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ABSTRACT
Using IDE usage data to analyze the behavior of software
developers in the field, during the course of their daily work,
can lend support to (or dispute) laboratory studies of devel-
opers. This paper describes a technique that leverages Hid-
den Markov Models (HMMs) as a means of mining high-level
developer behavior from low-level IDE interaction traces of
many developers in the field. HMMs use dual stochastic pro-
cesses to model higher-level hidden behavior using observ-
able input sequences of events. We propose an interactive
approach of mining interpretable HMMs, based on guiding
a human expert in building a high quality HMM in an it-
erative, one state at a time, manner. The final result is a
model that is both representative of the field data and cap-
tures the field phenomena of interest. We apply our HMM
construction approach to study debugging behavior, using
a large IDE interaction dataset collected from nearly 200
developers at ABB, Inc. Our results highlight the different
modes and constituent actions in debugging, exhibited by
the developers in our dataset.

CCS Concepts
•Human-centered computing → Empirical studies in
HCI; •Software and its engineering→Maintaining soft-
ware; •Computing methodologies → Modeling method-
ologies;
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1 Introduction
Modern IDEs provide an encompassing set of software de-
velopment tools that capture the majority of development
tasks, by including support for development, advanced soft-
ware navigation, version control, debugging, and testing.
Mining how developers interact with the IDE can aid re-
searchers in understanding developer behaviors in the field,
without the observational bias present in laboratory studies,
supporting laboratory studies’ findings and understanding
them in wider contexts. In addition, field IDE data analy-
ses can help in making the IDE more usable, by, for instance,
exposing hidden, rarely used capabilities of the IDE in the
contexts that are most useful to developers [13].

Large-scale IDE usage data has previously been collected
and put to a variety of uses in software engineering re-
search, including to understand developer behavior in fea-
ture location [4], refactoring [15,21], bug prediction [10], and
general IDE usability [13]. Most such studies so far have
learned from simple developers’ interactions (i.e., clicks and
key presses), while high-level behaviors of developers, exhib-
ited by sequences of several IDE interactions, have rarely
been modeled or studied.

Hidden Markov Models are adept at capturing higher-level
intent using a large set of simple events as input, which
is typical of IDE usage data. However, as they are typi-
cally used for prediction, HMMs often produce models that
are difficult to interpret by humans, or are not focused on
the phenomena of interest. In cases where the number of
different events (or symbols) in the dataset is large, as in
IDE interaction data, HMM interpretation is nearly impos-
sible. The technique that we propose for IDE data analysis,
adapted from previous work by Jarosewicz [7], interactively
builds up an HMM by integrating expert feedback at each
step, while producing several informative representations of
the model and input dataset to guide the expert. The ap-
proach avoids building a model that is difficult to interpret
post-hoc, as interpretation is in fact performed at each step
of the process, using one new state at a time.

This paper presents the following contributions:

• an interactive approach of building an interpretable
HMM model of developer behavior based on IDE usage
data;



• formulation of the problem of analyzing debugging be-
havior as an HMM; and

• results from a large-scale study of using interactive
HMM mining, applied to uncovering developers’ de-
bugging behavior.

The paper is organized as follows. We begin by describ-
ing the related work in Section 2, followed by a detailed
description of the interactive approach for HMM construc-
tion in Section 3. We apply the algorithm to a large IDE
dataset to discover developers’ debugging behavior, and de-
scribe how the dataset was processed in Section 4 followed
by the results of the analysis in Section 5.

2 Related Work
The work most similar to ours is that of Khodabandelou et
al. [8], who first proposed a Hidden Markov Model (HMM)
approach for mining IDE interaction datasets to understand
high-level developer intent. This intentional process min-
ing approach produces one HMM model, based on a set of
heuristics. However, the mined model may not answer the
research question, which another model, of similar quality,
could. Our paper builds on this work, by proposing an in-
teractive process of building HMMs that highlight a relevant
aspect of developer behavior.

Other related work can be organized in two categories:
other mining approaches that leverage IDE usage data to
understand developers’ behavior, and mining models from
human-generated event data, in general.

Many other studies have analyzed developer behavior based
on IDE interactions. Recently, Minelli et al. analyzed the
time for different development activities (e.g., program com-
prehension) spent by developers in the field [11], highlight-
ing the high amount of time for program comprehension and
the high negative impact of interruptions on developer work.
Corley et al. studied the impact of developer interruptions
by also considering the web usage patterns of developers [3].
Several studies have measured the types of commands more
frequently used (or not used) in the IDE, leading to the de-
scription of specific usability problems [12,14].

A technique called process mining has been gaining trac-
tion in recent years as a means of capturing human (or
business) behavior based on event data [22]. The mining
techniques used in this domain differ mainly in the types
of models used, including petri nets, state machines, and
others. Recently, some of these approaches have been ap-
plied to software systems’ logs [18], to help understand user
behaviors. Most of these approaches, however, capture a
direct representation of the logs, while HMMs aim to cap-
ture higher level hidden human behavior. Due to the direct
representation of the logs, such approaches may also have
difficulty scaling to a large alphabet of log messages.

3 Interactive HMM Construction
Hidden Markov Models (HMMs) are probabilistic state ma-
chines that have been shown to have a variety of uses, most
notably, in speech recognition and signal processing [17].
Their predictive power comes from modeling two distinct,
but tightly-coupled, stochastic processes, one that is observ-
able and one that is hidden. The state of the hidden process
is the output of the prediction at any particular moment in

time, while the observable process directly tracks the input
data.

Here, we are not interested in prediction, but rather in
the descriptive power of HMMs. HMMs have previously
been proposed as an appropriate form for inferring high-
level human cognitive processes, represented by the HMM’s
hidden states and their transitions [8].

In the remainder of this section, we will describe how
HMMs can be used for modeling human processes in soft-
ware engineering, based on IDE interaction datasets, includ-
ing how they can be built interactively, with interactive feed-
back, to best capture a particular hidden process. To ease
the discussion, we first present a general discussion of the
method, then proceed to the formal definition of the ap-
proach.

3.1 Overview: HMM for Software Developer
Behavior Analysis

We illustrate how HMMs can be used for modeling human
behavior and provide an overview of the modeling approach
through a running example from the software engineering
domain. Consider a set of two IDE interactions related to
using a grep-like tool, Find in Files, to search within the
IDE: Find in Files Search, Search Result Click. The
first message indicates that a user issued a query with the
search tool, while the second message indicates a click on a
result retrieved by the search tool, which opens the IDE edi-
tor. These two interactions will form the HMM’s observable
symbol space.

Let’s also assume that there are two hidden states in the
HMM: Code Search Success and Code Search Failure.
We consider a failed search sessionto be those interactions
with the search tool where the developer issues a query, but
does not click on any of the search results, because, pre-
sumably, they are irrelevant to the information need. An
interaction sequence representative of a failed search may
look like this:

1, Find in Files Search

2, Find in Files Search

3, Find in Files Search

Conversely, the following may be an instance of a success-
ful search session:

1, Find in Files Search

2, Search Result Click

3, Search Result Click

When modeled via an HMM, the extracted HMM model
with parameter values determined by a training algorithm,
such as the Baum-Welch algorithm [17], on these interac-
tion sessions may look like the one in Figure 1. Each of
the two hidden states (Code Search Success and Code
Search Failure) emits the two observable messages (Find
in Files Search and Search Result Click) with a proba-
bility distribution. The model also expresses the transitional
probability distribution between the hidden states as well as
the probability distribution of initial states.

A common task in constructing such an HMM for predic-
tion is to determine the sequence of states that the HMM is
likely to be traversing for a new, previously unseen, sequence



of developer interactions. However, we are particularly in-
terested in constructing such a model to account for devel-
oper interactions. In particular, to gain an understanding
of developer behaviors that can be difficult to be observed
directly, we determine the states and interpret their message
emission and transition probability distributions.

CODE SEARCH SUCCESS
Find in Files Search: 0.2
Search Result Click: 0.8

CODE SEARCH FAILURE
Find in Files Search: 1.0
Search Result Click: 0.0

0.25 0.6

0.75

0.4

1.0 0.0

Figure 1: An example HMM for code search.

An HMM is characterized by two embedded stochastic
processes among which one is on observable symbols emit-
ted over time and one is on unobservable states of the model
changing over time [17]. It is commonly expressed as a quin-
tuple, i.e., λ = (S,V,T,E,π) where S = {S1, S2, . . . , SN} is
the set of N hidden states and V = {V1, V2, . . . , VM} is the
set of M observable symbols. A stochastic process results
in the model at state qt ∈ S at time t, where T = {Tij :
1 ≤ i, j ≤ N} is the state transition probability distribu-
tion and Tij = P{qt+1 = Sj |qt = Si} is the probability that
the HMM transits from state Si at time t to state Sj at
time t + 1. E = {Ej(k) : 1 ≤ j ≤ N, 1 ≤ k ≤ M} where
Ej(k) = P{Vk|qt = Sj} is the emission (or observation sym-
bol) probability distribution and Ej(k) is the probability
that symbol Vk is emitted at state Sj . π = {πi, 1 ≤ i ≤ N}
where πi = P{q1 = Si} is the initial state probability dis-
tribution and πi is the probability that the HMM starts at
state Si, i.e., the probability that the HMM is in state Si at
time t = 1.

A basic problem for HMM λ is, given S and V, to de-
termine the values of model parameters, T, E, and π that
maximize the probability at which a set of sequences O =
{O1, O2 . . . OK} are being observed, i.e., to solve the opti-
mization problem,

argmax
T,B,π

P {O|λ} (1)

where

P {O|λ} = P
{
{O(1), O(2), . . . , O(K)}|λ

}
=

K∏
k=1

P
{
O(k)|λ

}
(2)

This optimization is a training process for the HMM.
Among a number of methods developed for the training pro-
cess are the Baum-Welch algorithm, the EM method, and
various gradient techniques [17].

Following the definition above, we can define the HMM for
the code search example illustrated in Figure 1 as λcode search =
(S,V,T,E,π) where N = 2, M = 2, S = {S1, S2}, V =
{V1, V2}, T = {Tij}, B = {bj(k)}, π = {πi}, 1 ≤ i ≤ N ,
1 ≤ k ≤M , and

S1 = [Code Search Success]

S2 = [Code Search Failure]

V1 = <Find in Files Search>

V2 = <Search Result Click>

T =

{
a11 a12
a21 a22

}
=

{
0.25 0.75
0.60 0.40

}

E =

{
b1(1) b1(2)
b2(1) b2(2)

}
=

{
0.2 0.8
1.0 0.0

}

π =
{
π1 π2

}
=
{

1.0 0.0
}

Training the above HMM λcode search involves determin-
ing the values of Tij , Ej(k), and πi where 1 ≤ i, j ≤ 2 and

1 ≤ k ≤ 2, given the set of sequences, O = {O(1), O(2)},
such as,

O(1) = (<Find in Files Search>

<Find in Files Search>

<Find in Files Search>)

O(2) = (<Find in Files Search>

<Search Result Click>

<Search Result Click>)

such that the following probability is maximized.

P{O|λcode search} = P
{
{O(1), O(2)}|λcode search

}
=

2∏
k=1

P{O(k)|λcode search}

Throughout this work, we use the well-known Baum-Welch
algorithm to train HMMs.

3.2 Building an Interpretable HMM Model
There are several challenges in building an interpretable
HMM model for analyzing developer behavior. The Baum-
Welch algorithm is an unsupervised method of training an
HMM, given a set of input (observable) sequences and the
number of hidden states in the model. It is difficult to es-
timate the number of hidden states for an unknown model,
where no prior knowledge exists [1, 2]. One strategy for se-
lecting this parameter is sensitivity analysis using metrics
such as the Bayesian Information Coefficient (BIC). How-
ever, this technique and metrics are not definitive and may
not apply to all problems.

Another issue is the interpretability of the inferred model.
The Baum-Welch algorithm optimizes the predictive power
of the model, but as the number of hidden and observable
states grows, the complexity of the inferred model grows
and interpreting it can become very difficult. This is due
to the fact that each of the HMM’s hidden states can emit
many of the obervation symbols, and the same symbol is
often emitted with similar probability from multiple states.
Labeling individual hidden states is especially challenging



1:CODE SEARCH SUCCESS
Find in Files Search: 0.5
Search Result Click: 0.5

2: CODE SEARCH FAILURE
Find in Files Search: 1.0

0.5 0.5

0.5

0.5

1.0 0.0

0: ALL DATA
IDE interaction 1: p1

...
IDE interaction n: pn

1: CODE SEARCH
Find in Files Search: 1.0

0: ALL DATA
IDE interaction 1: p1

...
IDE interaction n-1: pn-1

0.9 0.1

0.1

0.9

1.0 0.0

0.5

0: ALL DATA
IDE interaction 1: p1

...
IDE interaction n-2: pn-2

0.5

ST
EP

 0
ST

EP
 1

ST
EP

 2

0.0
0.25 0.25

0.0

Figure 2: Interactive HMM construction, in 2 steps,
for a code search example. The model is retrained
between each step using the Baum-Welch algorithm.

when the probability distribution of the observation symbols
is fat-tailed.

Interactive model building is an approach that overcomes
these two difficulties [7]. In this approach, the HMM is
built iteratively by a domain expert, by introducing one
hidden state at a time and retraining the model with the
Baum-Welch algorithm at each step. A special state, called
the sink state, exists in the model to capture the remaining
symbols/sequences that haven’t been explicitly represented
to that point. To illustrate this idea, we refer back to the
HMM in Figure 1. We begin by training a model, using
the Baum-Welch algorithm, from a single state, i.e, the sink
state called All Data (step 0 in Figure 2). Based on the this
first model, we proceed to add an additional Code Search
state (step 1 in Figure 2). In training the model with the
new state using Baum-Welch, we constrain the model so that
the new state only outputs one message, i.e., Find in Files

Search, while the All Data state no longer emits that mes-
sage (or emits it with zero probability). In the next step, we
can introduce another state (e.g., a Code Search Failure
state) constrained to emit both Find in Files Search and
Search Result Click messages, and retrain using Baum-
Welch (step 2 in Figure 2). The process continues until we
are satisfied with the set of modeled states.

The interactive model building process is therefore an iter-
ative multi-step approach as shown in Algorithm 1. During
the interactive construction of an HMM, the human expert
that drives the process is provided with two types of inter-
mediate output to help in constructing a model that may

be more accurate and more interpretable. The information
includes: (1) a set of interesting sequences found in the
data, which are poorly captured by the current model, in
order to suggest new states that could be created; (2) and
model quality metrics and a set of sequences that are cap-
tured by the model, but do not exist in the data, both aimed
to ensure the final model accurately reflects the input data.
This intermediate ouput helps the expert to decide whether
an additional hidden state should be added, and to control
which symbols the added hidden state should emit, and to
determine the meaning of the added hidden state.

Input: the initial number of hidden states, N = 1;
observation symbols V; observation sequences O

Result: interpretable and accurate HMM
1 initialize model with one All Data state
2 keep going ← true
3 while keep going do
4 train model using the Baum-Welch algorithm
5 find interesting sequences that are not in model

calculate model quality
6 if user wants to expand model then
7 add states and constraints based on user input
8 else
9 keep going ← false

10 end

11 end
Algorithm 1: Interactive Model Building

3.3 Generating Interesting Sequences
As described in Algorithm 1, a new set of interesting se-
quences [6, 7] informs the human expert at each iteration in
answering the question of whether to create another hidden
state, and which observable messages it should emit. The
interesting sequences are selected to show occurrences that
are present in the input IDE interaction dataset, but are not,
or not well, expressed in the current model. Note that even
though a special state may not yet exist for each observ-
able message, the All Data state captures the expression
of remaining messages, likely with less accuracy.

For instance, in Step 1 in Figure 2, based on the model
consisting of two states All Data and Code Search, and
their associated probabilities, the human expert is shown a
set of interesting sequences from the IDE interaction dataset,
perhaps containing the following set of two interesting se-
quences:

1. <Find in Files Search, Search Result Click,

Search Result Click> -- score = 0.135

2. <Find in Files Search, Search Result Click,

Search Result Click, Search Result Click>

-- score = 0.087

Observing that sequences with several clicks after the query
are not captured well in the current model, the human ex-
pert may decide to create a Code Search Failure state
that emits those two messages, and rename the existing
Code Search state to Code Search Success, such as
in Step 2 of Figure 2.

The interesting sequences are ranked in descending order
by the likelihood that they will appear in the dataset minus
the likelihood that they will be generated by the current



HMM. This is the score shown at the end of each sequence
in the above example. Sequences that rank highly, but have
already been encapsulated in a state, are omitted and not
shown to the human expert.

The interesting sequences are computed from two sets of
computed observable sequences, called θ-frequent sequences
by data and θ-probable sequences by model. We denote these
two set of observable sequences as OD(θ,O) and OM (θ, λ),
respectively. We follow [6,7] to compute the two observable
sequences with a minor variation.

3.3.1 θ-frequent Sequences by Data
As defined in Section 3.1, V = {V1, V2, . . . , VM} are M ob-

servation symbols, O =
{
O(1), O(2), . . . , O(K)

}
the set of

K observation sequences where a sequence is O ∈ O and
O = O1O2 . . . OT is a observation sequence of length T and
O1, O2, . . ., OT ∈ V. A θ-frequent observation sequence is
a subsequence that appears no less frequently than a fre-
quency threshold θ where 0 ≤ θ ≤ 1 in the K observation
sequences O.

Following [6, 7], we compute OD(θ,O). In this paper, we
only consider prefixes of sequences in O for the θ-frequent
sequences, and consider more general forms of θ-frequent se-
quences that may not be prefixes in future work. We denote

a prefix of sequence O as sequence Ô, i.e., Ô v O, and de-

fine X(Ô) = {O : Ô v O ∧O ∈ O} as the set of observation

sequences that have the common prefix Ô. It is clear that

X(O) ⊆ O. Then, the frequency of a sequence Ô, denoted

as FD(Ô,O) is defined as follows:

FD(Ô,O) =

∣∣∣X(Ô)
∣∣∣

|O|

=

∣∣∣{O : Ô v O ∧O ∈ O
}∣∣∣

|O|

=
1

K

∣∣∣{O : Ô v O ∧O ∈ O
}∣∣∣ (3)

while θ-frequent sequences from O become:

OD(θ,O) = {Ô : FD(Ô,O) ≥ θ} (4)

The above definition indicates that for any sequence Ô ∈
OD(θ,O), it is a common prefix of the set of observation

sequences X(Ô) ⊆ O. Note that any prefixes of such a se-

quence Ô ∈ OD(θ,O) is also a sequence in OD(θ,O). There-

fore, it is not useful to show the prefixes of Ô to the human
expert who is building an HMM interactively. We are hence
interested only in finding the longest θ-frequent sequences
from O.

A longest common prefix Ô(L) is a sequence that satisfies

the following condition: X(Ô(L)) 6= X(Ô(L)o), ∀o ∈ V. For
ease of discussion, from this point onward, we use OD(θ,O)
as the set of the longest θ-frequent sequences. Following [6,
7], we use Algorithm 2 to generate the longest θ-frequent
sequences OD(θ,O) and θ ≥ 2

|O| = 2
K

from data set O. Note

that we enforce the condition of θ ≥ 2
|O| = 2

K
since prefixes

that appear only once are not relevant, and need not be
included in OD(θ,O).

Input: observation sequences O; frequency threshold θ
where 2

|O| = 2
K
≤ θ � 1

Output: longest θ-frequent sequences OD(θ,O)
1 sort O in lexicographical order into list

L{O} =
(
O(1), . . . , O(K)

)
2 PushBack (L{O}, ε) // for handling last sequence

// T (p), T (c): previous & current prefix length

3 T (p) ← 0
4 for i← 1 to K + 1 do

5 T (c) ← 1

6 while O
(i)
j = O

(i+1)
j ∧ j ≤ min (Len (O(i)), Len

(O(i+1))) do

7 T (c) ← T (c) + 1
8 end

9 if T (p) 6= T (c) then

10 Ô ← Prefix (O(i), T (p))

11 f ← ComputePrefixFrequency (L(O), i, Ô, T (p))

SaveSeqAndFreq(OD(θ,O), Ô, f)

12 T (p) ← T (c)

13 end

14 end

15 Function ComputePrefixFrequency (L(O), i, Ô, T )
16 n← 1, j ← i− 1

17 while j > 0 ∧ Prefix (O(j), T ) 6= Ô do
18 n← n+ 1, j ← j − 1
19 end
20 j ← i+ 1

21 while j ≤ K ∧ Prefix (O(j), T ) 6= Ô do
22 n← n+ 1, j ← j + 1
23 end
24 return n

K

25 end
Algorithm 2: Generating the longest θ-frequent sequences
OD(θ,O) where θ ≥ 2

K

3.3.2 θ-probable Sequences by Model
In Algorithm 1, the human expert building the model re-
lies on a second set of sequences, which are likely predicted
by an HMM. To obtain the sequences to aid the expert, we
are in effect solving a generation problem, i.e., generate se-
quences with significant probability of being observed, given
an HMM. We refer to the sequences as the set of θ-probable
sequences generated by a model and define it as follows:

OM (θ, λ) =
{
O : P{O|λ} ≥ θ,O ∈ V+} (5)

where “+” is the Kleene-+ and P{O|λ} is the probability

of observing the sequence O = O(1)O(2) . . . O(T ) of length T
given the model λ = (S,V,T,E,π) [17].

To generate an observation sequence from HMM λ, the
HMM starts at a state q1 ∈ S = {S1, S2, . . . , SN} and goes
through T − 1 transitions. We denote the sequence of states
visited as Q = q1q2 . . . qT where q1, q2, . . . , qT ∈ S. The
observation sequence O is of length T and is the result of
emissions from visiting any state sequences in Q = ST =
{q1q2 . . . qT : qi ∈ S, 1 ≤ i ≤ T}.

Following [17], the probability of observing sequence O =
O1O2 . . . OT given HMM λ is:



P{O|λ} =P{O,Q|λ}

=
∑
∀q∈Q

P{O, q|λ}

=
∑
∀q∈Q

P{O|q, λ}P{q|λ}

=
∑

∀q1∈Q,∀q2∈Q,...∀qT∈Q

πq1Eq1(O1)

Tq1q2Eq2(O2)

Tq2q3Eq3(O3)

. . .

TqT−1qTEqT (OT ) (6)

Direct computation of P{O|λ} using the definition in equa-
tion (6) needs 2TNT calculations and is costly [17]. A more
efficient algorithm to compute P{O|λ} is to use the forward
part of the forward-backward procedure for HMMs, a dy-
namic programming approach, and requires on the order of
TN2 calculations [17].

Following [6,7], we generate the set of θ-probable sequences
by HMM λ in Algorithm 3 by taking advantage of the for-
ward part of the forward-backward procedure.

Input: HMM λ = (S,V,T,E,π); |S| = N ; |V| = M ;

π(0) = 1
N

{
π
(0)
1 π

(0)
2 . . . π

(0)
N

}
where π

(0)
i = 1,

1 ≤ i ≤ N
Output: θ-probable sequence set OM (θ, λ)
// ε: V0, the empty sequence

1 α(ε)← π(0) // α(·) is a vector of length N
2 GenerateHMMSequences (ε,α(ε))

3 Function GenerateHMMSequences (O, α(O))

4 p←
N∑
i=1

α(O, i)

5 if p ≥ θ then
6 SaveSeqAndProb (OM (θ, λ), O, p)
7 foreach o ∈ V do
8 for j ← 1 to M do
9 O′ ← Oo

10 α(O′, j)←
[

N∑
i=1

α(O, i)Tij

]
Ej(o)

11 GenerateHMMSequences (O′, α(O′))

12 end

13 end

14 end

15 end

Algorithm 3: Generating θ-probable sequences OM (θ, λ)
from HMM λ = (S,V,A,B,π)

3.3.3 Computing Interesting Sequences
We are now ready to define interesting sequences for intera-
tive modeling building and the sequences are the output at
Line 5 in Algorithm 1. The expert will use the interesting
sequences to decide states to add and additional contraints
to apply at Line 7 in Algorithm 1. In a slight departure
from [6, 7], we define interesting sequences for interactive
model mining as:

ODM ={
O : O ∈

(
OD(θ,O) ∪OM (θ, λ)

)
∧ IDM (O) ≥ θ

}
(7)

where IDM (O|O, λ) is the interestingness of a sequence,

IDM (O|O, λ) = FD(O,O)− P{O|λ} (8)

Equation (8) can be divided into three cases as in equa-
tions (9a), (9b), and (9c). Two cases in equations (9a)
and (9b) are for sequences that frequently appear in data,
but are not well suggested by the model. These sequences
are used at Line 7 in Algorithm 1 to decide states to add
and additional constraints to apply. The difference of the
two cases lies in the minor difference in how P{O|λ} is cal-
culated. In the later case, P{O|λ} is already calculated
in Algorithm 3 while in the former case, P{O|λ} needs to
be calculated by applying the forward part of the forward-
backward procedure as described in [17].

The case in equation (9c) is for sequences that are well
supported by the model, but do not appear in data. Note
that the right hand side of equation (9c) is an approximation
since we apply the fact that FD(O,O) < 2

K
, K � 2, and

FD(O,O) ≈ 0 to the equation. Sequences corresponding
to this case will be displayed to the human expert to help
assess the quality of the model at Line 5 in Algorithm 1.

IDM (O|O, λ) =


FD(O,O)− P{O|λ}, O ∈ OD(θ,O)−OM (θ, λ) (9a)

FD(O,O)− P{O|λ}, O ∈ OM (θ, λ) ∩OD(θ,O) (9b)

−P{O|λ}, O ∈ OM (θ, λ)−OD(θ,O) (9c)

3.4 Controlling HMM Mining
The above discussion is laid out in general form, i.e., the
HMM is assumed to be ergodic (or fully connected). For
some applications, other types of HMMs have been found to
be more accurate models than ergodic ones. For example,
in speech recognition, left-right models (or Bakis models) in
which the states proceed from left to right are commonly
used [17].

In our approach for interactive building of the HMMs,
we do not necessarily consider that the model being built
is ergodic because we control whether transitions between
states are possible. The HMM mining process is controlled
by adding hidden states and by constraining two parameters
T and E in HMM λ = {S,V,T,E,π}. The mining proceeds
until no interesting sequences are generated or the human
expert chooses to terminate the process. By constraining
parameter T, we can control the topology of an HMM by
fixing selected transition probabilities as 0. By constraining
parameter E, we can control what symbols, or IDE interac-
tion messages in our case, to be emitted by a specific state.

Consider at iteration i, the HMM is λ(i) = {S(i), V, T(i),

E(i), π(i)} where S(i) = {S1, S2, . . . , SN(i)} and S1 is a spe-
cial state, called the All Data sink state (as in the example

in Figure 2), V = {V1, V2, . . . , VM}, T = {T (i)
jk : 1 ≤ j, k ≤

N (i)}, E(i) = {E(i)
j (k) : 1 ≤ j ≤ N (i), 1 ≤ k ≤ M}, and

π = {π(i)
i : 1 ≤ i ≤ N (i)}.



In the next iteration, by examining an interesting sequence
O = O1O2 . . . OT that corresponds to the case either in
equation (9a) or equation (9b), the expert may add a hid-
den state to the model, i.e., by incrementing the number of
hidden states, N (i+1) = N (i)+1, and by adjusting the transi-
tion probability matrix and the emission probability matrix
accordingly. The added hidden state will emit a subset of the
symbols that form O. For instance, provided that O2 6= O3

and O2, O3 ∈ V, the expert decides that the newly added
hidden state Si+1 should emit these two symbols and the
sink state S1 should cease to emit the two symbols. Then,
the emission probability matrix at iteration i+ 1 should be-

come, E(i+1) = {E(i+1)
j (k) : 1 ≤ j ≤ N (i+1), 1 ≤ k ≤ M}

and,

E
(i+1)
j (k) =



0, Vk /∈ {O2, O3} ∧ j = i+ 1

r2, Vk = O2 ∧ j = i+ 1

r3, Vk = O3 ∧ j = i+ 1

0, Vk ∈ {O2, O3} ∧ j = 1

E
(i+1)
j (k)

N∑
l=1

E
(i+1)
j (l)

,Vk /∈ {O2, O3} ∧ j = 1

E
(i+1)
j (k), otherwise

(10a)

(10b)

(10c)

(10d)

(10e)

(10f)

Equations (10a), (10b), and (10c) specify emission proba-
bility distribution at the newly added state Sj+1. They indi-
cate that two symbols (or IDE interaction messages) O2 ∈ V
and O3 ∈ V should be emitted at probabilities r2 and r3, re-
spectively, and r2 + r3 = 1, r2 > 0, r3 > 0.

Equations (10d) and (10e) specify the change that should
be made for the emission probability distribution at the sink
state S1, i.e., the state should not emit symbols O2 and
O3 by setting their corresponding emission probabilities as
0, then the probabilities for the rest of symbols should be

normalized such that
N∑
l=1

E
(i+1)
j (l) = 1.

Equation (10f) allows the probability distribution for any
other state to remain the same as in the previous iteration
before the training of the HMM for iteration i + 1. During
the training process at iteration i+ 1 (e.g. using the Baum-
Welch algorithm) equations (10a) to (10d) must hold as a
constraint.

3.5 Preserving Model Quality
As our interactive approach constrains the trained algorithm,
it is possible that after several steps, the model quality will
degrade. To prevent this from occurring, two pieces of in-
formation are presented to the expert: (1) a probabilistic
rating of the accuracy of the model, and a comparison of
this rating to a completely unconstrained model from the
same data, also trained with Baum-Welch, with the same
same number of hidden states; (2) a set of sequences that
the current model can produce with high probability, but
do not exist in the data, sorted in descending order of their
probability scores. Both of these can aid the expert in de-
ciding that a model’s quality may have degraded to a point
where it does not accurately represent the input data.
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Figure 3: The collection interval and number of mes-
sages for each of the 196 developers.

The probabilistic rating of the accuracy of the model is
measured using the optimization target of the Baum-Welch
algorithm, i.e., the log-likelihood of observing the given se-
quences. Given a set of K observation sequences O and
HMM λ, the probability of observing the sequences is equa-
tion (2) which has log-likelihood becomes,

L{O|λcode search} = log(P{O|λcode search}) (11)

In general, during the model building iterations, we desire
to observe L(1){O|λcode search} < L(2){O|λcode search}} <
. . ., i.e., the log-likelihood of observing O should gradually
increase during the model building process. In addition the
log-likelihood of observing O with regard to an interatively
built model should be no worse than unconstrained model.

Interesting sequences correponding to equation (9c) are
the sequences that the expert may use to assess the quality
of the interactively built model.

4 An HMM Model of Debugging Behavior
To illustrate the capabilities of our approach, we applied
it on a real-world IDE interaction dataset collected from
nearly 200 developers at ABB, Inc., during their daily work,
for a period of up to 12 months. We focus our attention on
developer behavior in using the debugging capabilities of an
IDE as a case study for our interactive HMM approach of
analyzing IDE interaction data.

4.1 Dataset Description
Our input dataset was collected using an IDE extension
called Blaze [20] that, when installed, monitors and logs all
available IDE clicks and events. The types of messages are
very similar to the popular, but no longer collected, Eclipse
UDC dataset [5], which has been used widely by researchers.
As shown in Figure 3, the distribution of developers’ partic-
ipation in IDE data collection was broad, ranging from 7
hours (261 messages) to 3129 hours (475472 messages).

Each entry in the dataset consists of a tuple including a
timestamp, the id of the developer that generated the in-
teraction, and the type of interaction (e.g., Debug.Start).
The breadth of messages in the dataset is large, consisting of



nearly 5000 unique entries. The messages are often reflective
of developer actions, such as Debug.Start which indicates
that the developer started debugging, though some messages
only indicate IDE events, e.g., the debugger stopping on a
breakpoint, via the Debug.Debug Break Mode message.

4.2 Data Preprocessing
To understand developers’ high-level actions during debug-
ging, we first process the Blaze dataset into a set of debug-
ging sessions, each of which is a contiguous set of interactions
that include frequent debugger commands or events. These
sessions form the input to our interactive HMM mining pro-
cess. They are constructed as follows.

1. Filter extremely rare messages. The dataset con-
tains messages that occur only for individual devel-
opers, usually indicative of specific IDE extensions or
configurations. We remove such messages, using a
threshold of 3% of the developers, i.e. messages that
occur in less than 3% of the developers are filtered out.

2. Remove cursor movement messages. The Blaze
dataset contains certain messages that are not inter-
esting, but very frequent. For instance, the message,
View.OnChangeCaretLine indicates that the caret has
moved in the editor window, while the Blaze log mes-
sage View.OnChangeScrollInfo indicates that the user
has scrolled up or down in the editor. We remove the
few such messages from the dataset, as they have no
impact on our further analysis.

3. Form debug sessions. We enumerated a set of 40
messages to represent all of the IDE interactions with
the Visual Studio debugger in Blaze. Based on this set,
we defined a debugging session to be a time-contiguous
sequence of messages by one user that contains at least
one of the messages in the debugging set in a 30-second
window of time.

After the above pre-processing, we obtained 2,849 debug-
ging sessions, consisting of on average of 186.1 messages,
and with an average length of 179.7 seconds. Based on the
extracted sessions, we executed the algorithm for interactive
HMM construction, and present a case study of the results
in the next section.

5 Mining Results
Using the large set of debugging log sessions, we performed
14 iterations of the HMM mining algorithm, resulting in
many states (excluding the All Data state) representing
39 message types in the Blaze input dataset. The quality of
the mined model was satisfactory, and at each step in the
interactive mining process, the quality of the model equaled
or surpassed an unconstrained (and very difficult to inter-
pret) model with the same number of states, which was used
as a baseline. Overall, the quality of the model never dipped
below 99% accuracy.

The mined model is displayed in Figure 4, where each
state is represented by a graph node, and the strength of
the transition probabilities are represented by the thickness
of each directed edge. A description of the usage behavior
expressed by each node is given in Table 1.

Table 1: Model states, the corresponding types of
developer behaviors in the Visual Studio IDE, and
a listing of the input messages in the Blaze dataset.

View Locals – Click on a view that provides a listing of
the variables in a particular scope of the program, while de-
bugging. Allows for examination of the values of each active
program variable. (View.Locals)
View/Set Watch – Add specific variable(s) to a watch
list, where they can be observed during debugging. Vi-
sual Studio allows for both a QuickWatch, single vari-
able observed temporarily, or a watch list of several vari-
ables observed for the duration of the debugging session.
(View.Watch;Debug.QuickWatch;Debug.AddWatch)
Debug Step/Move – Provide the ability to step through
the program interactively, one statement at a time. In-
cludes similar commands like Run to Cursor, which also
advance the debugger to a specific point in the pro-
gram. (Debug.StepOver;Debug.StepInto;Debug.StepOut; De-
bug.SetNextStatement;Debug.RunToCursor)
View Immediate – A window that allows the execution of
commands and evaluation of expressions during the debugging
session. (View.Immediate Window;Debug.Immediate)
View Call Stack – Provide a listing of the methods that are
currently on the stack. A click on a specific method opens it
in the Visual Studio editor. (View.Call Stack;Debug.CallStack)
View Autos – Similar to the View Locals but only displays
the values of variables defined on lines near to the current
breakpoint. In most languages, this is the current and preced-
ing line of the program. (View.Autos)
Output View – A click on the window listing of the out-
put of compilation as well as console messages written during
the execution of the program, or a keypress that makes this
window visible. (View.Output;Debug.Output)
Stop Debug – Command that stops the current debugging
session. (Debug.StopDebugging)
Start Debug – Commands that start a new debugging
session. (Debug.Start;Debug.StartDebugTarget; TestEx-
plorer.DebugSelectedTests;Debug.Restart;Debug.AttachtoProcess;
TestExplorer.DebugAllTestsInContext;TestExplorer.DebugAllTests)
View Package Explorer – The Visual Studio package ex-
plorer provides a hierarchical view of the project files. Clicking
a file opens it in the editor. (View.Solution Explorer)
Set Breakpoints – Set or enable a previously dis-
abled (set of) breakpoints. (Debug.ToggleBreakpoint; De-
bug.EnableBreakpoint)
Code Search – Search for code using a query string and
clicking on the retrieved results. Here we consider use of the
Find in Files VS built-in search tool, as well as usage of
the Sando IR-based code search tool [19]. (View.Find and Re-
place;View.Find Results 1; View.Sando Search;Edit.FindinFiles)
Structured Navigation – Navigate the call graph or
the def-use chain, usually initiated by selecting spe-
cific mentions of a identifier in the IDE editor. Both
the VS studio builtin commands and the ReSharper
VS extension, when used for this purpose, were con-
sidered. (Edit.GoToDefinition;View.Find Symbol Results;
Edit.FindAllReferences;ReSharper.ReSharper.GotoDeclaration;
Edit.NavigateTo;ReSharper.ReSharper.FindUsages;
Edit.GoToDeclaration;View.Call Hierarchy)
All Data – The state used in our mining approach that
captures all remaining messages in the input dataset, which
haven’t been examined via a specific state.

Next, we discuss the model, the insights that it provides
about developer debugging behavior in the field, and relation
to previous lab studies of debugging behavior.

Observation 1. Debugging views and commands form
three usage groups. In examining the mined HMM
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Figure 4: An HMM of debugging behavior in Visual Studio, mined by the technique described in this
paper. Nodes represent specific behaviors and edges represent transitions between these behaviors. The
color intensity of each node represents its in-degree, while the edge thickness represents the strength of the
transition probability.

in Figure 4, we can observe that most of the commands
and views can be grouped into three separate clusters: com-
mands/views that primarily transition into the Debug Step/Move
state, commands/views that primarily transition into the
Start Debug state, and commands/views that primarily
transition into the Set Breakpoints state. While some
commands express an affinity to more than one of these
groups (e.g., View Locals), the majority of views can be
grouped easily into one of these three categories, indicating
that there are three phases to debugging behavior: planning,
starting (or restarting), and stepping. Each of these phases
is supported by a set of relevant views, presenting specific
types of information to the developer.

Observation 2. Variable state views are most rel-
evant to developers when stepping through code.
Many of the views and commands described in Figure 4 only
appear when Visual Studio’s interactive debugger starts op-
erating and the environment switches to the debugging per-
spective. Within this perspective, a number of views are
shown by default to the user, many of which are represented
in our model. Most of the views that are used heavily during
the stepping behavior, shown via a strong transition to the
Debug Step/Move state, display information about the
value of a (set of) variable at that point in the execution.
The View Call Stack and View Output states are part
of the debugging perspective, but are much more strongly
associated with starting (or restarting) to debug (i.e., the
Start Debug state). We believe that these two views are
not useful to stepping, but more useful to observing a bug,
shown via an exception in the View Output and assocated
call stack in View Call Stack, prior to beginning a debug
session.

Observation 3. Structured navigation and code search
help developers in setting breakpoints. Setting break-
points on relevant lines of code is commonly the first step
in debugging. In doing so, according to our model, devel-
opers prefer to use structured navigation or code search,
but not the hierarchical view of the project provided by the

View Package Explorer. Hierarchial information is used
for developers to learn the overall project structure, but this
learning rarely transitions directly to debugging, unlike code
search and structured program navigation.

5.1 Discussion
The overall theme of our findings based on the mined HMM
model is that debugging is a multi-phase activity, requiring
certain types of knowledge at each stage. Recent work has
highlighted the information foraging theory of information
seeking during debugging [9, 16], where developers follow a
scent of information, based on a series of cues from the envi-
ronment, in order to locate the code of interest. We believe
that our findings support this line of work, by the diversity
of cues that precede setting breakpoints, starting a debug-
ging session, or stepping through code, indicative of a broad
set of developer usage scenarios.

Our results indicate that several cues occur before the
developer begins a debugging session in the IDE, including
following the developer’s examinination of the hierarchical
structure of the project, as well as following a specific output
or a specific cue in the call stack of (likely) a failing program.
Similarly, several tools are likely to precede the setting of
a breakpoint (i.e., code search and structured navigation).
Overall, the IDE is not particularly well task optimized, in
the sense that there is no natural transition between some
of these tools, though it may make sense to provide it. For
instance, starting to debug after looking at the call graph of
a failing program is not in any way made easier or straight-
forward, though that seems to be a natural progression that
many developers would follow in using the IDE.

Others research studies have also observed that the de-
bugger is commonly used as a program comprehension tool
and that many comprehension tasks involve the debugger
in consort with a project-scope code search tool, and call
graph navigation commands [4, 23]. However, these tools
are very poorly integrated in the IDE, requiring a separate
set of commands and without any easy transitions between
them. We believe that clearer integration strategies would



help expert developers during program comprehension to op-
erate more efficiently, while guiding novices into directions
that are likely to yield faster and better answers to their
information need.

5.2 Threats to Validity
The mining results have the potential of several internal and
external threats to their validity. One internal threat comes
from the mining technique itself. However, since HMMs are
a well known and understood modeling approach and the fi-
nal model quality surpassed 99%, we believe that this threat
is significantly reduced. Externally, we collected usage data
from only 196 professional developers at ABB, Inc. for a
fixed period of time, which may not sufficiently represent
a different population of developers or different time scales.
Another external threat in the presented debugging model
is the fact that we only investigated specific views and com-
mands, while investingating other views may have brought
forth other conclusions. A mitigating fact is that our tech-
nique is intended to reveal, via the set of interesting mes-
sages, frequently occurring sequences in the dataset, which
were considered in the construction of the final model. In
the future, we also aim to broaden our data collection and
scope of our analysis.

6 Conclusions and Future Work
In this paper, we presented a novel approach to mining soft-
ware developers’ interaction traces with an IDE, which pro-
vides human-interpretable models that capture high-level
developer behaviors of interest, using minor guidance from
a researcher. The approach is based on interactively build-
ing Hidden Markov Models (HMMs) from IDE usage data,
by adapting previous work by Jaroszewicz [6] to this do-
main and modifying to improve the interactivity of its feed-
back mechanism, which relies on capturing the differences
between the HMM’s prediction and the input dataset.

Using this approach, we mined a set of debugging sessions
extracted from the IDE interactions of nearly 200 profes-
sional developers at ABB, Inc. The mined debugging model
captures developers behaviors in setting breakpoints, start-
ing to debug, and stepping through code, higlighting the
most relevant commands and views for each of these ac-
tivities commonly performed by the developers. From the
mined model, we also observed that each task was supported
by a clearly defined subset of IDE views and commands.

Future empirical work of this project includes the min-
ing of new IDE models, relevant to specific development
tasks (e.g. testing, program navigation). It also includes
further data collection to provide greater strength to the
mined models, as well as the collection of other relevant data
to augment the IDE usage log with web behavior, specific
program elements, or repository links.
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