
StackInTheFlow: Behavior-Driven Recommendation System for
Stack Overflow Posts

Chase Greco
Virginia Commonwealth University

Richmond, Virginia, USA
grecocd@vcu.edu

Tyler Haden
Virginia Commonwealth University

Richmond, Virginia, USA
hadentj@vcu.edu

Kostadin Damevski
Virginia Commonwealth University

Richmond, Virginia, USA
kdamevski@vcu.edu

ABSTRACT
Developer behavior in the IDE, including commands and events
and complementing the active source code, provides useful context
to in-IDE recommendation systems. This paper presents Stack-
InTheFlow, a tool that generates interpretable queries to Stack
Overflow, and recommends Stack Overflow posts when a developer
is observed to be facing difficulty, defined by encountering error
messages or not appearing to make progress. StackInTheFlow
monitors clicks on its retrieved results, and, over time, personalizes
the retrieved posts to a specific set of Stack Overflow tags.
Video: http://bit.ly/stackintheflowdemo

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments; • Information systems → Person-
alization; Social recommendation;

KEYWORDS
Stack Overflow, IDE, recommendation system

ACM Reference Format:
Chase Greco, Tyler Haden, and Kostadin Damevski. 2018. StackInTheFlow:
Behavior-Driven Recommendation System for Stack Overflow Posts. In
Proceedings of International Conference on Software Engineering (ICSE’18).
ACM, New York, NY, USA, Article 4, 4 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Software developers frequently search for Web resources in order
to learn from others, and sometimes even to remind themselves of
details related to development knowledge they already possess [1].
The Stack Overflow Q&A forum, and its large archive of software-
related posts, has continued to grow in popularity with software
developers, with over 40 million monthly visitors, including an
estimated 16.8 million professional developers and university stu-
dents [10].

Recommendation systems can aid developers in managing the
large information requirements ofmodern software development [9].
Several recommendation tools targeting Stack Overflow have been
proposed with the aim of improving developer productivity by in-
tegrating relevant information from Stack Overflow into the IDE.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE’18, May 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

Prompter [8] and Seahawk [7] are able to automatically recommend
Stack Overflow posts based on source code context present in the
IDE. T2API [6] and NLP2Code [2] recommend code snippets ex-
tracted or adapted from Stack Overflow based on natural language
text describing the programming task.

Opportunities still exist for such tools to better integrate with
the IDE and to the developer’s behavior, further personalizing and
targeting recommendations to opportune moments in time. In this
paper, we introduce StackInTheFlow- a tool that intends to au-
tomate the manual task of finding relevant Stack Overflow posts.
StackInTheFlow is personalized to each developer and integrates
closely with their IDE behavior, allowing developers to remain in a
high-productivity flow [5]. StackInTheFlow has the following set
of characteristics: 1) automatically constructs interpretable queries
based on the current source code context; 2) uses clicks on retrieved
results to personalize, over time, the retrieved Stack Overflow posts
to specific Stack Overflow tags; 3) automatically recommends Stack
Overflow posts on compiler and runtime errors in the IDE; 4) detects
when a developer is facing difficulty and not making progress and
recommends Stack Overflow posts. 5) queries the Stack Overflow
API (and not the periodic dump) to retrieve the most recent Stack
Overflow posts.

StackInTheFlow integrates as a plugin with the IntelliJ family
of Java IDEs, including the popular Android Studio environment.
Though the tool targets a Java IDE, the mechanisms it uses are
language agnostic and can be generalized to other languages with
minimal effort. In this paper, we describe each of StackInThe-
Flow’s features, and include a set of preliminary results on the
effectiveness of each recommendation mechanism using field data
gathered from use of the tool by developers.

2 TOOL USE CASES
StackInTheFlow use cases can be organized by the type of query
that initiates them: manual, automatic, error and difficulty. To illus-
trate StackInTheFlow’s use, consider a scenario where a developer
has just begun using the Apache Spark parallel programming frame-
work.
Manual Query. Utilizing StackInTheFlow, the developer may
manually write and issue queries to the Stack Overflow API, such
as regarding the Spark explode operation (as in Figure 1). From
there she may browse the results of her search directly within
the IDE, adding tags to filter the results, or sort them based on
four different criteria: relevance, newest, last active, and number of
votes, mirroring the functionality of the Stack Overflow website. If
a particular result seems relevant to the problem at hand, she may
expand it to view the full question by clickingMore or view the full
post within the browser by clicking the title of a result. Finally, she

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


ICSE’18, May 2018, Gothenburg, Sweden C. Greco et al.

Figure 1: StackInTheFlow User Interface.

may view and revisit her previous searches by selecting the History
tab.
Automatic Query. Occasionally, the developer may not be able
to form a query suitable to retrieve the information required to
solve a development problem and may require assistance in query
composition. For example, the developer may wish to know how
to set the configuration options for the SparkSession object. In such
a case she may simply highlight the section of code relevant to
declaring or using this object, right-click and select the Auto Query
option. Utilizing the procedure detailed in Section 3.1, StackInThe-
Flow will automatically generate a query from the code snippet
and present the results in the same fashion as above.
Error Query. Inevitably, during the course of their daily work
a developer will encounter error messages. These messages can
often be cryptic and unfamiliar to the developer, requiring the
consultation of sources such as Stack Overflow in order to decipher
their meaning. To address this issue, whenever an error message is
encountered, either during compile or run time, StackInTheFlow
will generate a query and recommend results using the approach
described in Section 3.2.
Difficulty Query Finally, it may be the case that the developer is
stuck in an unproductive loop. She may be deleting large portions of
code without making significant progress, or scrolling through files
without making any edits. StackInTheFlow contains mechanisms
to detect such behaviors, outlined in Section 3.2, and to automati-
cally generate queries and present recommendations without any
direct input from the developer, which may provide the information
they need to overcome their development block.

3 TOOL DESCRIPTION
The different components of StackInTheFlow and their relation-
ship to the different use case queries is shown in Figure 2. Here, we
describe the internals of each of these key components of the tool.

3.1 Query Generation
StackInTheFlow reduces the burden on the developer of com-
posing queries to Stack Overflow by providing facilities for the
extraction of query terms from the source code within the active
editor in the IDE. When the automatic query generation function-
ality is invoked, either manually by the user or automatically as
shown in Figure 2, StackInTheFlow generates and issues a user
interpretable query based on (a selection of) the currently active
source code. To generate the query, StackInTheFlow matches
terms extracted from the source code with a stored dictionary of
terms pre-mined from the user posts contained within the peri-
odic Stack Overflow Data Dump. Since the dictionary is computed
offline, query generation is lightweight and fast.

If the user has selected a subsection of the source code when
invoking the StackInTheFlow auto query command, terms are
extracted from it, otherwise terms are extracted from the import
statements of the document, if available, as well as the lines sur-
ronding where the cursor resides. Each package level of the import
statement is treated as a separate term.

StackInTheFlow’s dictionary contains a set of query pre-retrieval
metrics [3], which enable the selection of the terms that are most
likely to retrieve a reasonable selection of documents from Stack
Overflow. Several key characteristics of query terms, specificity,
similarity and coherence, are used to select the most effective set of
query terms.

The specificity of a query is a measure of the distribution of the
terms within the corpus. For queries composed of generic terms
which occur frequently within the corpus, for example "the" and
"there", the quality is deemed lower than that of queries containing
specific terms such as "apache" or "spark". To assess the specificity
of the candidate terms we calculate both the Inverse Document
Frequency and the Inverse Collection Term Frequency for each
term.

The similarity of a query is a measure of the similarity between
its terms and the corpus, with the intuition that queries judged
similar to the corpus are easier to answer and thus of higher quality.
For each of our candidate terms, we rely on the Collection Query
Similarity metric to ascertain a similarity score.

The coherence of a query is a measure of the inter-similarity of
documents containing the query terms. Several metrics have been
proposed to examine this dimension, however most are computa-
tionally expensive to compute as they require a pointwise similarity
matrix for all documents contained within the corpus. We instead
employ a less expensive metric VAR(t), which measures the vari-
ance of the query term weights over the documents which contain
them. To compute the weight of each query term we utilize a tf-idf
based approach. The argument behind such metrics being that if
the variance is low, it will be more difficult to differentiate between
relevant and irrelevant documents, thus the overall query quality
is low.



StackInTheFlow: Behavior-Driven Recommendation System for Stack Overflow Posts ICSE’18, May 2018, Gothenburg, Sweden

Figure 2: Overview of StackInTheFlow.

auto query
error query

initial
results

Difficulty
Detection

Query
Generation Personalization

1. __________

2. __________
3. __________

…

difficulty query
Stack

Overflow 
API

manual query

For each candidate source code term contained within the dictio-
nary, we calculate the above metrics treating each term individually
as a query, and then linearly sum the score for each dimension to
achieve an overall score. The top four scoring terms are selected to
form the candidate query which is then used to query Stack Over-
flow. If no results are returned a back-off technique is employed by
incrementally removing terms from the query.

3.2 Recommendation System
StackInTheFlow automatically suggests Stack Overflow posts to
the developer when she encounters obstacles to completing her
task. One such case is when compiler or runtime error messages
are encountered. While it is common for parts of compiler error
messages and runtime stack traces to be included in Stack Overflow
questions, error messages are not standardized for searching related
documentation. StackInTheFlow translates the contents of an in-
IDE error message into a query utilizing two separate mechanisms.
The first mechanism extracts the first line of the stack trace as the
raw query. If this does not retrieve any Stack Overflow posts, a more
complex approach is employed, combining terms extracted with
regular expressions for determining exception classes and language
version, with the stack trace, which is tokenized and filtered by
the term dictionary described in Section 3.1. The top four resulting
terms are used to query Stack Overflow. As before, we use a back-
off technique of incrementally removing less-salient terms when
no results are retrieved.

Figure 3: Difficulty Detection State Machine.

Collectstart

Pause

Query

editor event delete ratio ≥ 60%
edit ratio ≤ 60%

30 seconds elapsed

editor event
inactive 15 minutes editor event

In the case of an error message, the indication of the user encoun-
tering an obstacle is quite clear, however, the user may encounter
difficulty without as clear an indicator. They may be constantly
editing the same section of code, or unable to continue development
due to lack of project understanding. StackInTheFlow provides
mechanisms to detect such cases and to provide Stack Overflow
posts to aid the developer, by leveraging its automatic query gen-
eration capability. It does this by taking an approach similar to
that of Carter and Dewan [4], by analyzing the ratios between the
insertion and deletion of text within the editor. Such an approach,
Carter and Dewan argue, prevents the tool from falling into the trap
of determining the programmer has encountered difficulty when
they have simply "gotten up to get a cup of coffee". This approach
utilizes the finite state machine detailed in Figure 3.

The machine begins in the Collect state. While in this state, editor
events are collected. Editor events are broken into four categories:
Insert, Delete, Scroll, and Click. Insert and Delete events are fired
when the user inserts or deletes a character respectively. Scroll
events are fired when the user scrolls the view within the editor.
Click events are fired when the user clicks the mouse. A queue
of the past 25 events is maintained. In order to control for event
bursts, consecutive events of the same type within one second are
ignored and not added to the queue except for the initial event.
If at any time the ratio of Delete events to Insert events crosses
60%, the machine determines that the programmer has encountered
difficulty, and a query is generated, returning a set of Stack Overflow
results to the developer, while the machine transitions to the Query
state. In addition to the insert/delete ratio proposed by Carter and
Dewan [4], we utilize a second novel threshold, based on the ratio
between the number of edit events (insert, delete) and non-edit
events (scroll, click). If this ratio falls below 60%, the machine will
also determine the programmer has encountered difficulty, suggest
results, and transition to the query state. The rationale behind this
second threshold is that if the user is spending the majority of
their time moving the cursor without editing text, they have likely
encountered a difficulty.

While in the Query state, the event queue is cleared and all
subsequent editor events are ignored until 30 seconds has elapsed,
at which point the machine transitions back to the Collect state.
Finally, if the user has been inactive for at least 15 minutes, i.e.
no editor events are being generated, the machine transitions to a
Pause state, where it remains until an editor event occurs.



ICSE’18, May 2018, Gothenburg, Sweden C. Greco et al.

3.3 Result Personalization
StackInTheFlow personalizes the results of all queries by re-
ranking the results based on past user activity. It does this by uti-
lizing a novel metric, Click Frequency-Inverse Document Frequency
(cf-idf ), which aims to predict the affinity of a developer towards a
retrieved Stack Overflow post by analyzing the tags associated with
previously clicked results by that developer. Click Frequency-Inverse
Document Frequency is composed of two constituent metrics. The
first, Click Frequency, cf(t ,H ), is computed for a given tag t on a
given result selection history H . Using raw frequency ft,H , defined
as the number of times a Stack Overflow post tagged with t was
clicked on by the user, as recorded in H , the corresponding Click
Frequency is given by the following equation.

cf(t ,H ) =

{
1 + log(ft,H ) ft,H > 0
0 ft,H = 0

The second metric is the Inverse Document Frequency of a tag,
computed from the Stack Overflow Data Dump, which discounts
tags that are prevalent in the corpus. From these two metrics we
calculate Click Frequency-Inverse Document Frequency (cf-idf ) in the
same way one would calculate tf-idf by computing their product.

Given an initial set of of ranked results retrieved from Stack
Overflow, for each result we compute a raw score by taking the
sum of the cf-idf of each tag associated with the result and dividing
by the total number of tags associated with the result. Finally, we
sort the Stack Overflow results based on an average of the rank of
each result in the original retrieval ranking with its corresponding
weighted rank.

4 PRELIMINARY RESULTS
At the time of submission, StackInTheFlow, with all the features
described in this paper, has been publicly available for download
from the JetBrains tool repository for 3 months. Following adver-
tising of the tool on various channels, it has been downloaded 148
times, with logs reflecting tool use captured from 52 unique users.
Logs from StackInTheFlow developers have been marked and
removed.

The goal in our preliminary evaluation is to estimate the effec-
tiveness of each query type. To perform this evaluation we rely on
the feature usage and click-through rates found in the logs. Our
assumption is that clicking on a query’s result to open it in the
browser or expand its content for reading within StackInTheFlow
is an indication of its effectiveness.

Out of the 635 queries we logged, 55% came from manual user
input, 17% from difficulty detection, 16% from user action events,
and 12% resulted from automatic errormessage queries.We consider
the manual query as the baseline query type, and compare the other
query types against this one.

Our logs contain 153 instances of user-result interactions. Out
of these, users opened the browser 74/153 (48%) times , and either
expanded or contracted articles within the tool 79/153 (52%) times.
In correlating the StackInTheFlow user-result interactions with a
query type, we observe that 125/153 (81%) are on manual queries,
4/153 (3%) are on automatically generated queries, 9/153 (6%) are on
difficulty queries, while runtime error queries account for 14/153
(9%) of user interactions.

Finally, we explore how often users interact with retrieved Stack
Overflow posts based on query generation type. Out of 349 manual
queries, 48 (14%) had at least one click. From 103 automatically
generated queries, 1 (1%) had at least one click. Out of 105 difficulty
queries, 8 (8%) had at least one click. Out of 78 error queries, 9 (12%)
had at least one click.

In summary, our initial results indicate that automatic queries
rarely received user interaction. However, a common user case is
for automatic queries to serve as a starting query, which is later
reformulated manually by the user. Both error (12%) and difficulty
(8%) queries resulted in at least a single click with a frequency
on par with manual queries (14%), which indicates that they were
reasonably effective.

5 CONCLUSIONS
This paper introduces StackInTheFlow, a tool that allows for
in-IDE querying of Stack Overflow. StackInTheFlow also recom-
mends Stack Overflow posts to developers using several mecha-
nisms, including on the occurence of compilation or runtime errors
and when the tool detects the programmer is having difficulty,
based on key presses and clicks in the IDE. In our preliminary eval-
uation, we observe that the StackInTheFlow’s recommendations
are effective, receiving clicks on retrieved Stack Overflow posts
generally as often as manually composed queries.

ACKNOWLEDGEMENTS
We would like to thank John Coogle, Jeet Gajjar, and Kevin Ngo for
contributing to the implementation of StackInTheFlow and the
support of the DARPA MUSE program under Air Force Research
Lab contract FA8750-16-2-0288.

REFERENCES
[1] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.

2009. Two Studies of Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’09). 1589–1598.

[2] Brock Angus Campbell and Christoph Treude. 2017. NLP2Code: Code Snippet
Content Assist via Natural Language Tasks. In Proceedings of the 2017 International
Conference on Software Maintenance and Evolution.

[3] David Carmel and Elad Yom-Tov. 2010. Estimating the Query Difficulty for Infor-
mation Retrieval. Morgan & Claypool.

[4] Jason Carter and Prasun Dewan. 2010. Design, Implementation, and Evaluation
of an Approach for Determining when Programmers Are Having Difficulty. In
Proceedings of the 16th ACM International Conference on Supporting Group Work
(GROUP ’10). 215–224.

[5] C. S. Corley, F. Lois, and S. Quezada. 2015. Web Usage Patterns of Developers. In
IEEE International Conference on Software Maintenance and Evolution (ICSME).
381–390.

[6] Thanh Nguyen, Peter C. Rigby, Anh Tuan Nguyen, Mark Karanfil, and Tien N.
Nguyen. 2016. T2API: Synthesizing API Code Usage Templates from English
Texts with Statistical Translation. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2016). 1013–
1017.

[7] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. 2013. Seahawk: Stack
Overflow in the IDE. In Proceedings of the 2013 International Conference on Software
Engineering. 1295–1298.

[8] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to Turn the IDE into a Self-Confident
Programming Prompter. In Proceedings of the 11th Working Conference on Mining
Software Repositories. 102–111.

[9] Martin P Robillard, Walid Maalej, Robert J Walker, and Thomas Zimmermann.
2014. Recommendation Systems in Software Sngineering. Springer Science &
Business.

[10] Stack Overflow Developer Survey. 2017. https://insights.stackoverflow.com/
survey/2017. (2017).

https://insights.stackoverflow.com/survey/2017
https://insights.stackoverflow.com/survey/2017

	Abstract
	1 Introduction
	2 Tool Use Cases
	3 Tool Description
	3.1 Query Generation
	3.2 Recommendation System
	3.3 Result Personalization

	4 Preliminary Results
	5 Conclusions
	References

