
A Field Study of How
Developers Locate Features in
Source Code

ICSE 2016 
Austin, TX

Kosta Damevski (Virginia Commonwealth University)  
David Shepherd (ABB Inc)
Lori Pollock (University of Delaware)

*paper appears in the Journal of Empirical Software Engineering
volume 21, issue 2, pp 724-747

1

Feature Location in the Field

• Feature Location = finding relevant code elements
to perform a maintenance task

• Many lab studies, but relatively few field studies of
feature location

• Field studies’ advantages:
• realism
• scale
• no observational bias

2

Our Field Study of F.L.
• Dual datasets:

• Blaze dataset: 67 developers at ABB,
Inc. for roughly two months

• all clicks, key presses and IDE
events in Visual Studio

• Sando dataset*: 596 developers using
a IR-based code search tool for
roughly 1 year

• statistics on query, corpus and
result click

3
*after removing Sando users with only one query

Sando Code Search Tool
• Sando is an IR-based code search tool for Visual Studio

• several year community open-source development project
• free, open source, ~25K downloads

D. Shepherd, K. Damevski, B. Ropski, T. Fritz. " Sando: An Extensible Local Code Search
Framework ". Proceedings of the 20th International Symposium on the Foundations of
Software Engineering (FSE 2012), Raleigh, North Carolina, 2012

Types of Findings
• From the two datasets, we report on:

1. the use of code search tools  
 (in Visual Studio)

2. multi-modal feature location
• code search and  

(structured navigation or debugging)
• within a continuous section of time = a

feature location session

5

Interactions into Sessions

• Need to reason over developer tasks
• BUT, our data is events

• noisy
• low-level

• grouped data into feature location sessions,
centered around behaviors of interest

6

2013-11-18 14:50:03.000, dev_1, Debug.Start
2013-11-18 14:50:17.000, dev_1, View.File
2013-11-18 14:50:23.000, dev_1, View.OnChangeCaretLine
2013-11-18 14:50:24.000, dev_1, Debug.Debug Break Mode
2013-11-18 14:50:33.000, dev_1, View.Find in Files
2013-11-18 14:51:08.000, dev_1, View.Find Results 1

Sessionization
• Start with a set of key messages for a specific behavior

• Use hierarchical agglomerative clustering with a
natural cut

• no need to choose an arbitrary session cut-
off interval

search view  
results search

0

minutes

25sec 21

7

Sessionization

search view  
results search

0 25sec 21

max(min(time distance(Ci+1,Ci))
min(time distance(Ci,Ci�1))

)

8

• File Scope:
• QuickFind

• ctrl+F 

• Project Scope:
• NavigateTo

• like OpenType for Eclipse
• Find in Files

• grep on entire project
• Sando

• IR-based tool

Code Search Tools in VS

9

Code Search Sessions

• Both project-scope and file-scope search are used frequently

0

2

4

6

8

10

12

Blaze users

a
ve

ra
g
e
 s

e
ss

io
n
s

p
e
r

d
a
y

project−scope search
file−scope search

67

pr
oj

ec
t

fil
e

10

Regularity of Code Search

• Code search tools are used fairly regularly (> 1 daily)

5 10 15 20 25 30

0

5

10

15

20

days monitored

n
u

m
b

e
r

o
f

se
a

rc
h

 s
e

ss
io

n
s

*graph represents average over a 3 day window

qu
er

ie
s

pe
r d

ay

11

Code Search Use by Dev’s

• Project scope + file scope sessions either followed a
narrowing or an expanding pattern

de
ve

lo
pe

rs

fil
e

sc
op

e

pr
oj

ec
t s

co
pe

pr
oj

. +
 fi

le

se
ss

io
n

12

Rarely Used NavigateTo
• Only 2/67 developers issued a query on

NavigateTo
• used other search tools before and after

• Studies based on Eclipse UDC  
dataset found that OpenType  
was one of the least used  
search tools [Murphy et al.,2006]

13

Find in Files vs. Sando
• IR-based code search tools (Sando) are aimed to

be a replacement for string matching tools (Find in
Files)

• 1/3 developers never used Find in Files after
their first Sando query

• 2/3 developers using both tools used them  
interchangeably

*Sando didn’t index JavaScript or VB
14

Querying Behavior

• Developers issue one term queries and sometimes rely on
copying from the code base to generate queries

Q
ui

ck
 F

in
d

Fi
nd

 in
 F

ile
s

Sa
nd

o

on
e

te
rm

m
or

e
te

rm
s

15

Query Reformulation

• 672 (from 8025) Sando queries (or 8.35%) were
part of a reformulation sequence

• predominantly by adding one term (~ 25% of
reformulated queries)

• some by removing one (or more) terms (~ 5%
of reformulated queries)

16

Implications of Code Search
Tool Study

• People use code search regularly; if we improve it
we can effect their professional lives

• Flexible code search tools
• many lookup (not exploratory) queries
• lack of flexibility could explain why NavigateTo

was used infrequently
• Information foraging (berry picking) model of code

search seems to occur often

17

Multi-Modal Feature
Location

• Subset of F.L. model based on lab study by Wang et al.,“An
Exploratory Study of Feature Location Process” ICSM 2011.

Seed Search Extend

ValidateDocument

18

Repetitive Tool Use in F.L.
• Found 206 multi-modal sessions in dataset
• Alternating modalities in 41/206 or 20% of

multimodal feature location sessions
• e.g. search -> debug -> search again
• majority of sessions alternated  

between search and  
structured navigation

19

Implications of Multi-Modal
Feature Location Study

• Task context can help with using multiple
modalities in the IDE

20

Summary
• More evidence that:

• Developers use code search tools often
• Queries are often short and commonly reformulated
• Navigating program structure commonly follows

code search
• (Relatively) new evidence that:

• Some queries are created via copy and paste from
code

• Developers tend to repeatedly switch between
different feature location modalities

21

Thanks!

QUESTIONS?

damevski@acm.org

22

Feature Location Process

• figure reproduced from Wang et al.,“An Exploratory Study of Feature
Location Process” ICSM 2011.

• analysis was based on 76 hours of full-screen videos of 38
developers' work on 12 feature-location tasks on four subject systems”

Seed Search Extend

ValidateDocument

• Frequent search of program elements
• Frequent static-dependency exploration
• Stepping into the program
• Run the program and observe

• Frequent static-dependency exploration
• Stepping into the program

• Toggling/Enabling breakpoints
• Quickly stepping over the program
• Editing code and run the program
• Printing out messages

23

