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Abstract: Sensor-driven applications, implemented using modern mobile or
gaming devices, have great potential in motivating computer science students.
Recent industry trends toward including more sensors on devices such as mobile
phones, which enable new applications in health monitoring, smart homes, and
human safety, among others, indicate that the number of such sensor-driven
applications will continue to rise. Via a study to learn the difficulties that a
group of students face in designing such sensor-driven applications, we uncover
a set of instructional principles for instructors to follow in using sensor-driven
applications in classrooms. Our findings include that (1) exposing students to
sensor data earlier helps improve self-efficacy; (2) focusing on extracting overall
patterns from sensor data rather than understanding specifics of physical quantities
is beneficial; and (3) good sensor data visualization is beneficial to design, but

bad visualization can confuse students.
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1 Introduction

Sensor data processing is increasingly permeating mainstream software development via a
variety of popular hardware devices, such as modern mobile phones, fitness trackers, smart
watches, and gaming consoles, which are packaged with many types of sensors including
accelerometers, gyroscopes, proximity sensors, location sensors, and others. Sensor-driven
software applications rely on such sensors for their primary functionality. Such sensor-
driven applications have been developed for a range of purposes, such as health monitoring,
smart homes, driving safety, personal security, gaming and entertainment.

Applications based on sensor-rich hardware devices have the benefit of easily engaging
many students. Researchers have developed educational interventions to prepare students for
the specific challenges of these platforms. Issues such as system and application reliability,
sensor data lag, and mutiple threading were mentioned as relevant computing concepts to be
emphasized by educators [1, 2, 3]. Based on the assumption that collecting and visualizing
the sensor data would help students develop intuition, form heuristics, and develop a more
robust algorithm, a teaching model with a set of proposed tools for collecting and visualizing
sensor data has also been proposed [4].

While previous research has identified factors such as the indeterminacy in sensor data
and complexity in development environment as possible causes of the challenges associated
with teaching sensor-driven application development [4], the accounts were provided as a
rough sketch of an issue that needs to be scrutinized more throughly. Simply put, there has
not been enough study that tries to examine and understand the challenges that students face
in designing sensor-driven applications. Sensor data is unique in its nature. It is typically
noisy. It is constantly streaming. And it is subject to the impact of various factors (e.g.,
sampling rates) which make it unique and unfamiliar to most computer science students. By
understanding the difficulties that students face in designing such applications, we can target
instruction to effectively help students and improve student learning outcomes, especially
under the constraints of the already packed computer science curricula.

In this paper, we report on a study of students designing a sensor-driven application.
The intent of the study is to (1) understand the difficulties students face in designing sensor-
driven applications, (2) examine effective and ineffective common strategies that students
use in designing such applications and (3) validate and verify the teaching model proposed
in [4] to determine the effect of observing and visualizing the sensor data stream when
designing appropriate sensor data processing algorithms.

The study provides a characterization of the difficulties that students face when designing
sensor-driven applications. Many of the difficulties we found are unique to such applications,
such as the dynamics between understanding the physics behind sensed physical quantities
and extracting useful overall patterns from time-series of sensor data. Other difficulties,
found also in other computer science domains, include the contention between the necessity
of visualizing data and the misleading effect of poorly crafted visualizations, as well as
the challenges conducting early and frequent evaluation and assessment of algorithmic
solutions. These observations lead to a set of recommendations to instructors who are
interested in teaching sensor-driven applications.

The rest of the paper is organized as follows. Section 2 provides an overview of the
related work and a brief comparison between this study and related studies from other
engineering domains. In Section 3 we describe the study that we conducted. We analyze the
collected data and present a taxonomy of difficulties that students encounter in designing
sensor-driven applications in Section 4, and analyze the effects of exposing students to the
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sensor data and to the data visualization in Section 5. We discuss the implications of our
study in Section 6.

2 Related Work

The ubiquity of smart phones, tablet computers, and smart watches has created both a need
and an opportunity for teaching sensor-driven application development to a broader set
of computer science students [1, 5]. This development in our field has motivated several
prior efforts to bring such sensor-rich mobile platforms to many aspects of education.
These include a broad range, from teaching K-12 students (e.g., [6]) to college students,
(e.g., [7, 8]), and from teaching introductory computer science courses [9] to teaching in
depth a specific area of computing such as operating systems, computer graphics, computer
networks, gaming, or modeling (e.g., [10, 11, 12, 13]).

Teaching sensor-driven applications has a number of challenges, such as the uncertainty
inherent in sensor data, and the complexity of both platforms and algorithm design [4].
In many domains of engineering, sensors and sensor data have long been at the core, for
instance, in robotics and automatic control. Educational examples include teaching students
to work with wireless sensor networks or robots (e.g., [14]). In addition, in contrast to
teaching sensing and control system design in engineering curricula whose focus is often
on hardware system design and on signal processing of sensor data [15], teaching sensor-
driven applications in computing curricula requires designers to extract overall patterns
to support “high-level” decision making, such as, to infer whether a user is under stress
using voice data collected from an audio sensor [16], to turn users’ location sensor data into
textual description that establishes semantics of users activity [17], and to build an inference
model to estimate human queue length and in turn measure service and waiting times [18].
Such sensor-driven applications require knowledge and skills not only in processing sensor
data, but also in extracting features from data. The application designers need to draw on
knowledge and skills from multiple disciplines or areas of computing and engineering to
extract features by building comprehensive analysis and processing workflows, which is a
difficult task.

This paper further extends and supports the above work by examining a set of difficulties
that computer science students face in designing sensor-driven applications. By conducting
a qualitative user study, we first systematically survey and unveil types of difficulties
associated with sensor-driven application development instead of enumerating them based
on our (educators’) casual observations. By providing findings that are grounded in
the collected data, we aim to eliminate any possible misalignments between educators’
perceived and students’ experienced difficulties (e.g. [19]) shows how educators’ beliefs
can differ from student data). In addition, we investigate whether and how the development
process and a set of supporting tools and programs described in [4] help students.

3 The Study: Methodology

This exploratory study is centered around students designing a sensor-driven application
to classify human activities. From the study, we investigate the types of difficulties that
students face in designing sensor-driven applications. Here, design refers to algorithmic
design, i.e., what algorithm can classify user activity correctly.
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Table 1 Summary of participants’ previous programming experience

Participant Gender CS Programming Languages
Courses
P1 F 1 C/C++, Java, Arduino
P2 F 5 Java
P3 F 10 C/C++, Java
P4 M 0 Matlab, Java, Python
P5 M 5 C/C++, Matlab, Java, C#
P6 M 5 C/C++, Matlab, Java, JavaScript, C#
P7 F 2 C/C++, Matlab, C#
P8 M 12 C/C++, Matlab, C#
P9 M 15 C/C++, Matlab, Java, Python
P10 M 7 C/C++, Matlab
P11 M 16 C/C++, Matlab, Java, JavaScript, C#, Python

3.1 Perspective

The work presented in this paper is a phenomenologically-informed case study. Case
study research is “a qualitative approach in which the investigator explores a bounded
system (a case)..., through detailed, in-depth data collection involving multiple sources
of information (e.g., observations, interviews, audiovisual material, and documents and
reports), and reports a case description” (p.73, [20]). In this study, we explore a particular
group of students engaged in sensor-driven application design. Through detailed, in-depth
data collection involving multiple sources of information (e.g., questionnaire data, recorded
interviews data, submitted solutions), we too aim to deliver an “intensive, holistic description
and analysis” (p.46, [21]) of the kinds of difficulties our students face during the design
process. By taking a phenomenological ! stance, this study intends to investigate the
essence([22]) of students’ lived experience([23]) of designing a sensor-driven application.

Our study is an intrinsic case study in its nature, since the purpose of our study is not to
present the theory of learning difficulties associated with sensor-driven application building,
but is “undertaken because of an intrinsic interest in” (p.445, [24] quoted in [21]) exploring
different kinds of hardships inherent in sensor-driven application design and development.

One can also view our study as a contextual inquiry since our investigatory methodology
is “an immersive, contextual method of observing and interviewing that reveals underlying
(and invisible) work structure” (p.46 [25]) of students working on a sensor-driven
application development. The end-product of our research can then be viewed as a case
study ([21]).

The exploratory study is centered around students designing a sensor-driven mobile
application to classify human activities. From the study, we investigate the types of
difficulties that students face in designing sensor- driven applications. Here, design refers
to algorithmic design, i.e., what algorithm can classify user activity correctly.

3.2 PFarticipants

We conducted the study in the summer of 2014 over two days with 12 participants recruited
from the College of Engineering and Technology at our institute. Participants were junior
or senior-level undergraduates or first-year master’s students, whose ages ranged from 18



Learning of Sensor-Driven Mobile App Design: A Case Study 5

to 25 (Mean Age = 21.45; Standard Deviation of Age = 1.97). One participant had to leave
the study in the middle to attend a personal matter, so the participant’s data therefore was
excluded from the subsequent analysis. Participants were randomly assigned into pairs for
the study.

All participants had prior programming experience. Participants on average had taken
7.1 computer science courses at our university. Ten participants said that they had taken
introductory programming courses such as Intro to Programming in C++ or Intro to
Programming in Java while the majority had also taken senior/graduate level courses such
as Advanced Algorithms, Data Mining, Computer Simulation and Robotics. We had a 19-
year-old student who had not taken any programming courses at our school, but stated
that he had previous programming experience and could use three different programming
languages — Java, Matlab and Python. He also stated that he had programmed on multiple
platforms including Windows, Android, LEGO Mindstorms, and Arduino. Table I shows the
participants, designated P1 to P11, their gender, the number of previous computer science
courses taken at our university, and the lists of computer programming languages they said
they were cable of using at the time of the study.

Four of the participants were Brazilian nationals whose native language was not English,
but none had difficulties communicating in English.

3.3 Procedure - Human Activity Classification

The study was designed as a two-day long experiment. We asked the participants to design
a sensor-driven application on day one, and interviewed them on day two.

On day one, participants were brought into a computer lab and randomly divided into
groups of two. After obtaining written informed consents, the pairs, sharing a desktop
computer, were asked to design a sensor-driven mobile application that automatically
determines whether a user holding the device was standing, walking or running. We chose
to adopt and use the Human Activity Classification application design task described in [13]
since the task was compact enough to be a course module, but at the same time complex
enough to be challenging to students who had never developed sensor-driven applications.

The authors instructed the participants that the pairs would complete the design in three
phases following a given written description. In each phase, the researchers introduced a
set of interventions to aid the participants.

In phase I, the participants were given a description of the intended application
containing the necessary information to solve the problem. They were told that the target
application should use data from the accelerometer sensor on a mobile phone, and that
the accelerometer produces acceleration data in the X, Y and Z dimensions. Additional
information given to the participants included the following: acceleration is the change of
velocity over time; velocity is measured in meters per second (m/s); the acceleration is
measured in meters per second squared (m/s?); acceleration due to gravity is ~9.8 m/s?
and the mobile phone’s accelerometer registers force in the direction of the ground, as well
as human movements. The participants were also allowed to search the Web for further
clues. Each group was given one hour to formulate and submit their solutions either in plain
English or pseudo-code format on a project submission website.

In phase II of the study, the participants were given another hour to revise their phase I
solutions. Unlike phase I, however, in phase II each group was given a mobile phone with a
sensor data collecting application written by the authors 2. By providing students with the
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Table 2 Summary of study phases and interventions.

phase I Participants were presented with the description of a
sensor-driven mobile application.

phase IT Participants were instructed to use a sensor data
collecting application to examine sensor data stream

phase III Visualizations of pre-collected data were provided to

the participants to aid their design

application for sensor data collection and visualization, we intended to study the effects of
the students’ exposure to the sensor data purported in [4].

In addition, the participants were given instructions to: (1) collect accelerometer data
using the provided application, (2) download the collected data off the phones, (3) import
the data into a spreadsheet application, and (4) plot and visualize the collected data in
the spreadsheet application. The instructions were also available as a short video that the
participants could review while performing their work.

In phase III, the groups were again given another hour to revise their phase II solutions.
However, instead of providing mobile phones and asking groups to collect the sensor data,
the researchers collected sensor data using the same application on a phone beforehand
and made the prepared data available to students in a spreadsheet. The authors marked the
data in advance with tag information (i.e., standing, walking, and running) on different data
segments and created three separate plotted graphs for each segment representing either a
standing, walking, or running state that a user was in. The files were provided to each group
to review and interpret. The phases and accompanying tasks of the study are summarized
in Table 2.

Video recordings of each group’s activities from all three phases were collected as well
as the solutions the pairs submitted at the end of each phase. Additional drawings and notes
the pairs produced in each phase were also collected for analysis.

3.4 Procedure - Survey

During the initial sign-up process, participants were directed to an online survey site and
asked to fill out questionnaires about demographics, prior programming experiences and
programming self-efficacy measures. Using Bandura’s guidelines [26], the researchers
created five sets of self-efficacy measures to assess students’ general self-efficacy
levels in programming easy projects, moderate projects, hard projects, sensor-data-
driven application development projects, and GUI (Graphical User Interface) application
development projects. Self-efficacy measures were designed not only to assess students’
initial perceptions of difficulties pertinent to the different types of programming tasks, but
also to understand the perceived difficulty level of sensor-driven application development
in comparison with general and GUI programming tasks.

Day one of the study lasted 3.5 hours. After each phase, participants were asked to fill
out online questionnaires about their problem solving activities. The questionnaires asked
participants to describe how they solved the given problem, to list and state difficulties they
experienced in solving the problem, and to delineate how and why they were able/unable
to overcome the difficulties. The questionnaires also included a self-efficacy measure on
sensor-driven application development.
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3.5 Procedure - Interview

After carefully reviewing participants’ responses to the survey questions, the authors
conducted semi-structured interviews with each group on day two, and asked what the pairs
did on day one, how they drove their design, what their retrospective evaluations of their
own solutions were, and what different kinds of difficulties they faced. Each interview lasted
30 to 40 minutes. The interview sessions were video recorded for analysis.

3.6 Data Analysis

3.6.1 Initial Coding Analysis

The data analysis was done in multiple iterations. In an initial analysis, the authors
went through the questionnaires and interview data multiple times, conducted open and
axial coding [27], and developed a three-layered hierarchical coding scheme in order to
understand the kinds of challenges students encounter in sensor-driven software design.
That is, we went through the questionnaire data to first extract and develop 25 thematic
codes solely based on the participants’ stated accounts of their experienced difficulties.
We then went back to the questionnaire data and annotated and extracted 52 different
categories of factual statements about how participants had tried to solve the problem. After
reviewing these 52 thematic categories, we then extracted 9 more inferred difficulty codes.
For instance, when a participant stated that his team found z values the most salient and
therefore used only z values to estimate and classify human activity, it was clear that the
pair drew a hasty conclusion in interpreting accelerometer data probably by just looking at
one set of experimental sensor data. Because factors such as the orientation and tilt angle of
the device as well as gravity can continuously change X, y, z values in accelerometer data,
a better way to handle acceleration data is to use a square root of the sum of all three axes
squared as shown in [13]. Hence we coded such a response as an inferred difficulty.

The final coding scheme consisted of 34 difficulty codes under 5 top-level categories and
8 second-level categories, encompassing explicitly observable as well as inferred difficulties
students exhibited during all three phases. The authors used affinity diagraming [25] to
organize and visualize the coded data.

3.6.2 Contextual Inquiry

In order to develop deeper understandings of what students tried to do when designing
the solution, and to explore the types as well as the possible causes of difficulties they
experienced, the researchers reviewed video recordings of the problem solving sessions
as well as the interview data in multiple iterations, identifying and transcribing the key
moments. In conjunction with video data analysis, the researchers studied submitted
solutions and transitory outputs such as the drawings and notes students produced. Since the
responses to the questionnaires were sometimes too terse to yield complete understandings
and some other times too vague to produce sensible interpretation, the researchers had to
iteratively make changes to the coding scheme while reviewing interview and session data.
Figure 1 illustrates our research methodologies.
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Figure 1: Research Methodologies

4 Taxonomy of Difficulties

The five main categories of difficulties were basic skill set related (Dypasic), problem-solving
skill set related (D problem), task-specific skill set related (Dyask ), experimental procedure
related (Dexperimental), and incidental (Djncidental)- Table 3 gives an overview of the
five categories of difficulties and their sub-categories.

Table 3 Taxonomy of difficulties.

Main Category Sub Category

Dpasic inability to understand problems
inability to articulate solutions

Dgproblem inability to evaluate their own solutions
working with an iterative process

Diask declarative knowledge related
procedural knowledge related

Dexperimental time constraints

Dincidental broken phone

Basic skill set related refers to difficulties associated with fundamental skills such as an
ability to read and understand the given problem, or to formulate and present solutions in a
comprehensible way.

In phase II, for instance, when we distributed mobile devices to the participants, we also
provided a short tutorial to show the participants how they could (1) use the mobile devices
to collect sensor data, (2) transfer the data to their computers, and (3) open the data file with
a spreadsheet application. We then asked the participants to revise their phase I solutions.

While five groups used the mobile devices to design and carry out small experiments to
collect sample standing, walking and running sensor data in order to revise their solutions,
one group sat in front of their computer throughout phase II and followed the steps in the
tutorial without conducting an actual experiment. When the post-phase II questionnaire
asked the groups whether they were able to finish the given task—to revise their phase I
solutions using the tools given to them—this group answered “yes” and explained how they
were able to collect the data, transfer it to the computer and open the file.
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However, when asked to tell how they used the experimental data to revise their previous
solution, this group said the following during the interview.

we kinda made a mistake because we did like, for question three, when you then gave us
information, we actually did that for the number two but accidentally

We believe what they meant is that they expected to have the sensor data pre- planted
on the phone for them so they could just follow the instructions to download the file. By
examining the data they collected while sitting in front of the computer, they revised their
solutions and said “We determined plot X was standing, plot Y was walking and plot Z was
running” on the submitted solution. From these facts, we can safely tell that this group
clearly misinterpreted both verbal instructions and handed-out written instructions given
by the authors.

From these facts, we can safely tell that this group clearly misinterpreted both verbal
instructions and handed-out written instructions given by the authors. Even though it would
also be possible to argue that better formulated instructions could have helped this group,
the fact that five other groups had no problem interpreting the instructions shows that the
instructions alone were not at fault. Previous educational research has shown that the lack
of fundamental skills such as reading comprehension is one of the main causes of classroom
under-performance [28]. In our case, we had a group who had difficulty understanding the
given instructions and the problem.

Several groups had difficulties writing out their solutions using pseudocode format, even
when they had a clear idea of how to solve the problem. In addition, on multiple occasions we
had to probe the pairs to reformulate and re-articulate their solution several times during the
interview in order to gain full comprehension of their design. We weren’t able to definitively
identify what caused this type of difficulty. Poorly formulated instruction sets and interview
questions can surely cause the problem. We cannot ignore the possibility of the particular
experimental setting in which our students were asked to perform the task causing the
problem. It might also actually be the students’ lack of fundamental skills as previous
research suggested [28], or any combination of these factors. In any case, acknowledging
that such a difficulty can exist, especially when the the task and the instructions for sensor-
driven application development are unfamiliar to many students, is indispensable in teaching
sensor-driven application.

In our case, we found that inabilities to understand problems and to properly articulate
solutions were the kinds of fundamental skills that some participants lacked. For instance,
we observed that many groups were not able to write out their solutions using pseudocode
format, even when they had a clear idea of how to solve the problem. Moreover, some
participants were not even able to clearly articulate their solution to the researchers during the
interviews on day two. During the interview, the researchers had to repeatedly ask students
to re-phrase or re-state their solutions multiple times in order to gain full comprehension of
their design and solution. While this type of difficulty is not just relevant to sensor-driven
application development, acknowledging that such a difficulty can exist, especially when
the the task and the instructions for sensor-driven application development are unfamiliar
to many students, is indispensable in teaching sensor-driven application.

Problem-solving skill set related difficulties are the ones germane to general problem-
solving skills. One of the most common problems the participants experienced in phase
I was rooted in the inability to evaluate their own solutions. The participants invariably
expressed their frustration over not being able to test and generate “reliable” solutions. After
looking at the sensor data, the participants did not express such a concern in phase II.
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In various programming classes, we teach our students to write automated test cases
as a part of the development process so that they can test their solutions by manipulating
expected input and output values. Yet, unlike many of the problems our students have
previously experienced, the sensor-driven application development requires testing the
solutions against empirical data sets. In that sense, not being able to test out the solution in
phase I was a problem inherent in the given instruction, not in the students’ lack of certain
abilities.

Another kind of problem-solving skill set related difficulty was working with an
iterative process. Even though most real life problem solving tasks require longitudinal
investigation of the problems, and determined commitment and effort to iteratively generate
and refine solutions, some students stated that working on the same problem to refine already
formulated solutions was one of the main difficulties.

While research has shown the importance of formative assessment over summative
evaluation [29], it is disputable to say that students are more used to solving problems
iteratively than to providing one-off solutions. Indeed, especially in introductory
programming classes, many class projects or exercise problems are summatively evaluated.
Although not unique to sensor-driven application development, this kind of difficulty calls
for our recognition of the importance of formative assessment as well as the careful design
of problem solving activities for teaching sensor-driven application.

We also have to note that the reporting of such a difficulty might have risen from the
fact that students had to work on the problem solving activity for 3.5 hours, which exceeds
a typical block of time allocated for computer science classes at our school.

Task-specific skill set related code captured difficulties particular to sensor-driven
application development. The majority of difficulties students experienced during sensor-
driven application design belongs to this category.

The two subcategories are declarative knowledge related and procedural knowledge
related difficulties. The term declarative knowledge typically refers to a problem solver’s
knowing factual information about a task, while the term procedural knowledge refers to
a problem solver’s knowing how to perform a task [30]. In this study, we use the term
declarative knowledge related difficulties to indicate challenges originated from the problem
solver’s lack of fundamental knowledge of Physics, Mathematics, or Sensors.

When asked during the interview to describe what the team did on day one, many
stated that they first tried to recall what they had learned in Physics class. For instance, the
following example shows how one of the participants tried to recall a formula for calculating
the velocity from the acceleration data.

(1tried to) remember bunch of formulas from a physics class to figure out how to get certain
things

when you were given us uh equations for velocity and accelation

I'm like

one is derivative of the other then

second devrivate is makes you get uh accerlation

The source of these kinds of difficulties can be easily traced back to not having (or
not remembering) enough knowledge of physics, hence we coded them as declarative
knowledge related. Some task-specific difficulties students expressed during the study
included not knowing how to calculate velocity based on accelerometer data, or not knowing
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what gravity data is. Such difficulties can typically be moderated by providing necessary
information to students.

On the other hand, when students experienced difficulties associated with interpreting
acceleration data to determine state information or with interpreting plotted graphs
they had to utilize and process existing knowledge to formulate a new set of know-how
knowledge [31] in order to overcome these difficulties. In this study, we observed that
even when students had all the information necessary to solve the given task, they did not
know how to process the information at hand in a useful way. We coded such difficulties as
procedural knowledge related.

Procedural knowledge is often associated with building abstractions over fragmentary
information, or extracting features from raw data. In this study, providing factual information
alone was usually not sufficient enough to reduce difficulties associated with procedural
knowledge.

In phase I, half the rask-specific skill set related difficulties were declarative knowledge
related and the other half procedural knowledge related. However, having observed the
data in phase II, the participants started reporting less of what we would call declarative
knowledge related difficulties. In phase II and phase III, majorities of the fask-specific skill
set related difficulties belonged to procedural knowledge related.

That is, at first, most groups started to solve the problem with various and often incorrect
assumptions about the accelerometer data or how they may use the data in their design.
These groups were able to reformulate, refine, and rectify their answers after observing the
data collected in phase II.

However, procedural knowledge related difficulties existed in all three phases.

For example, one of the pairs tried to generate a computational model for Human Activity
Classification in phase II and III. The computational model as shown in Figure 2 implies
a state model with standing, walking and running states. In this model, it is only possible
to go from standing state to walking and then to running, and from running to walking and
then to standing. This model is conceptually sound since in order for a person to run, he or
she needs to first move through walking speed, and only then can the person begin running
by accelerating more. Although this model sounds logical, one needs to understand that
while sensor data is continuously streaming, the data can be noisy, and only a fixed number
of readings can be done per second (sampling rate). In an empirical state model, one should
be able to go from any of the three states to any other as shown in [13]. Understanding the
possible discrepancy between the conceptual model and the empirical model requires more
than just seeing the sensor data. One needs to be able to extract necessary information from
the raw data and draw an abstraction over it.

This shows that providing students with actual sensor data could curtail a number
of ineffectual trials and meaningfully reduce declarative knowledge related difficulties.
But helping students with procedural knowledge related difficulties demands additional
interventions such as teaching students how to extract necessary information from the raw
data to form profound understandings of sensor data.

Lastly, we also want to note that on some occasions, declarative knowledge related and
procedural knowledge related difficulties were not clearly distinguishable. Some problems
the participants encountered belonged to both sub-categories. For example, almost all groups
first tried to set and define threshold values of users’ velocity that distinguished walking
from running. Yet, finding a set of threshold values requires not only declarative knowledge
but also procedural knowledge about sensor data.
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Figure 2: A sample student work: State Model

Experimental Procedure Related code captured difficulties created by our particular
experimental setting. For instance, one of the challenges that the participants encountered
in the study was time constraints. Three groups reported that they did not have enough
time to generate proper solutions. We considered time constraints an extraneous factor that
the participants were not able to control and categorized it under Experimental Procedure
Related.

Incidental code captured a case in which one of the groups received a faulty phone.
When the group reported the problem to the researchers, we exchanged the broken phone
with anew, working one. When this group reported the incident as a difficulty, we categorized
it as incidental.

Table 4 shows the frequency distribution of the difficulty codes across all three phases.

Overall, students tended to report a greater number of difficulties in Phase I and fewer
in the later phases. These numbers alone cannot show that students experienced fewer
difficulties as they proceeded into the later phases. A more plausible explanation would be
that students became more and more fatigued as they progressed into the later session and
therefore wrote less on the questionnaires. However, the fact that many of the task-specific
skill set related difficulties reported in all three phases were relatively distinctive in all
phases, while basic skill set related and problem-solving skill set related codes reported
were very much repeated in all three phases is worth noting.
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Table 4 Frequency Distribution: Difficulty Codes Over Three Phases
Difficulty Code Phasel Phase2 Phase3

Dpasic 11 6 2
Dyroblem 6 2 2
Diask 21 17 13
Dexperimental 8 2 1
Dincidental 0 4 1

Table 5 Initial self-efficacy levels.

Participant ~ Easy Project ~ Moderate Project ~ Hard Project ~ Sensor Data Project ~ GUI Project

PO1 9.1 6.8 5.4 3.7 3.7
P02 10 9.7 9.3 9.1 9.2
P03 9.6 7.6 73 5 9.8
P04 9.5 6 3 5 5

P05 10 10 9.1 7.1 9.5
P06 7.7 7.1 5 6.6 6.6
P07 8.4 9.1 9.2 8.8 8.8
P08 8.9 7.7 8 8.4 8.7
P09 9.7 9.3 7.8 8.3 8.5
P10 5.7 5 5 5 5

P11 9.5 8.9 8.1 9.5 7.8
Average 8.92 7.93 7.02 6.95 7.51

As mentioned earlier, we were able to observe that the interventions we applied in each
phase had greater impacts on reducing task-specific skill set related/declarative knowledge
related difficulties than any other types of difficulties.

In the next section, we explore the impacts of the interventions in more detail.

5 Effects of Interventions

Our exploratory study investigated the effects of providing students with data collection
tools and visualization examples in designing a sensor-driven mobile application. After
categorizing student difficulties in creating sensor-driven applications, we went back to the
coded data sets in order to investigate whether and how the interventions we deployed in
each phase helped students.

Students are apprehensive of developing applications based on sensor data, but
exposure to the data itself improves self-efficacy. At the outset of the study, we measured
students’ programming self-efficacy levels across five different types of projects (easy
projects, moderate projects, hard projects, sensor data projects, and GUI projects). For each
type of programming project we asked students to rate how certain they were to complete
10% of the given type of projects on a scale of 1 (cannot do at all) to 10 (highly certain cando),
20% of projects and so forth up to 100%, according to Bandura’s self-efficacy assessment
guidelines [26]. Students initially perceived sensor-driven application development to be
the hardest. As the study progressed in 3 connected phases, we repeatedly asked students
about their self-efficacy in developing sensor-driven applications. The average self-efficacy
levels for each participant following each phase of the study are shown in Figure 3.

Initial confidence levels for different types of projects are shown in Table 5.

As each phase of the study introduced a new intervention, we were interested in the
change in self-efficacy following each phase, which is visible in Figure 3b. For phase I,
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Figure 3: Each participant’s self-efficacy in developing sensor-driven applications at
different state of the study.

we considered the change from the initial assessment. Our analysis indicates that while
the average students’ self-efficacy increased from the initial assessment to post phase I
by 12.03%, many students (5 out of the 11 assessed participants) decreased their self-
efficacy scores in this period. In other words, trying to solve the assigned problem in phase
I significantly increased some students’ confidence levels while it slightly reduced the
confidence of others. The change in self-efficacy after phase II became more consistent
and positive for 10 out of 11 participants, reflecting the overall positive impact of students’
observing the sensor data. Finally, self-efficacy remained mostly high and unaltered after
phase III, where participants where nearly evenly split between a very small positive or
negative change in efficacy. This phase did very little to move students’ already established
self-efficacy levels.

Students can design effective sensor data collection experiments with little prior
training. In phase III of the study, researchers handed out pre-collected, pre-tagged and
pre-plotted data files to the groups in thinking that even though students were given tools to
collect, tag and plot the sample data in phase II, some might still have difficulties planning
out their data collection schemes, and might fail to map their data collection activities to
the actual data points. That is, if one randomly stands, walks and runs without recording
what he/she is doing, interpreting the collected data afterward can become a non-trivial task.
In the same line of thought, researchers conjectured that providing pre-tagged data would
notably help students.

In phase II, indeed as predicted, most groups did not use the tagging feature and some
groups did not even plot the data. However, contrary to the researchers’ initial intuition
that providing tagged and plotted data would help students improve their solutions, neither
noticeable improvements on students’ submitted solutions nor increased levels of students’
confidence were observed in phase III. Moreover, when we interviewed students on day 2,
multiple students stated that the phase III data was not so much different from the data they
had already collected in phase II.

Even though the majority did not use the tagging feature on the provided mobile
devices to manually annotate activities onto the data during the experiments, five out of
six groups did not have problems interpreting their data afterward. Apparently, utilizing
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their cognition alone was enough to map their activities to the data. Those students were
mentally tagging their data. During the day 2 interview, all groups were able to depict their
data collection activities in great detail. While some conducted three distinct experiments to
collect standing, walking and running data separately, many organized their activities either
in a fixed order or with different durations for different states so that they could easily map
their activities to the data.

Changing the focus of students’ solution design from only using the physical quantities
to extracting patterns from the data was beneficial. During phase I, the approach that the
majority of students took to design their solutions was based on converting acceleration into
velocity, and using velocity thresholds to classify human activity as standing, walking, or
running. This approach, which was strongly based on physics, would cause difficulty dealing
with the specifics of the accelerometer sensor itself, such as the overwhelming acceleration
component due to gravity that it measures in any of the X, Y or Z dimensions, depending on
the mobile device’s orientation. The successful student groups, after observing the sensor
data in phase II, focused instead on characterizing the difference in the accelerometer data
collected during standing, walking or running. For instance, the students in three groups
described their intention to identify proper “variation” in the acceleration data.

In general, sensor-driven applications have to take account of the artifacts induced
by different types of sensors: noise, sampling rates, etc. While a basic knowledge of the
underlying physics is valuable, the most important algorithm design decisions have to be
data-driven and focus on overall patterns that the data exhibits over time.

Good visualization helped, while bad visualization hindered student designs. The data
file provided in phase III included three plotted graphs, each representing three possible
states: standing, walking and running. Despite researchers’ expectation that having three
distinct graphs for three states would help students to understand the data better and produce
improved application designs, phase III data not only did not help students, but it also
confused some of them. The biggest problem with the three distinct graphs was that each
graph was drawn at a different scale. Three graphs with different scales perplexed some
students and made them unnecessarily and counter-productively doubt their solutions. Many
preferred to see all three stages in a single plotted graph. This experience indicates that even
though data visualization helps, poorly designed visualization can actually hinder students’
performance.

Ability to rapidly evaluate each proposed design is a key to success in sensor-driven
application design. Examining the submitted solutions for all of the six groups after phases
IT and III, we observed that two groups completed the project to a satisfactory level, and
designed an algorithm that is likely to work in practice. Both of these two groups exhibited
a key pattern in their behavior: they tested their solutions against the collected data to obtain
feedback on their accuracy. This behavior was not performed by any other of the remaining
groups.

Before phase II of the study, as part of the instruction on how to collect accelerometer
sensor data using a mobile device, the students were shown how to open the data in a
spreadsheet application. The successful groups created another column in the spreadsheet
where they implemented their proposed algorithm and observed the result. They could then
compare the computed results with the ground truth of their experiment and determine the
solution’s effectiveness. This allowed these groups to iteratively improve their designs and
reach much better solutions than they might have otherwise.
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6 Implications and Conclusions

While the study described in this paper is small in scale and has several threats to its
validity, including the specific application that was selected and specific interventions that
were conducted, it introduces or underscores a few important points in teaching sensor-
driven applications to computer science students. The single most important implication
of the study is the importance of observing the sensor data itself instead of reading the
description of it. The importance of observing the sensor data stream is more crucial to
learning how to design sensor-driven software applications, compared to learning sensor
applications in other engineering domains that emphasize data acquisition and signal
processing. Sensor-driven applications that computer scientists often build require higher-
level features extracted from the collected sensor data stream, which may also need to be
transformed by signal processing filters, statistical methods or other means. In addition,
an understanding of the underlying physics of the quantities measured by the sensors is
valuable, but not as important as data analytical techniques that enable the extraction of
relevant patterns from the sensor data stream.

Another implication of the study is that data visualization can be a hindrance if done
improperly. We believe, although this is not something we were able to capture in the study,
that students commonly do not possess the experience to produce visualizations that can
aid their design, unless they are given some guidance from their instructor. Therefore we
believe that the data visualization is an important tool in teaching sensor data application,
but it needs to be carefully thought-out and designed.

Lastly, the ability to rapidly evaluate an algorithm improves student outcomes
significantly. The data analytics community has long emphasized using cross- validation
data sets to incrementally improve solutions. However, the modern sensor-driven application
development ecosystem does not offer proper means for testing such application designs,
and, therefore, it is important to teach students that prototyping is best performed offline,
using some external means, such as a mathematical application (e.g. MATLAB, Octave,
or a spreadsheet application), and that the simulation needs to be an integral part of sensor
data application development.
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