
Scientific Workflows and Components: Together at Last!

Kostadin Damevski, Ayla Khan, Steven Parker
Scientific Computing and Imaging Institute

University of Utah, Salt Lake City, Utah 84112, USA
{damevski,ayla,sparker}@sci.utah.edu

Abstract

Composing scientific simulations from smaller general
parts has many beneficial properties such as modularity
and reuse. Component software and scientific workflows
are both technologies for decomposition of scientific sim-
ulation, although each of them performs this task along a
separate dimension and on a different level. Scientific work-
flows are concerned with high-level orchestration of a time-
decomposed simulation, while components are mainly used
at a lower level to enable software modularity and reuse
at a small performance cost. Combining these two tech-
nologies in a seamless way enables using the benefits of
both of these decomposition paradigms, resulting in more
flexibility for scientific application design. In this work,we
describe a design of our system that communicates param-
eters and results to and from a Common Component Archi-
tecture (CCA) framework (e.g. SCIJump, CCaffeine) and
the Kepler scientific workflow system.

1. Introduction

The complexity of modern scientific simulations has
necessitated methods of decomposing the application into
modular reusable parts. These interchangeable modules
can be connected to create applications and subsequently
executed. Scientific workflows and components are tech-
nologies aimed at better modularity and reuse of scien-
tific software that are supported by growing user communi-
ties and growing numbers of reusable modules available on
each platform. However, each of these technologies is dif-
ferent in its approach: components communicate through
method invocation and have a spatial composition style,
while workflows use dataflow to communicate and are com-
posed temporally. Also, scientific workflows are intended to
guide an application from the highest level including tasks
such as communicating with outside data sources, while
components are used for slightly finer-grain tasks.

We argue that scientific workflows and components are

complimentary technologies and not competing ones. Each
of them is better suited for a particular class of problems and
a scientific programer would benefit most from the ability to
combine these two decomposition schemes into one work-
ing application, leveraging the best tool for each part of the
problem. Thriving user communities have produced and are
producing interesting component and workflow application,
and combining parts of them may yield the best approach
for fast scientific discovery. In this paper we present our
prototype solution that enables cooperation between the Ke-
pler [1] workflow system and any CCA component frame-
work resulting in a hybrid decomposition model that can
use both components and workflows.

The decomposition paradigm of each of these technolo-
gies prescribes a hierarchical design for interoperability:
workflows as top level application control and components
as the means of implementing a part of it. In this hierar-
chical model, a full duplex (two-way) method of communi-
cation is necessary as a workflow may need to adapt based
on (intermediate) results of a component simulation. Also,
it is important to provide the user with the ability to en-
able both coarser and finer grain communication between
the two systems. The system we architected provides a set
of Kepler actors that directly communicate with a compo-
nent framework and other actors that are able to directly
communicate to individual components. The actor to indi-
vidual components connection may only need to be used to
execute a set of connected components, however, a more
complex scenario where components and actors communi-
cate at multiple points of an application is possible (e.g.
to communicate intermediary results, gage progress or for
computational steering). We have a prototype implementa-
tion of our design that allows this kind of hybrid application
decomposition between Kepler and the SCIJump [8] com-
ponent framework.

We organize the discussion of our design of interopera-
ble software architectures as follows. In the next section we
introduce some of the background behind scientific com-
ponent and workflow technologies as well as some of the
accompanying tools. In Section 3 we present some the re-



lated work, and in Section 4 we show a detailed view of our
design and implementation of workflow and component in-
terporability. Section 5 contains discussion of a proof of
concept example of a hybrid application. Finally, we con-
clude and discuss the future work of this project in Section
6.

2. Background

A workflow consist of a series of execution steps repre-
sented by one or more actors that commonly execute in a
dataflow fashion. The actors are loosely coupled and some
of them control staging of simulation data, or other auxiliary
tasks, while others manage a computation. Together the ac-
tors form a workflow the highest level of application flow
and management. The Kepler scientific workflom system,
based on the Ptolemy II framework for embedded software,
allows scientists to design scientific workflows and execute
them efficiently using emerging approaches to distributed
computation.

The Common Component Architecture (CCA) specifi-
cation for scientific components [3] was created through a
colaboration of US Department of Energy research labs and
several universities and has a large user following. Scien-
tific components, as specified by the CCA, are usually much
more fine grained than workflow actors. For instance, a se-
ries of components may be used to perform different stages
of a computation. Scientific components use a “provide and
use” connection paradigm and communicate via method in-
vocation on a firmly set interface. CCA components can
also support a more complex sets of interactions (such as
between parallel components). A component framework is
used to connect the components and start the application
execution. The execution takes place without any further
framework interferance.

2.1. CCA Components

The CCA model consists of a framework and an expand-
able set of components. The framework is a workbench for
building, connecting and running components. A compo-
nent is the basic unit of an application. A CCA compo-
nent consists of one or more ports, and a port is a group of
method-call based interfaces. There are two types of ports:
usesandprovides. A provides port (or callee) implements
its interfaces and waits for other ports to call them. A uses
port (or caller) issues method calls that can be fulfilled by
a type-compatible provides port on a different component.
A CCA port is represented by an interface, which is spec-
ified through the Scientific Interface Definition Language
(SIDL).

The CCA component model relies on a Scientific In-
terface Definition Language (SIDL) to define components,

ports, as well as define the component model itself. A
component specification is written in SIDL and compiled
into glue code that is later compiled into an executable to-
gether with the user code. The prevalent way of compiling
SIDL is by using the Babel compiler [5]. Babel has the
capability of compiling SIDL to bindings for several popu-
lar programming languages (C++, Java, Python, Fortran77
and Fortran95), enabling coupling of components written in
any of these languages. Babel has a large and growing user
community and is an important technology behind the CCA
component model. Recently, the compiler was upgraded
to produce bindings for distributed computing through Re-
mote Method Invocation (RMI). The Babel RMI bindings
provide a way for components existing on separate comput-
ing resources to communicate with little or no help from the
user. Babel’s RMI also provides a general interface within
the compiler to plug in any kind of wire protocol. The wire
protocol library is invoked by the Babel generated code to
produce behavior that the user is expecting. Our approach
leverages Babel and its wire protocol in actors containing
Babel-generated stubs able to directly communicate to CCA
components and services.

2.2. SCIJump

SCIJump is a framework built on SCIRun [4] infrastruc-
ture that combines CCA compatible architecture with hooks
for other commercial and academic component models (see
Figure 1). It provides a broad approach that will allow sci-
entists to combine a variety of tools for solving a particular
problem. The overarching design goal of SCIJump is to pro-
vide the ability for a computational scientist to use the right
tool for the right job. SCIJump utilizes parallel-to-parallel
remote method invocation (RMI) to connect components in
a distributed memory environment, and is multi-threaded to
facilitate shared memory programming. It also has an op-
tional visual-programming interface.

2.3. Workflows

Scientific workflow systems provide a master problem
solving environment that combines scientific data manage-
ment, analysis, simulation, and visualization tasks in a
workflow fashion. Workflows are usually more dataflow
oriented and closer to signal processing and data stream-
ing application, than they are to control-oriented business
workflow applications.

The Kepler system aims to provide scientists will a work-
flow design package on top of the mature Ptolemy II system.
Kepler reuses the GUI and the underlying dataflow model
from Ptolemy, but adds several features specific to scientific
dataflow applications. These workflows are based on actor-
oriented design, where individual steps are represented by



Figure 1. The SCIJump framework provides a GUI and many servi ces to CCA component assemblies.

Figure 2. The Kepler system for creating scientific workflows from dataflow composed actors.

actors. Actors have multiple input and output ports which
communicate tokens between two connected actors. Also,
actors may define parameters which specify the behaviour
of an execution step. Directors are instantiated in Kepler to
specify a model of execution, such as synchronous dataflow
or process networks where each actor will begin in a sepa-
rate thread. A wide selection of actors is available ranging
from general-purpose to ones specific to (e.g. geology, com-
putational chemistry) applications. A simple Kepler work-
flow that performs linear regression is given in Figure 2.

3. Related Work

The ICENI [7] architecture provides both spatial and
temporal composition in an environment that supports sci-
entific application. Unlike our solution, these are two views
of the same system and not two different systems that are
connected in a hierarchical fashion.

An earlier paper by Lu et al. [6] defines a JobProxy
and JobFactory web services and corresponding actors in
Kepler to control the CCA framework CCAFEINE. Like

their work, our approach uses workflows as higher level
control of lower level component simulations. However,
our goal differs significantly in that we want to provide a
finer-grained approach to communication between compo-
nents and workflows, while the communication that Lu et
al. provide is very coarse-grained. Their approach uses a
job mechanism to control the a componentized simulation
and provides the ability to expose one CCA port type in
Kepler as a web service to start the simulation. The job ab-
straction actors provided in Kepler for interoperability with
components by Lu et al. partially duplicate the functionality
of a similar set of general job actors available in Kepler. Our
choice is to allow application designers finer level of control
if they need it and allow a wider set of use scenarios.

In addition, Lu et al. choose to translate CCA’s Scientific
Interface Definition Language (SIDL) into the Web Service
Definition Language (WSDL) that workflows use in order
to use web service protocols for communication between
the two frameworks. This translation presents a unneces-
sary level of complexity. We use a more straightforward
and efficient approach that does no translation and commu-



nicates “natively” through the RMI protocol defined by the
Babel SIDL compiler.

4. Design

As we have already mentioned, a Kepler workflow is
very different from a CCA component assembly. Kepler’s
actors are composed in a dataflow fashion, representing a
temporal relationship (e.g. execute actor X after actor Y
finishes). Components are composed via ports and rep-
resent a spatial relationship (e.g. component X executes
component Y and sends results to component Z). The spa-
tial composition is more powerful, enabling more complex
relationships, while the dataflow models is simpler, easier
to debug and measure performance. Workflows are lim-
ited in expressing control-flow semantics such as webser-
vice retry [2]. Basically, everything that has a if-statement
like semantics requires a needlessly complicated workflow,
which is inconvenient to write as well as read. Since CCA
components are very good at control-flow, combining the
two technologies may result in more expressive and better
workflows.

The applications written for components are much lower
level than those for workflows. The dataflow scheme of
the workflows lends itself to defining a high level applica-
tion flow, and the user community supports this momen-
tum. Based on the above observation, we posit that creating
workflow actors that are able to communicate to compo-
nents is a reasonable way to combine these units into one
application. We provide a few actors in Kepler that would
enable a scientific workflow to manage and execute a Com-
mon Component Architecture (CCA) component applica-
tion. For instance, an application of this kind would use pre-
existing Kepler actors to fetch the input data and begin the
component framework, and use the “componentized” actors
to setup and execute a component simulation. All the while
another actor that we provide would be used to monitor the
simulation’s progress from Kepler, and communicate back
to CCA to adjust the simulation’s parameters. The task of
componentizing actors is not practically difficult. To com-
municate to a component service that is defined by a specific
interface, an actor needs to contain the client stub code. By
using the Babel compiler, we are able to do this task easily,
and use the distributed capabilities of RMI to communicate
across machine domains.

By using this new set of “componentized” Kepler ac-
tors, one can communicate with any CCA framework that is
specification compliant and exposes its framework services
for RMI access. Through the interfaces provided by the
services, we control various aspects of the framework (e.g.
component instantiation, component connection, events re-
porting various messages etc.). Using a special actor that
is able to gain control of the CCA framework and manage

the creation and connection of components a workflow can
initialize a component application. Once a set of compo-
nents have been instantiated and connected, they need to
be executed. For this purpose, we designed an actor that is
able to bind to any component and execute methods of its
interface dynamically, provided that its given the method
name, parameters, port name and component name. We can
monitor the state of the running applicationq by listening
to events sent by the components via the framework’s event
service. Figure 3 gives a graphical display of the communi-
cation pattern between the Kepler actors we introduced and
a CCA framework and components. We identify three ac-
tors that are required in order to achieve interesting applica-
tion scenarios: one that is able to initialize the components,
one able to control and begin the execution of the compo-
nents, and one that is able to communicate status messages
and results. Two of these communicate with the compo-
nent framework’s services and one of them communicates
directly to an individual component’s port:CCAEventLis-
tenerActor, SCIJumpOpenNetworkActor, and CCAInvoke-
PortMethodActor. Other component-friendly actors may be
useful to be added in the future, but these three define the
core for many applications.

4.1. CCAEventListenerActor

The CCA specification defines an event service to be
implemented by specification-compliant component frame-
works in order to allow communication of status mes-
sages and various other information from any component
to any one or more listening components. The event service
uses a publish and subscribe mechanism. A topic abstrac-
tion is used to define a specific communication channel.
TheCCAEventListenerActoris able to subscribe to specific
topic(s) of the CCA event service and execute when it reads
any messages. The actor uses Babel RMI as the underlying
protocol to directly communicate to the framework imple-
mentation. In our prototype example, we use this actor to
communicate from the CCA realm back to the workflow in
order to report the result of the component computation.

4.2. SCIJumpOpenNetworkActor

This actor is used to open a saved network of CCA
components, ports and connections, which is accomplished
through an open network service provided by the SCIJump
component framework. This service is not yet standardized
by the CCA. However, theBuilderService, a similar ser-
vice which is a core part of the CCA standard, could be
exposed in order to accomplish the same task as the open
network service. However, using the BuilderService would
be a more tedious task, requiring that each individual in-
stantiated component and connection to be defined. The



Figure 3. Our design uses “special” Kepler actors that are ab le to communicate with the CCA frame-
work as well as with individual components facilitating bot h a course and fine grained interoperabil-
ity.

SCIJumpOpenNetworkActorloads a file that defines all of
this information; creating this file can be done through the
SCIJump GUI.

4.3. CCAInvokePortMethodActor

This actor is different from the previous two in that it
does not communicate to a service provided by the CCA
framework, but directly to an instantiated CCA component,
which allows finer grained communication between com-
ponents and workflows. To directly communicate with an
individual component, one needs to invoke a method on a
component’s port. In separate applications, this is usually
a different port and a different method with different argu-
ments. This is a difficult task in practice, as we are adapting
to each component dynamically and not relying on prede-
fined stubs compiled with the actor. We designed this actor
with this generality in mind. It relies on reflection mecha-
nisms heavily to discover whether ports and methods with
the name the user has specified exists and then invokes them
passing user specified arguments. We expect that multiple
instances of this actor would exist in Kepler when intero-
peability with components is needed.

5. Results

Using the CCA actors in Kepler described in the pre-
vious section, we designed a proof of concept applica-
tion. This hybrid application uses Kepler and the SCIJump
frameworks to start and execute the CCA tutorial applica-
tion. Figure 4 shows the Kepler workflow that integrates
the three “componentized” actor that we defined. The tu-
toral application contains a few components that use Monte
Carlo integration to calculate an estimate for the number
PI. Pre-existing Kepler actors connect (using ssh) to a re-
mote machine containing the SCIJump executable and start

the framework. We use theSCIJumpOpenNetworkActorto
load the components belonging to our tutorial application.
After the loading has finished we use theCCAInvokePort-
Method actor to begin the simulation by discovering the
starting port. The simulation is independent after this step
and we use theCCAEventServiceListenerto communicate
various status messages as well as the final result.

6. Conclusions and Future Work

This work presents a method of designing hybrid sci-
entific applications composed of both workflow actors and
components. Because each of these technologies provides
a different kind of decomposition this apprach is useful for
new application design. Since workflows are intended to
be coarser grained then components we design a hierarchi-
cal interoperability scheme, by adding actors that are able
to communicate with components. This communication is
made easier by the advent of RMI in the Babel compiler
used heavily in scientific component technology. We de-
signed three actors that are necessary for a basic hybrid ap-
plication: one that is able to initialize the components, one
able to control and begin the execution of the components,
and one that is able to communicate status messages and
results.

The future of this project is to create a wider array of
interesting hybrid applications and add a few more actors
that may be useful to application designers. We already
have several potential candidates in mind: aCCAEventPub-
lisherActorwould be able to send status messages from Ke-
pler to the CCA framework, and aCCABuilderServiceAc-
tor would generalize the component instantiation task from
SCIJump to all CCA frameworks.



Figure 4. Our proof of concept example Kepler workflow, which invokes the CCA tutorial application
running in SCIJump.

References

[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher,
and S. Mock. Kepler: An extensible system for design and
execution of scientific workflows.International Conference
on Scientific and Statistical Database Management, 00:423,
2004.

[2] S. Bowers, B. Ludascher, A. H. H. Ngu, and T. Critchlow.
Enabling scientific workflow reuse through structured com-
position of dataflow and control-flow. InICDEW ’06: Pro-
ceedings of the 22nd International Conference on Data Engi-
neering Workshops, page 70, 2006.

[3] Common Component Architecture Forum. seewww.-
cca-forum.org.

[4] C. Johnson and S. Parker. The SCIRun Parallel Scientific
Compouting Problem Solving Enviroment. InProceedings of
the 9th SIAM Conference on Parallel Processing for Scientific
Computing, 1999.

[5] S. Kohn, G. Kumfert, J. Painter, and C. Ribbens. Divorcing
language dependencies from a scientific software library. In
Proceedings of the 10th SIAM Conference on Parallel Pro-
cessing, Portsmouth, VA, March 2001.

[6] W. Lu, K. Chiu, S. Shirasuna, , and D. Gannon. A hybrid de-
composition scheme for building scientific workflows.Pro-
ceedings of High Performance Computing Symposium (HPC
2007), Norfolk, Virginia, March 25-29, 2007.

[7] A. Mayer, S. McGough, N. Furmento, W. Lee, S. Newhouse,
and J. Darlington. Iceni dataflow and workflow: Composition
and scheduling in space and time. InUK e-Science All Hands
Meeting, Nottingham, UK, 2003.

[8] K. Zhang, K. Damevski, V. Venkatachalapathy, and S. Parker.
SCIRun2: A CCA framework for high performance com-
puting. In Proceedings of The 9th International Workshop
on High-Level Parallel Programming Models and Supportive
Environments, April 2004.


