
Expressing Measurement Units in Interfaces for Scientific
Component Software

Kostadin Damevski
Virginia State University

1 Hayden Dr.
Petersburg, Virginia, 23806, USA

kdamevski@vsu.edu

ABSTRACT
Scientific computing programs rarely use measurement units
to express quantities, even though such units are common-
place in pencil and paper calculation. Tools that enable ex-
pressing measurement units and enforce dimensional safety
have been made available in popular programming languages
for some time, but they still lack a significant following. We
posit that scientific programmers should not be burdened
by units at each statement in their programs, but that units
should be inserted in software component interfaces. This
coarser grain approach enables the prevention of errors that
occur when components written by different teams are com-
posed, which we believe is a major cause of dimensional er-
rors. We present our design of adding measurement units to
interfaces in the CCA component model, which is targeted
at the scientific computing community, in order to provide
dimensional safety, an extensible set of measurement units
and automatic conversion between commensurable quanti-
ties.

Categories and Subject Descriptors
D.2.12 [Interoperability]: Interface definition languages

General Terms
Design, Reliability

Keywords
Units, Dimensions, Runtime Checking

1. INTRODUCTION
Ensuring the consistency of software with respect to mea-

surement units (e.g. meters, seconds, etc.), also known as
dimensional analysis, is a topic that has received research
attention for a number of years. Contrary to the availability
of software tools, using measurement units is not common
practice in scientific computing or other areas of computer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBHPC’09, Nov. 15-16, Portland, OR, USA
Copyright 2009 ACM 978-1-60558-718-9/09/11 ...$10.00.

science. We believe that the reason for the inability of tools
that provide this capability within existing languages (e.g.
in C++ [4], Java [3], Ada [7], Pascal [6] etc.) to gain a
solid foothold in the scientific computing community is that
they are too constraining and may present a significant run-
time performance overhead. Individual programmers tend
not to make such trivial mistakes as dimensional mismatch
at the small scale, and adding unit descriptions to each pro-
gram line can be tedious and adversely impact performance.
Instead, dimensional mismatch errors tend to occur as mis-
taken assumptions between two programmers or two teams:
NASA’s Mars Orbiter crashed into the surface of Mars in
1999 due to a software navigation error traced to one team
using English units while another used metric units [8]. In
this work, we propose to integrate dimensional analysis at
the software architecture level - in software components,
where individual components are often implemented sepa-
rately and composed to form an application.

Component technology is becoming increasingly popular
for large-scale scientific computing in helping to tame the
software complexity required in coupling multiple disciplines,
multiple scales, and/or multiple physical phenomena. The
Common Component Architecture (CCA) [1] is a compo-
nent model that was designed to fit the needs of the scien-
tific computing community by imposing low overhead and
supporting parallel components. CCA has already been
used in several scientific domains, creating components for
large simulations involving accelerator design, climate mod-
eling, combustion, and accidental fires and explosions [10].
As a component model that targets scientific computing,
where computations are often dimensional, the CCA pro-
vides an opportune place to address the problem of dimen-
sional safety.

Interfaces define the boundary between a provider of a
particular functionality and its users. Intended to encap-
sulate implementation details of the providing component,
interfaces are often simple and often lack enforceable seman-
tic information about their use, which leads to their misuse
by users that may not have read the accompanying docu-
mentation. A component implementer wants to express se-
mantic information in the interface (more than just integer
and floating point method parameters) in order to specify
the characteristics of his or her implementation. In this way,
an interface that solves a particular computational problem
for meters would differ from one that solves the same prob-
lem for miles. In the state of the art in component software
these two interfaces would be alike, leading to difficulty in
selecting the proper component. To address these problems,

we propose adding measurement unit information in the in-
terface in order to enforce unit consistency in component
composition and reduce dimensional mismatch errors. As a
proof of concept, we build a system to specify measurement
units into the CCA component model. To our knowledge,
this is the first attempt to add measurement units at the
software architecture level. Our objectives in designing a
system to express and enforce interface level dimensions are
to:

1. Clearly express measurement unit information in in-
terfaces.

2. Components that use a particular interface (port) should
be able to express unit information programatically in
order to interact with an interface containing units.

3. Automatically convert commensurate quantities (e.g.
miles into meters).

4. Provide a convenient way to express derived units (such
as meters per second) and to extend the system with
new units.

The first two objectives enable specifying dimensions in
interfaces and selecting interfaces based on this information.
It is important to separate these two since the mechanism
for the first one is to embed unit information in the inter-
face, while the interface user, in the second objective, needs
a selection system. This selection system, for instance, may
take the form of a location service, use the parameters of a
method invocation to specify measurement units, or both.
Objectives 3 and 4 add value to the system design by en-
abling automatic unit conversion to be performed by the
system, once commensurability between the units has been
established, and by providing extendability to new units.

We organize the discussion of our dimensional analysis
system as follows. Section 2 contains related work and back-
ground of the problem. In Section 3 we consider three pos-
sible, but unsatisfactory, approaches to expressing measure-
ment units in the CCA component model, while in Section
4 we show a detailed view of our measurement unit design.
Finally, we finish with conclusions and future work of the
project in Section 5.

2. BACKGROUND AND RELATED WORK
Le Systeme International d’Unites (SI) is an international

standard that describes dimensions and their measurement
units. The SI standard is based on seven mutually indepen-
dent dimensions: mass, length, time, electric current, ther-
modynamic temperature, amount of substance, and luminous
intensity. Each dimension has a corresponding base unit:
kilogram, meter, second, ampere, kelvin, mole and candela.
The SI system also recognizes 22 derived units, which often
span several dimensions, such as meter per second squared
for acceleration or a newton (kilogram times meter per sec-
ond squared) to measure force. Factors of existing units are
used as prefixes in constructing new units, such as grams
to represent 10−3 kilograms and milligram to equal 10−3

grams and 10−6 kilograms. Many common internationally
used units are outside of the SI, such as the liter, minute,
hour, and others.

The large number of measurement units adds a level of
complexity to the problem of dimensional analysis as it is

difficult to determine compatibility (commensurability) be-
tween two given units. Other measurement systems that
are commonly used, such as the English system (e.g. miles,
pounds and ounces) further increase the number of units
that are represented in a software system that performs di-
mensional analysis. A popular C++ template based library
for dimensional checking, called SIUnits [4], uses the SI sys-
tem’s seven base dimensions to classify all possible measure-
ment units. Each measurement unit is encoded by one ra-
tional number per dimension. For instance, the acceleration
unit meters per seconds squared, can be expressed as 1 in
the length column and -2 in the time column (see Table 2).
In this way, commensurability between two given units can
be easily computed by comparing their dimension vectors.

The work of Allen et al. [3] presents an extension to the
Java language to support measurement units that provides
intuitive ways of expressing operations involving measured
quantities. By introducing several new constructs in the
Java language (such as meta-classes, instance classes, abelian
classes and others) the authors build an extensible method of
describing dimensions and converting commensurable quan-
tities that relies heavily on static checking and exhibits low
performance overhead. One of the main challenges addressed
by this work is to be able to treat measured quantities as
both values and types in a programming language in order
to maximize static checking, and to be able to allow the
user to specify new units. The approach also designates a
set of primary units and uses them as an intermediate value
in converting between two non-primary units of the same
dimension.

Not all previous work on this subject has taken the ap-
proach of modifying existing programming languages with
measurement unit support. A recent approach to provid-
ing dimensional analysis to the BC language by using the
Maude rewriting meta-language is presented in [5]. BC is a
calculator language common in Unix platforms to which the
authors add annotations in the form of comments. These
annotations are interpreted by Maude, and used to perform
dynamic (run-time) or static (compile-time) analysis. The
dynamic analysis uses Maude’s rewriting capability, but is
ill-suited for production code as it increases runtime by an
order of magnitude. The static analysis seems promising
in scenarios where the BC program is simple enough for
this analysis to converge. In order to reduce the amount of
tagging needed, the authors use a locality principle, where
Maude assumes that the programmer is doing the right thing,
with respect to dimensional safety, at the scale of several
lines of code.

UDUnits is a units library that enables unit conversion
through an Application Programming Interface (API). Ap-
plications using UDUnits have to make explicit use of this
API, supplying unit and quantity information in string or
binary form. String data has to be converted into binary
before conversion between commensurate units can be per-
formed by this system.

The Fortress [2] programming language specification in-
cludes support for statically checked dimensional units. At
the time of writing, the implementation of the language does
not yet contain this feature.

Our work was influenced by the language level approaches
mentioned above, especially the classification of units based
on the seven base dimensions presented in SIUnits, the object-
oriented design philosophy of the Java-based approach by

ACCELERATION

VELOCITY

AREA

VOLUME
ABSORBED

DOSE
DOSE

EQUIVALENT
PRESSURE,

STRESS
FORCE

ENERGY, WORK,
QUANTITY OF HEAT

POTENTIAL,
ELECTROMOTIVE

FORCE

CAPACITANCE

ELECTRIC
CHARGE

ACTIVITY
(OF A RADIONUCLIDE)

CONDUCTANCERESISTANCE

INDUCTANCE MAGNETIC
FLUX DENSITY

MAGNETIC
FLUX

CELSIUS
TEMPERATURE

LUMINOUS
FLUX

ILLUMINANCE

THERMODYNAMIC
TEMPERATURE

K

LUMINOUS INTENSITY

cd

ELECTRIC CURRENT

A

AMOUNT OF
SUBSTANCE

mol

TIME

s

LENGTH

m

MASS

kg

lmlx

TWb

°C

H

W S

VC

CATALYTIC
ACTIVITY

kat

F

W Bq

FREQUENCY

HzJ

Gy SvPaN
m

3

m/s

m
2

m/s
2

rad

PLANE ANGLE

sr

SOLID ANGLE

POWER,
HEAT FLOW RATE

t/°C = T/K – 273.15

coulomb

farad siemensohmdegree
Celsius

lumen

(C/V)

(A·s)

katal (mol/s)

(1/W)(V/A)(K)

(cd·sr)

becquerel (1/s) (1/s)hertz

radiansteradian
(m2/m2 = 1) (m/m = 1)

gray sievertpascalnewton

joule watt

volt

henry tesla

lux

weber

(J/s)

(Wb/A)(V·s)

(W/A)

(Wb/m2)

(N·m)

(N/m2) (J/kg) (J/kg)(kg·m/s2)

(lm/m2)

kelvin

candela

ampere

mole

second

meter

kilogram

SI DERIVED UNITS WITH SPECIAL NAMES AND SYMBOLSSI BASE UNITS
Derived units

without special
names Solid lines indicate multiplication, broken lines indicate division

Figure 1: Diagram of relationships among the SI units. (Image: National Institute of Standards and Tech-
nology, http://physics.nist.gov/cuu/Units/SIdiagram.html)

Allen et al., and the locality principle of the work using the
Maude rewriting system. Compared to programming lan-
guage level dimensional safety, our system’s design is made
simpler by not being concerned about arithmetic operations
using units, which presents a significant reduction in com-
plexity. However, much of the other issues in representing
units and determining commensurability are similar, while
other complications arise by the need of component users
(or clients) to express their unit requirements in component
interaction.

A CCA component consists of one or more ports, and a
port is a group of method-call based interfaces. There are
two types of ports: uses and provides. A provides port (or
callee) implements its interfaces and waits for other ports
to call them. A uses port (or caller) issues method calls
that can be fulfilled by a type-compatible provides port on
a different component. A CCA port is represented by an
interface, which is specified through the Scientific Interface
Definition Language (SIDL). A SIDL specification is com-
piled into glue code that is later compiled into an executable
together with the user-provided implementation code. The
prevalent way of compiling SIDL is by using the Babel com-
piler [9]. Babel has the capability of compiling SIDL to
bindings for several popular programming languages (C++,

Java, Python, Fortran77 and Fortran95), which allows creat-
ing applications by combining components written in any of
these languages. Babel has a large and growing user commu-
nity and has become a cornerstone technology of the CCA
component model.

3. POSSIBLE APPROACHES
In designing our system to enable the expression of mea-

surement units at the interface level, a concern is to avoid
changes to SIDL and to minimize changes to Babel. Incre-
mental improvements to Babel are commonplace and have
occurred continuously throughout the existence of the CCA.
Before settling on a particular solution, next we explore the
design space of adding measurement units to CCA by eval-
uating three design approaches that fail to meet all of our
objectives (presented in Section 1). Our chosen design, pre-
sented subsequently, builds on many of the ideas presented
in the three possible, but unsatisfactory, directions.

3.1 Approach One: Unit Tags
In current component systems, a developer would repre-

sent measurement unit quantities as variable types: inte-
gers, floats or doubles, providing no visible unit informa-
tion. Our first approach in enhancing interfaces with mea-

unit mass length time amount of
substance

electric
current

thermodynamic
temperature

luminous
intensity

meter 0 1 0 0 0 0 0
candela 0 0 0 0 0 0 1

meter/second2 0 1 -2 0 0 0 0

Table 1: Encoding units according to their seven SI base dimensions.

surement unit information is to augment interface parameter
types with unit tags. The Babel compiler contains a mecha-
nism to add tags within a SIDL interface without modifying
its parser by using the %attrib keyword. This keyword spec-
ifies key-value pairs, that are processed by extensions to the
compiler’s backend in order to produce appropriate gener-
ated code. An example of this approach, using an interface
that assigns and queries the earth’s circumference in miles
is given here:

class Earth {

void setCircumference(in %attrib{unit=Miles}

double circumference);

%attrib{unit=Miles} double getCircumference();

}

To enable this design, Babel would internally need to con-
tain the set of all possible units and dimensions, perhaps
encoded in an XML file or a similar in-memory or on-disk
data structure. Expressing new units and commensurability
of units would also need to be expressed within this data
structure, and modifying and maintaining a Babel-internal
data structure is not an ideal task for an end-user. In addi-
tion, this approach falls short of our specified goals in that,
while it expresses the provides side of the interface properly,
the uses side has no defined way of expressing its measure-
ment units (as stated in objective #2). If, for instance, a
user of this interface has the earth’s circumference available
in meters instead of miles, he or she has no way to specify
this when invoking the setCircumference method.

3.2 Approach Two: Simple SIDL Classes
To remedy the problem with the previous approach, we

need to devise an approach for interface users and providers
to separately express measurement unit information. Since
SIDL allows user-defined types or classes to be used as argu-
ments to methods, our second approach is to build a SIDL
class hierarchy of measurement units. In this approach, class
is defined for each measurement unit. Each object of a par-
ticular unit class boxes (wraps) a quantity in that specific
unit; the unit’s quantity can be a class variable for which
setter and getter methods are provided.

interface Unit {

void setQuantity(in double q);

double getQuantity();

}

class Mile implements-all Unit {}

class Second implements-all Unit {}

class Kilometer implements-all Unit {}

class Earth {

void setCircumference(in Mile m);

Mile getCircumference();

}

The above classes Mile, Second, and Kilometer are avail-
able to be used to specify the measurement unit needs of
the component’s user, which addresses our previous concern.
New units can be declared by defining new SIDL classes for
them. If using kilometers to specify the earth’s circumfer-
ence one would write (in pseudo C++):

Earth earth = Earth::_create();

KiloMeter circumference = Kilometer::_create();

circumference.setQuantity(40041);

earth.setCircumference(circumference);

At first glance, using classes to represent units is an ac-
ceptable design. However, a deeper look reveals that it is
impossible to call the setCircumference method passing an
instance of the Kilometers class, as attempted in the above
snippet of code. This is because the Babel generated code
only accepts instances of the Mile class as parameters to the
setCircumference method. We want to enable passing com-
mensurable units as arguments to methods (per objective
#3), where the system will automatically convert the kilo-
meters into miles before passing the value to the implemen-
tation. Therefore this approach fails short of our objectives.

3.3 Approach Three: Unit Base Class
An improvement to the second approach, based on the

problem identified, is to use the Unit base class to general-
ize interfaces that use measurement units, instead of provid-
ing specific units. This would make it possible to pass any
unit (all of which would inherit from the Unit base class)
as a method parameter, enabling the system to determine
commensurability and bypass Babel’s strict interface type
checking. An added complexity of this design is that each
method’s units would now need to be specified programat-
ically in both the uses and provides sides. Once specified,
the system would determine at runtime whether the two
units mismatch or are commensurable. In order to deter-
mine commensurability between units, we opt to add a get-
Dimensions method to the Unit base class. By comparing
vectors of one rational number per SI dimension 1 (as de-
fined by the SIUnits [4] library) we can determine whether
two units are from the same dimension, even for complex
derived units. The dimensional vector is encoded within the
implementation of each unit class by implementing the Unit
interface.

interface Unit {

void setQuantity(in double q);

1For simplicity, in this paper we use integers to represent
rational numbers. In practice this can be extended to by
using an integer for each of the denominator and numerator.

double getQuantity();

array<int,1> getDimensions();

bool isCompatible(in Unit impl);

}

class Mile implements-all Unit {}

class Second implements-all Unit {}

class Earth {

void setCircumference(in Unit u);

Unit getCircumference();

}

The implementation of the Unit class’ isCompatible method
above will contain invocations to the getDimensions for each
unit and would perform a dimensional vector comparison to
determine commensurability. In this case, where even the
provider is forced to programatically specify its units, the
implementation of the setCircumference method would con-
tain the following (in pseudo C++):

void

Earth::setCircumference(const Unit& u) {

if (! u.isCompatible(Unit::Mile::_create())) {

//ERROR: incompatible units

throw new IncompatibilityException();

}

//the rest of this method follows...

}

The uses side for this approach is similar to the previous
one. Although this approach satisfies nearly all of our objec-
tives, it puts an undue burden on the interface implementer
to ensure dimensional safety. In addition, the readability
of an interface is reduced, as one needs to read the imple-
mentation and not just the SIDL definition to determine the
correct measurement unit.

4. SYSTEM DESIGN
The progression of the approaches discussed up to this

point culminate in the design that we chose and describe
in this section. The system design we present, as is the
case with the approaches discussed before it, would operate
across the number of programming languages Babel sup-
ports. In order to enable measurement units to be con-
veniently expressed in component interfaces, we opt to en-
hance the Babel SIDL compiler to allow certain dynamic
type checking decisions for user-defined (class) types to be
performed by a user-supplied method. This is a principled
addition to Babel, loosening the type checking constraint
in order to properly compare and determine compatibility
between measurement unit classes. As the compiler modi-
fication we introduce is not ad-hoc, it can possibly be used
for other purposes outside of expressing measurement units.
To realize this, we modify Babel by adding a DynamicType-
Checked interface to the compiler’s standard runtime and
modifying the code generation of classes that implement this
interface. When encountering classes that extend the Dy-
namicTypeChecked interface as parameters to methods, the

Babel generated stubs are automatically generalized to ac-
cept any class instance (using Babel’s BaseClass metaclass)
and to invoke the isTypeCompatible method to determine
compatibility at runtime. This method may also perform a
type conversion, where the type of the class tested for type
compatibility can be changed; in which case isTypeCompat-
ible method’s newClass out parameter returns a non null
value. Figure 2 displays a flowchart of the dynamic type
checking our system introduces in Babel.

package sidl {

interface DynamicTypeChecked {

bool isTypeCompatible(in BaseClass class,

out BaseClass newClass);

}

}

Using the DynamicTypeChecked interface defined in Ba-
bel’s runtime, and the associated changes in code generation
we can define a Unit abstract base class, inherited by all ac-
tual measurement unit classes (e.g. Meter, Second etc.). The
Unit class can now be written so that it evaluates the dimen-
sional compatibility between measurement units and enables
passing instances of class Meter to a method accepting in-
stances Mile, while performing an automatic conversion in
the process. Implementing new units, Ampere for instance,
requires defining a new class and implementing the getDi-
mensions method. As previously mentioned, this method
describes each unit’s dimension using the SI system’s seven
base quantities.

abstract class Unit implements

sidl.DynamicTypeChecked {

bool isTypeCompatible(in BaseClass class,

out BaseClass newClass);

void setQuantity(in double q);

double getQuantity();

abstract array<int,1> getDimensions();

}

class Meter extends Unit {}

class Second extends Unit {}

Since the Unit class is the one implementing the Dynam-
icTypeChecked interface, the isTypeCompatible method can
be implemented once for all measurement units. This en-
ables using and defining measurement units in our system
to be decoupled from the internals of the Babel compiler.
We give a general idea (in pseudo C++) of the implemen-
tation of this method below:

bool

Unit::isTypeCompatible (

/* in */::sidl::BaseClass& klass,

/* out */::sidl::BaseClass& new_klass)

{

//get klass’ type name

sidl::ClassInfo klsinfo = klass.getClassInfo();

std::string klsName = klsinfo.getName();

//extract dimensional arrays

dims::Unit unit = babel_cast<dims::Unit>(klass);

Inherits

sidl.DynamicTypeChecked?

Babel

Method

Argument

Method Proceeds

As Before

NO YES

Call isTypeCompatible()

on the argument object

Are the types of the method

parameter and argument

compatible to each other?

Does the type of the method

parameter match the type of

the argument?

NOYES

Type Mismatch

NO

Perform type conversion

if necessary and proceed

with method

YES

Figure 2: A flowchart describing the process of dynamically checking and converting babel method arguments.
This is the general approach that we devise and apply to unit checking.

sidl::array<int> klsdims = unit.getDimensions();

sidl::array<int> d_dims = this->getDimensions();

//compare dimensional arrays

bool isDimsSame = true;

for(int i=0; i<7; i++) {

if(d_dims.get(i) != klsdims.get(i)) {

isDimsSame = false;

}

}

if(isDimsSame) {

//dimensions are the same, so can convert if

//these are different commensurable units

//...

return true;

}

else {

//units aren’t commensurable

return false;

}

}

Using the Unit class’ isTypeCompatible method, we are
able to provide a general implementation of unit conversion
and commensurability. The user of an interface providing

measurement units can now define his or her own measure-
ment units and use them to invoke an application interface’s
methods. We give an example of performing these tasks us-
ing our system through the running example that uses the
earth’s circumference.

class Earth {

void setCircumference(in Meter circumference);

Meter getCircumference();

}

After compiling the above SIDL using the modified Babel
compiler, we can write the following code (in C++) that uses
the Earth interface. Commensurable units are automatically
converted: kilometers to meters and meters to miles.

Earth earth = Earth::_create();

KiloMeter kmCirc = Kilometer::_create();

kmCirc.setQuantity(40041);

earth.setCircumference(kmCirc);

Mile mileCirc = earth.getCircumference();

The implementation (server-side) code remains largely un-
changed by our measurement unit system.

void

Earth::setCircumference(

/* in */Meter& circumference)

{

double c = circumference.getQuantity();

this->d_circ = c;

}

One aspect of this system’s design we have neglected to
describe is the process through which we convert between
two units of the same dimension. We describe our solution
to this problem in the next section.

4.1 Unit Conversion
Converting for one commensurable unit to another is one

of the important features of our approach. Selecting a pri-
mary unit for each dimension in order to reduce the amount
of conversions that need to be encoded is a reasonable so-
lution [3]. To enable this solution to unit conversion in the
system we designed, we two methods inPrimaryUnit and
setInPrimaryUnit to the Unit baseclass.

double inPrimaryUnit();

void setInPrimaryUnit(in double d);

The inPrimaryUnit method returns the quantity of a unit
as a value in its primary unit, while the setInPrimaryUnit
sets the quantity from a parameter whose value is in the
primary unit. Both methods perform a conversion between
the represented unit and the primary unit. In the primary
unit object, we implement these two methods by performing
no conversion to the quantity.

Determining the primary unit for each dimension is done
by the implementer of the unit library, and many of them
are pre-determined by the SI system. While using a primary
unit simplifies conversion, it raises a new concern. Numeri-
cal errors due to overflow may occur as a side-effect to the
unit conversion steps. We present no systematic solution (if
one is possible) to them apart from informing the user of
their possibility. If there is loss in precision, the user may
choose to perform the unit conversion directly, without the
involvement of a primary unit.

4.2 Other Challenges and Limitations
Our system introduces extra overhead in method invoca-

tions that use our measurement unit representation. Though
relatively minimal compared to approaches providing units
in programming languages, this overhead can grow when a
method is invoked very frequently in a particular applica-
tion. We present no solution to this problem in this paper,
though we believe that the overhead of our design will be
negligible in most uses.

Some units are difficult to express in terms of the seven SI
base quantities. An example of such a unit is radians, which
are used to measure a plane angle and are dimensionless.
In such cases, we usually do not need commensurability, as
these units’ dimensions are unique. To define a uncommen-
surable unit, we use zeros across all of the seven SI base
quantities. On the other hand, if a user should want to
express a class of units that needs commensurability and
cannot be easily expressed by the SI system, we propose ex-
tending our design or directly modifying its implementation
to account for this.

5. CONCLUSIONS AND FUTURE WORK
In this paper we discussed our design of measurement

units expressed in component interfaces. We argue that ex-
pressing units at the software architecture layer offers the

right trade-off between discovering dimensional mismatch
and application performance. Our design consists of loos-
ening dynamic type checking requirements in order to au-
tomatically determine unit commensurability and provide
automatic unit conversions in a flexible manner. We imple-
ment our design in the CCA component model’s BABEL
compiler in a way in which minimal effort is required to add
new units, and even smaller changes are needed to use units
in application code.

The future work of this project involves determining whether
our design works well in practice, once it is used to program a
scientific application. We would like to gage user experience
as well as any potential impact on application performance.
In addition, we would like to experiment with approaches to
system transparency and accountability in unit conversion.

6. REFERENCES

[1] Allan, B. A., Armstrong, R., Bernholdt, D. E.,

Bertrand, F., Chiu, K., Dahlgren, T. L.,

Damevski, K., Elwasif, W. R., Epperly, T.

G. W., Govindaraju, M., Katz, D. S., Kohl,

J. A., Krishnan, M., Kumfert, G., Larson,

J. W., Lefantzi, S., Lewis, M. J., Malony, A. D.,

McInnes, L. C., Nieplocha, J., Norris, B.,

Parker, S. G., Ray, J., Shende, S., Windus,

T. L., and Zhou, S. A component architecture for
high-performance scientific computing. Intl. J.
High-Perf. Computing Appl. 20, 2 (May 2006),
163–202.

[2] Allen, E., Chase, D., Hallett, J., Luchangco,

V., andSukyoung Ryu, J.-W. M., Jr., G. L. S.,

and Tobin-Hochstadt, S. The Fortress language
specification, version 1.0 beta, 2008.

[3] Allen, E., Chase, D., Luchangco, V., Maessen,

J.-W., and Steele, Jr., G. L. Object-oriented units
of measurement. In Proceedings of the 19th Conference
on Object-Oriented Programming, Systems,
Languages, and Applications (October 2004).

[4] Brown, W. E. Applied template metaprogramming
in siunits: the library of unit-based computation. In
Proceedings of the Second Workshop on C++
Template Programming (October 2001).

[5] Chen, F., Rosu, G., and Venkatesan, R. P.

Rule-based analysis of dimensional safety. In
Proceeding so the 14th International Conference on
Rewriting Techniques and Applications RTA-03
(Valencia, Spain, June 2003).

[6] Dreiheller, A., Mohr, B., and Moerschbacher,

M. Programming pascal with physical units.
SIGPLAN Notices 21, 12 (1986), 114–123.

[7] Hilfinger, P. N. An ada package for dimensional
analysis. ACM Transactions on Programming
Languages and Systems 10, 2 (1988), 189–203.

[8] Isbell, D., and Savage, D. Mars climate orbiter
failure board release report, numerous nasa actions
underway in response. NASA Press Release, 1999.

[9] Kohn, S., Kumfert, G., Painter, J., and Ribbens,

C. Divorcing language dependencies from a scientific
software library. In Proceedings of the 10th SIAM
Conference on Parallel Processing (Portsmouth, VA,
2001).

[10] McInnes, L. C., Allan, B. A., Armstrong, R.,

Benson, S. J., Bernholdt, D. E., Dahlgren,

T. L., Diachin, L. F., Krishnan, M., Kohl, J. A.,

Larson, J. W., Lefantzi, S., Nieplocha, J.,

Norris, B., Parker, S. G., Ray, J., and Zhou, S.

Parallel PDE-based simulations using the Common
Component Architecture. In Numerical Solution of
PDEs on Parallel Computers, A. M. Bruaset and
A. Tveito, Eds., vol. 51 of Lecture Notes in
Computational Science and Engineering (LNCSE).
Springer-Verlag, 2006.

