Cost Total Cost

1-Prefix 11 costv(CB) · |C1(CB)| =38*4.0=152.0 163.0

2-Prefix 14 costv(CB) · |C2(CB)| =38*3.0=114.0 128.0

3-Prefix 19 costv(CB) · |C3(CB)| =38*4.0=152.0 171.0

Table 7: Calculation of total cost for CB1.

4.3. Code Clone Search

The adaptive prefix filtering technique can also be utilized for code clone

search, where a user-specified code block (i.e. the query) is matched in a corpus

consisting of numerous code blocks. In code clone search, different from code

clone detection, we do not pre-specify the similarity threshold value before the

index is built from the corpus, as we would like for the same index to be able

to serve different queries with different threshold values. Therefore, the index

structure should be able to deal with any threshold value, 1 <= |s| <= 10,

where |s| is the maximum threshold value the index could serve.

As a naive approach, we can build an index for all possible threshold value

20



from 1 to |s| for each code block. However, this would take up huge space and

be very time consuming.

Instead of building delta inverted indices for each threshold value from 1 to

l, we can build delta inverted indices for the maximum threshold value |s|, i.e.

for 100% similarity (threshold value 10). With this maximum threshold value

we build delta inverted indices, ∆I1, ∆I2, ∆I3 and so on, until we reach the

maximum prefix scheme. For example for code block CB1 from Table 2, ∆I1

contains the token if, ∆I2 contains the token static, ∆I3 contains the token

public and so on. We continue to populate the delta inverted indices until ∆I8,

which contains the final token for this specific code block, result. We continue

this process for all of the code blocks in the corpus. At retrieval time, we use this

data structure as the means to answer code clone search queries with retrieval-

time similarity thresholds. Apart from this modification to the data structure,

the algorithm follows the same logic as in code clone detection.

5. Experimental Results

Our goal is to implement a code clone detection tool that can scale to mas-

sive inter or intra project source code repositories and overcome limitations in450

many existing tools, such as, unsustainable execution time, inadequate system

memory, restrictions in inner data structures, and exhibiting errors due to their

design not expecting a large input [16, 17, 37]. In evaluating our tool, we focused

on answering the following set of research questions.

• RQ 1: Does adaptive prefix filtering achieve better performance at scale

than the best state of the art tool SourcererCC?

SourcererCC is a recent code clone detection tool aimed at scalability on

a single machine [16]. The adaptive prefix filtering heuristic presented

in this paper extends the filtering heuristics used by SourcererCC, so a

comparisson between the two is both natural and necessary.

Several code clone detection tools have been benchmarked in recent pa-

pers [38, 39]. Among all of the measured tools, four publicly available
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tools achieve exceptional scalability and accuracy in code clone detec-

tion: CCFinderX [3], Deckard [23], iClones [29] and NiCad [40]. In turn,

SourcererCC has been measured to outperform these four publicly avail-

able and popular tools [16].

Recently, several popular code clone detection tools were compared [30],

including VUDDY [30], SourcererCC [16], CCFinderX [3] and Deckard [23].

SourcererCC outperformed CCFinderX [3] and Deckard [23]. VUDDY

outperformed SourcererCC, however, it only detects Type-1 and Type-2

clones.

• RQ 2: Does adaptive prefix filtering achieve reasonable accuracy in clone

detection?

This research question aims to determine whether the adaptive prefix fil-

tering heuristic can achieve reasonable precision and recall, and whether

it can serve as a replacement to SorcererCC.

• RQ 3: Does the application of adaptive prefix filtering to code clone search

achieve acceptable query response time?

Searching for similar code fragments in very large scale source code repos-

itory within reasonable amount of time is a challenging problem. In using

our technique for code clone search, we want to determine whether this

application produces reasonable response time, which is key for it to be

useful in practice.

5.1. Performance of Adaptive Prefix Filtering (RQ1)

In this section we discribe a comparison of the scalability of adaptive prefix

filtering technique relative to SourcererCC [16]. To answer this research question

we rely on publicly available large-scale evaluation datasets, which have recently

become available. The IJaDataset 2.0 [27] is a large inter-project Java repository

containing 25,000 open source projects with 3 million source files and 250MLOC.

It is mined from SourceForge and Google Code [16]. To compare SourcererCC
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with adaptive prefix filtering, both tools were benchmarked on a standard work-

station with 3.50GHz quad-core i5 CPU, 32.0 GB of RAM memory, and 64-bit

windows operating system. The execution of both tools was scripted to measure

the run-time of both tools 5 times for each input and report the average. For

adaptive prefix filtering, we used the 2-prefix scheme in constructing the delta

inverted index. In order to measure the performance at different input sizes, we

blindly selected a subset of the Java source files in IJADataset [27] ranging from

10,000 to 160,000 files, approximately from 1MLOC to 17MLOC, such that the

selected files at smaller input sizes were also contained in the larger inputs. This

ensures a stable measurement since code clone technique execution time may

be reliant on clone density [16]. Both techniques consumed extreme amounts

of time (>10 hours) at 160,000 files(approximately 17MLOC), and therefore we

did not attempt using larger input sizes. And for same reason we limited simi-

larity degree from 70% to 90% in comparison. But for smaller dataset(1MLOC)

we have experimented on all similarity degrees(from 10% to 100%).

Figure 2 shows a comparison in execution time for adaptive prefix filtering

technique and SourcererCC for threshold values 7, 8, and 9 (i.e. 70%-90%

similarity). For threshold values 7 and 8 adaptive prefix filtering is showing

an improvement relative to SourcererCC, but not at threshold value 9. As the

the input size increases toward 160,000 files, the difference in execution time

between SourcererCC and adaptive prefix filtering becomes wider for threshold

values 7 and 8.

In Table 8 we show the execution times for SourcererCC and adaptive pre-

fix filtering technique for a fixed input of 10,000 files(approximately 1MLOC),

but at varying threshold values. We show both raw execution times as well as

the percentage improvement of adaptive prefix filtering technique in the right-

most column. Adaptive prefix filtering performs better than SourcererCC for

threshold values ranging from 4 to 8. For threshold value 1, 2, 3, 9 and 10 the

execution time of adaptive prefix filtering technique is larger. We argue that the

similarity degrees from 40% to 80% are more commonly used. Exact or near-

exact similarity (i.e. 90% and 10%) do not make sense for detecting Type-2 and
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Figure 2: Comparison of execution time for different input sizes between adaptive prefix

filtering and SourcererCC.

Threshold Value Adaptive Prefix Filtering SourcererCC % Improvement

1 4982.23 4452.31 -10.64%

2 5357.54 5339.58 -0.34%

3 4499.14 4478.93 -0.45%

4 3001.19 3015.76 0.49%

5 1627.95 1652.18 1.49%

6 712.45 740.16 3.89%

7 222.68 249.27 11.94%

8 58.84 64.25 9.19%

9 27.25 23.99 -11.96%

10 23.25 21.89 -5.85%

Table 8: Comparison of execution time (in seconds) between adaptive prefix filtering and

SourcererCC (10,000 files).
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Type-3 code clones, while code clones detected with 10% to 30% similarity are

likely to contain a very large number of false positives.

To better understand the effect of the more aggressive filtering performed by

adaptive prefix filtering, and understand the rationale behind the performance

numbers in Table 8, we compared the number of candidate pairs (in log scale) of

SourcererCC and adaptive prefix filtering technique in Figure 3 for 10000 files.

The candidate pairs are the number of remaining code clone candidates after the

filtering that both techniques perform. A reduction in the number of candidates

translates to improvement in execution time, after the penalty for the more

sophisticated indexing structure and cost calculation of adaptive prefix filtering

is factored in. We observe the strongest reduction in the percentage of candidate

pairs in the similar thresholds of 4 to 9 where we observed improvements in

execution time. Threshold value 9 has a large percentage reduction in candidate

numbers, but the actual reduction numbers are very low1 and insufficient for

offsetting the penalty of more aggressive filtering. For threshold value 10 (100%

similarity) the percentage decrease is 0. This is logical because with complete

similarity adaptive prefix filtering reduces to regular prefix filtering as there is

no room to extract a deeper prefix.

Memory Usage. Fitting with the limited memory budget available on com-

modity machines is an important factor in scalable code clone detection. For

our adaptive prefix filtering technique we use a deeper prefix scheme, resulting

in a larger index that will clearly consume more memory than SourcererCC. We

measured the memory requirement for both SourcererCC and adaptive prefix

filtering for 1 MLOC in the indexing and clone detection phases. While vary-

ing the threshold value, we measured how much memory is consumed in each

iteration of the indexing process and recorded the maximal amount of mem-

ory consumed. The resulting memory requirement was 103 MB for threshold

value 1 and 60 MB for threshold value 10, which is 60% and 20% higher rel-

ative to SourcererCC’s maximal memory footprint in indexing. The memory

1Note that it is a log scale graph.
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Figure 3: Comparison of number of candidate pairs between adaptive prefix filtering

and SourcererCC (10,000 files).

usage is smaller for the larger threshold value because as the threshold value

is increasing the prefix length is decreasing, so fewer tokens need to be stored

in the index structure. In the subsequent clone detection phase we measured

the memory requirement for each query block, again, selecting the maximum

amount of memory required. We obtained 316 MB for adaptive prefix filtering

and 204 MB for SourcererCC. In conclusion, although adaptive prefix filtering

technique requires higher amount of memory compared to SourcererCC, the

memory requirement of both techniques is relatively small and would not im-

pact most deployments. Part of the reason for the small footprint is the efficient

allocation of memory by Apache Lucene, which was used as to store the inverted

index by both SourcererCC and our implementation.

5.2. Accuracy of Adaptive Prefix Filtering (RQ2)

We use precision and recall for measuring the accuracy of adaptive prefix

filtering technique as these are the two most commonly used metrics used to
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determine the quality of a code clone detection technique [41]. Measurement

of clone recall and precision has been greatly aided by recent datasets and

frameworks like BigCloneEval [42]. This framework can be used for the evalua-

tion of code clone detection tools based on the BigCloneBench clone detection

benchmark [43]. BigCloneBench contains a large set of known clones from the

inter-project software repository IJaDataset 2.0 [21, 16], which we used in RQ1.

Note that SourcererCC and adaptive prefix filtering produce the same clones as

output due to the inherent similarity in the techniques.

Recall. For measuring recall of adaptive prefix filtering we use file level gran-

ularity, which means the clone pairs are actually pair of two Java source files

that are detected as code clones to each other. The evaluation of SourcererCC

was at the method level [16]. In measuring recall using BigCloneBench, Type-3

and Type-4 code clones are separated in four categories because it is difficult to

separate Type-3 and Type-4 since there is no consent on the smallest similarity

of Type-3 [21]. These four categories are: Very Strongly Type-3 (VST3) clones

that has range of syntactical similarity from 90% to 100%, Strongly Type-3

(ST3) that has range of syntactical similarity from 70% to 90%, Moderately

Type-3 (MT3) that has range of syntactical similarity from 50% to 70% and

Weakly Type-3 (WT3/T4) that has range of syntactical similarity from 0% to

50%, which are often Type-4 code clones [16].

For this evaluation we used a similarity threshold of 70% in executing adap-

tive prefix filtering, which is the default setting for BigCloneEval. Our technique

produced very high recall for Type-1 code clones (97%), and detected Type-2

code clones with a reasonable recall of 77%. For Type-3 clones, the recall de-

creases significantly, from 60% for the VST3 category, 26% for ST3, 16% for

MT3 and less than 1% for WT3/T4. The Weakly Type-3/Type-4 clones have

low syntactic similarity which makes it very hard for our technique to detect at

the 70% threshold, so this result is not unexpected.

Precision. The adaptive prefix filtering technique detects the same code clones

as SourcererCC, and therefore it’s precision (and recall) will be same as Sourcer-

erCC. SourcererCC’s precision was previously evaluated via a set of 390 clone
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pairs, which were manually identified by several researchers with high mutual

inter-agreement. Out of these 390 clone pairs, 355 were true positives while 35

were found false positives, resulting in a precision of 91% computed at method

level granularity [16].

The value of the precision metric, unlike recall, is influenced by the number600

of false positives. For token based code clone detection techniques, a common

source of false positive clones stems from the fact that these techniques com-

monly treat the input as a bag of words, ignoring the ordering of tokens in

the input. To illustrate this point we show a false positive clone pair identified

by our technique (and likely most other token based techniques), snippets of

which are shown in Table 9. The pair of code blocks constituting the false pos-

itive example are: 1) a code block that implements password validation and 2)

a code block that implements password encryption. Although these two code

fragments have 70% similar tokens they are functionally dissimilar. In fact, the

pair of code blocks have significant differences at the line level and their differ-

ent purpose would be easily observed by a human. However, both of the code

fragments are dealing with passwords there are significant number of similar

tokens. Some of these are: password, passwordInDb, MessageDigest, update.

//Password Validation

byte[] digestInDb =

new byte[pwdInDb.length - SALT_LENGTH];

System.arraycopy(pwdInDb, SALT_LENGTH,

digestInDb, 0, digestInDb.length);

if (Arrays.equals(digest, digestInDb)) {

return true;

} else {

return false;

}

//Password Encryption

pwd = new byte[digest.length+SALT_LENGTH];

System.arraycopy(salt,0,pwd,0,SALT_LENGTH);

System.arraycopy(digest,0,pwd,SALT_LENGTH,

digest.length);

return byteToHexString(pwd);

Table 9: Snippets of false positive clone pair identified by our technique.
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5.3. Applicability Towards Code Clone Search (RQ3)

We showed that the adaptive prefix filtering technique can easily be extended

so that it can support similarity search. In this section, we examine the practi-

cality of code clone search based on this technique by measuring the performance

of this variant. Our goal here is to show that the use of our technique for code

clone search is practical, but not to show that our technique outperforms those

that specialize solely on the code clone search problem. Table 10 shows the time

it takes to construct the index, and, more importantly, the average query time

for 1000 files randomly selected from IJADataset with similarity degree 80%

(i.e. threshold value 8). By index time, we refer to the time required to build

the special indexing structure given a maximum similarity threshold of 100%.

After creating this index, we use a random selection of 1000 Java source files,

from the files used to construct the index, performing a code clone search for

each file. We report the average search time for different input sizes.

In examining the performance of our technique in Table 10, we observe sub-

second response times for each queries, even at the larger corpus sizes. This is

likely to be reasonable performance for many applications.

Number of Files Similarity Index Time (in sec.) Query Time (in sec.)

10000 80% 70.52 0.046

20000 80% 160.12 0.095

40000 80% 351.29 0.177

80000 80% 736.93 0.368

Table 10: Performance of code clone search using adaptive prefix filtering.

6. Threats to Validity

• Database Selection: Our experimental evaluation is limited only to the

Java programming language via the IJaDataset. A threat to validity is

that our approach may not be be effective for other programming lan-

guages or other corpora. As a mitigating factor to this threat, we argue
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that researchers have observed that programming languages possess com-

mon statistical traits in their term distribution relative to natural lan-

guage [44]. Therefore, our technique is likely to exploit these similarity

notions and be beneficial across different languages and code bases.

• Hardware and Input Size Limitation: We evaluated adaptive prefix fil-

tering for code clone detection on a commodity workstation, and not on

specialized hardware. Our implementation is also multithreaded, which

improves performances on modern CPUs. It is unclear whether the per-

formance improvements we observed translate to other hardware architec-

tures.

We also used a fixed time budget of roughly one day in executing our

tool, which limited our largest input to 160,000 Java source file containing

approximately 17MLOC. Another threat to validity is that we did not

experiment with larger inputs, for which it is possible that our technique

fails to perform well. As a mitigating factor, we note that our results

span numerous (smaller) input sizes and the trend we observed is towards

improved rather than degrading performance compared to SourcererCC

as the input size increases.

7. Conclusions and Future Work

In this paper we described a novel code clone detection technique utilizing the

adaptive prefix filtering heuristic [24]. Our proposed technique can outperform

the most recent scalable code clone detection tool SourcererCC in terms of

execution time within a certain range of similarity thresholds (between 40% to

80%). Since the technique directly extends SourcererCC, it produces the same

output, duplicating the same high precision and recall as SourcererCC. We have

evaluated our proposed code clone detection tool by randomly creating a subset

of the IJaDataset 2.0 [27], a large code clone benchmark that contains 250MLOC

and 25,000 open source Java systems.
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Our experimental results indicate that our adaptive prefix filtering based

code clone detection technique can be practically utilized in various code clone

detection related applications that require large source code repository to be

processed on a single machine. In our experiments we successfully performed

code clone detection on a 17MLOC Java code base within a reasonable time

window of several hours. Our paper also attempts to provide numerous examples

and practical implementation advice for future applications of adaptive prefix

filtering.

To the best of our knowledge our approach is also among few code clone

detection techniques in the literature that can be additionally used for code

clone search, which is the related problem of retrieving similar code blocks to a

single code block issued as a query. Typically, code clone detection techniques

make design decisions that allow them to only operate in batch mode, while

code clone search requires the flexibility to answer numerous clone queries using

a pre-built index. We show acceptable indexing and querying times for this

application of our technique.

As future work, we intend to better evaluate adaptive prefix filtering across a

variety of languages and applications. We also aim to attempt to parallelize the

technique to distributed memory architectures, which would greatly improve its

scalability and extend its applicability .
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[29] N. Göde, R. Koschke, Incremental clone detection, in: Software Mainte-

nance and Reengineering, 2009. CSMR’09. 13th European Conference on,

IEEE, 2009, pp. 219–228.

[30] S. Kim, S. Woo, H. Lee, H. Oh, Vuddy: A scalable approach for vulnerable

code clone discovery, in: Security and Privacy (SP), 2017 IEEE Symposium

on. IEEE, 2017.

[31] M.-W. Lee, J.-W. Roh, S.-w. Hwang, S. Kim, Instant code clone search, in:

Proceedings of the Eighteenth ACM SIGSOFT International Symposium

on Foundations of Software Engineering, FSE ’10, ACM, New York, NY,

USA, 2010, pp. 167–176.

[32] I. Keivanloo, J. Rilling, P. Charland, Seclone-a hybrid approach to internet-

scale real-time code clone search, in: Program Comprehension (ICPC),

2011 IEEE 19th International Conference on, IEEE, 2011, pp. 223–224.

[33] I. Keivanloo, J. Rilling, Y. Zou, Spotting working code examples, in: Pro-

ceedings of the 36th International Conference on Software Engineering,

ICSE 2014, ACM, New York, NY, USA, 2014, pp. 664–675.

35

http://secold.org/projects/seclone
http://secold.org/projects/seclone
http://secold.org/projects/seclone


[34] B. S. Baker, A theory of parameterized pattern matching: algorithms and

applications, in: Proceedings of the twenty-fifth annual ACM symposium

on Theory of computing, ACM, 1993, pp. 71–80.

[35] R. Koschke, Large-scale inter-system clone detection using suffix trees and

hashing, Journal of Software: Evolution and Process 26 (8) (2014) 747–769.

[36] Apache Lucene, https://lucene.apache.org/core/, june 2017.

[37] J. Svajlenko, I. Keivanloo, C. K. Roy, Big data clone detection using clas-

sical detectors: an exploratory study, Journal of Software: Evolution and

Process 27 (6) (2015) 430–464.

[38] J. Svajlenko, C. K. Roy, Evaluating clone detection tools with big-

clonebench, in: Software Maintenance and Evolution (ICSME), 2015 IEEE

International Conference on, IEEE, 2015, pp. 131–140.

[39] J. Svajlenko, C. K. Roy, Evaluating modern clone detection tools, in: Soft-

ware Maintenance and Evolution (ICSME), 2014 IEEE International Con-

ference on, IEEE, 2014, pp. 321–330.

[40] C. K. Roy, J. R. Cordy, Nicad: Accurate detection of near-miss intentional

clones using flexible pretty-printing and code normalization, in: Program

Comprehension, 2008. ICPC 2008. The 16th IEEE International Conference

on, IEEE, 2008, pp. 172–181.

[41] A. Sheneamer, J. Kalita, A survey of software clone detection techniques,

International Journal of Computer Applications (2016) 0975–8887.

[42] BigCloneEval, https://github.com/jeffsvajlenko/BigCloneEval,

june 2017.

[43] BigCloneBench, https://github.com/clonebench/BigCloneBench, june

2017.

[44] A. Hindle, E. T. Barr, Z. Su, M. Gabel, P. Devanbu, On the naturalness of

software, in: Proceedings of the 34th International Conference on Software

36

https://lucene.apache.org/core/
https://github.com/jeffsvajlenko/BigCloneEval
https://github.com/clonebench/BigCloneBench
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=2337223.2337322


Engineering, ICSE ’12, IEEE Press, Piscataway, NJ, USA, 2012, pp. 837–

847.

URL http://dl.acm.org/citation.cfm?id=2337223.2337322

37

http://dl.acm.org/citation.cfm?id=2337223.2337322

	Introduction
	Background and Related Work
	Code Clone Search

	Adaptive Prefix Filtering Technique
	Prefix Filtering
	Token Position Filtering
	Adaptive Prefix Filtering

	System Design for Adaptive Prefix Filtering
	Delta Inverted Index
	Cost Calculation
	Code Clone Search

	Experimental Results
	Performance of Adaptive Prefix Filtering (RQ1)
	Accuracy of Adaptive Prefix Filtering (RQ2)
	Applicability Towards Code Clone Search (RQ3)

	Threats to Validity
	Conclusions and Future Work
	Acknowledgment

