
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

A Field Study of How Developers Locate Features in
Source Code

Kostadin Damevski · David Shepherd ·
Lori Pollock

Received: date / Accepted: date

Abstract Our current understanding of how programmers perform feature lo-
cation during software maintenance is based on controlled studies or interviews,
which are inherently limited in size, scope and realism. Replicating controlled stud-
ies in the field can both explore the findings of these studies in wider contexts and
study new factors that have not been previously encountered in the laboratory
setting. In this paper, we report on a field study about how software developers
perform feature location within source code during their daily development activ-
ities. Our study is based on two complementary field data sets: one that reflects
complete IDE activity of 67 professional developers over approximately one month,
and another that reflects usage of an IR-based code search tool by more than 700
developers. Analyzing this data, we report results on how often developers use
which type of code search tools, on the types of queries and retreival strategies
used by developers, and on patterns of developer feature location behavior fol-
lowing code search. The results of the study suggest that there is (1) a need for
helping developers to devise better code search queries; (2) a lack of adoption of
niche code search tools; (3) a need for code search tool to handle both lookup and
exploratory queries; and (3) a need for better integration between code search,
structured navigation, and debugging tools in feature location tasks.

Keywords Code Search, Feature Location, Field Studies

Kostadin Damevski
Virginia State University
Petersburg, VA 23806
E-mail: kdamevski@vsu.edu

David Shepherd
ABB, Inc.
Raleigh, NC 27606
E-mail: david.shepherd@us.abb.com

Lori Pollock
University of Delaware
Newark, DE 19350
E-mail: pollock@udel.edu

2 Kostadin Damevski et al.

1 Introduction

Many studies of developers performing software maintenance and evolution tasks
have highlighted the challenges of performing effective feature location (??). Sim-
ilar studies have also shown that poor feature location can affect both the speed
with which the maintenance task is completed as well as the quality of the resulting
code changes (?). While such controlled laboratory studies have uncovered a great
deal about feature location, they all observe developers in synthetic circumstances
where the code bases are completely unfamiliar to the study participants while the
time window to perform each task is artificially limited. In the field, developers
commonly examine code at their own pace and possess some knowledge of the code
base, albeit incomplete when the scale of the project is large enough. Conducting
a field study of feature location, where software developers are monitored during
their day-to-day work can validate laboratory studies at scale, under realistic con-
ditions, and without observational bias. In this paper, we define field studies as
observational studies of software developers, conducted during their daily work,
with minimal or no interference to the developers’ usual activity.

In general, there are relatively few large scale research field studies in software
engineering, and there are no field studies of feature location that we are aware of.
While the difficulty in finding developers who are willing to allow their activities
to be monitored by researchers is likely the greatest challenge to conducting field
studies, analyzing the resulting data can also pose challenges. The main problem
in analyzing field IDE data is interpreting high-level developer behaviors from
low-level logged events, without the assistance of other sources of information
(e.g. screen capture, video, or questionnaires) typically available in laboratory
experiments. This problem is exacerbated by noise in field data, which occurs as
developers can often be interrupted during their daily work or frequently switch
between several maintenance tasks.

In this paper, we describe a field study of feature location that we conducted to
validate existing knowledge about this software maintenance activity and discover
other interesting usage patterns exhibited by developers in the field. Specifically, we
investigated developer behavior along several dimensions, including the frequency
and types of code search tools used by developers, developer behavior before and
after search, types of queries issued by developers, and complex feature location
patterns. To analyze field data, we clustered relevant events to form time-based
sessions, which we qualitatively determined were representative of developer be-
haviors. When possible, we also used existing models of developer behavior during
feature location, constructed during controlled laboratory observations of devel-
opers, as a starting point for analyzing field data.

The resulting field study consists of two datasets, one consisting of all IDE ac-
tions by 67 developers at one company over a period of one month, which enabled
examination of the feature location process in general, including tool types and
complex actions. The other dataset consists solely of logs gathered by an infor-
mation retrieval based code search tool, which includes 703 developers and 5816
queries from developers that downloaded the tool anonymously. The IDE dataset
provides information on many aspects of developer behavior, while the search tool
dataset provides information focused on behavior in code search, commonly con-
sidered to be the initial activity performed by developers during a feature location
task.

A Field Study of How Developers Locate Features in Source Code 3

The contribution of this paper is in both the data analysis approach as well as
the results from this analysis. The paper makes the following main contributions
based on the two field studies of software developer activity. First, we confirm
several commonly held beliefs about how developers perform feature location in
the field:

– Developers frequently and consistently use code search tools in the field, aver-
aging several uses of these tools per workday.

– Most queries consist of a single word.
– Developers often reformulate their query, and they do so by adding, removing,

or changing a term.
– After starting with code search, developers’ next step is most often navigation.

Second, we discovered several unexpected patterns in the field data:

– Developers rarely use lookup-style code search tools.
– Developers create many queries semi-automatically via copy/paste or editor

text selection.
– Developers tend to issue queries immediately after opening a solution.
– When performing complex feature location tasks, developers tend to switch

modalities several times (e.g., search to navigate to search to navigate).

Both the confirmed and unexpected behaviors can shed light on developer behavior
during software maintenance, expose potential deficiencies and thus improvements
in laboratory experimental designs, and provide valuable suggestions to toolsmiths.

The organization of this paper is as follows. Section 2 describes the related
work, while Section 3 describes the data sets we used and the type of analyses we
performed. In Section 4, we introduce the findings of our field study, and, finally,
in Section 5 we discuss the implications of those findings.

2 Related Work

The related work for this paper can be grouped into two parts: (1) feature location
developer studies, and (2) large-scale field studies in software maintenance. We are
unaware of any previous large-scale field study of feature location that intersects
these two categories.

2.1 Feature Location Developer Studies

There have been a number of laboratory studies that have influenced our under-
standing of how programmers perform feature location during software mainte-
nance. We outline the most influential of these here, highlighting mental models
of developer behavior during feature location that were proposed by some of the
studies. These mental models describe the thought process of a developer perform-
ing feature location, consisting of a set of steps mapping to a specific sequence of
actions performed within the IDE. We relied on such a model in our field study
to provide a basis for interpreting developer IDE actions.

4 Kostadin Damevski et al.

An influential laboratory study of feature location was conducted by Ko et
al. (?). The 10 developers (experienced graduate students) in this study were ob-
served while performing a number of maintenance tasks in a 70 minute session
on a Java paint application that they were completely unfamiliar with. The 5 as-
signed maintenance tasks were invented by the researchers and consisted of minor
feature requests and bug reports (e.g. a button in the UI does not work). Peri-
odic interruptions to the developers’ work were simulated to more closely resemble
real-world development scenarios. The study reported on the distribution of time
on various parts of a maintenance task, highlighting the importance of feature
location and comprehension, which dominated task time. The study further found
that developers had difficulty keeping track of all the relevant parts of the code
base, exposing opportunities for toolsmiths in maintaining task contexts for soft-
ware maintenance. Another contribution is the construction of a high-level mental
model of developers performing software maintenance tasks, which was not very
specifically instantiated with IDE actions.

Sillito et al. conducted a study in which they used both code bases that the
participants were familiar and unfamiliar with (?). The part of the study that used
an unfamiliar code base consisted of 9 students that worked in pairs in 45 minute
sessions on 4 tasks selected from an open source project’s history. The part of
the study that used a familiar code base included 16 industrial software engineers
who were asked to think aloud while working for 30 minutes on maintaining their
own code bases. Voice and video of the participants actions were recorded, coded
and analyzied with the goal of identifying a comprehensive list of program com-
prehension questions that developers ask during software maintenance tasks. The
questions identified by this study can be grouped into several categories, ranging
from simple questions about individual program elements to complex relationships
between groups of structurally interconnected methods.

A recent laboratory study performed by Wang et al. (?) monitored 20 expe-
rienced (18 graduate students and 2 industry developers) and 18 novice (3rd and
4th year undergraduate) developers in performing 6 short feature location tasks in
two 60 minute sessions. The tasks were selected from the maintenance histories of
open source projects. While observing the experienced developers, the researchers
constructed a detailed mental model of feature location, based on debugging, in-
formation retrieval based search, and structured program navigation. The novice
developers were taught this model, after which a noticeable uptick in the quality of
feature location performed by these developers was observed. We use Wang et al.’s
mental model in our analysis, exploring how the abstract IDE actions described
in the model are realized by developers in the field.

With the exception of the second half of Sillito et al.’s study, all of the studies
described here used mostly student developers working on unfamiliar code bases,
although often choosing realistic tasks extracted from software project histories.
All of the studies used short, fixed time intervals for the developers to perform
the tasks. In most cases, developers were observed in disruptive ways, using video
and audio monitoring and subsequent questionaires. In this paper, we conduct a
study that is different from previous studies of feature location, which is based on
IDE datasets collected unobstrusively while developers worked at their own pace
on their own code bases. Our study also consists of larger groups of developers
monitored for longer periods of time.

A Field Study of How Developers Locate Features in Source Code 5

2.2 Large-Scale Field Studies in Software Maintenance

While relatively few large scale field studies have been conducted by software
maintenance researchers, all of the ones that have been performed have uncovered
interesting developer behaviors, which were previously unreported by researchers.

Murphy-Hill et al. conducted a large-scale field study of refactoring using sev-
eral relevant datasets (?). One dataset contained IDE data of 41 developers, with
an average of 66 hours of development time per developer. Another dataset used
by Murphy-Hill et al. was the Eclipse Usage Collector dataset, which is extremely
large (13,000 developers), but only consists of frequency counts for each command
within the Eclipse IDE. The datasets used in our paper are similar to Murphy-Hill
et al.’s in that they combine both detailed usage logs of a number of developers
with a larger, but limited, dataset reflecting a much larger set of developers in the
field.

A study of Eclipse usage based on IDE data was conducted by Murphy et al.
(?). The study used 41 developers’ interaction histories gathered using the Mylar
Monitor Eclipse plugin (?), which is a popular tool to gather usage data in this
IDE. The study analyzed the frequency of use of a number of Eclipse features,
including refactoring, navigation and search, and general commands and views
(or windows), informing future development of this popular software development
environment. Similar to Murphy-Hill et al., the dataset used by Murphy et al.’s
study is large but extremely limited in the depth of information it can provide.

There have been a few large-scale studies of code search behavior when de-
velopers are searching on the web across a number of software projects (?). They
find interesting results including that developers use source code on the web for
various purposes, and use different forms of queries to express their information
needs, including natural language and names of code entities they are aware of.
We have observed similar types of queries in previous small-scale studies using
Sando (?) as well as in the larger collection of data analyzed in this paper.

3 Field Study Description

Our field study of programmers performing feature location is based on two data
sets: (1) the Blaze dataset consisting of all the IDE interactions of 67 developers
at ABB, Inc. over a period of about 2 months; (2) the Sando dataset consisting
of 5816 queries using the Sando search tool by 703 unknown developers in the
field that downloaded the tool and issued at least one query. We leveraged these
datasets to shed more light on developer behavior during feature location, focusing
mostly on observations during, before, and after the interaction of developers with
code search tools.

3.1 Data Collection Procedure

The Blaze dataset was collected from 67 volunteer developers at ABB, Inc. who
installed a Visual Studio interaction monitoring extension1. This extension moni-

1 The interaction monitoring extension, called Blaze, is implemented by researchers at ABB,
Inc. Its name is the reason we refer to this dataset as such.

6 Kostadin Damevski et al.

0

50

100

150

67 Blaze users

#
 d

a
y
s
 m

o
n

it
o

re
d

0

50

100

150

200

250

703 Sando users

#
 q

u
e

ri
e

s

Fig. 1 Usage characteristics for the Blaze dataset (top) and the Sando dataset (bottom).

tors and logs clicks and keypresses within the Visual Studio IDE, capturing times-
tamped information indicating each IDE command that was invoked by a devel-
oper. The data collection timespan differed for most developers as some of them
installed the data collection tool later than others, some stopped collection data
earlier than others, while a third group stopped and resumed data collection after
a several day pause. All of the data was collected in the second half of 2013, and
it consists of an average of 25.6 days of activity per developer with a standard
deviation of 25.4 days. The usage characteristics of the Blaze dataset, in terms of
work-days per user, is shown in the top part of Figure 1.

The Sando dataset consists of data describing developer interaction with the
Sando open-source code search tool, implemented as a plugin to Visual Studio.
Sando retrieves a set of program elements (e.g. methods, field, classes) in response
to a user supplied text query. It uses information retrieval techniques, such as
word stemming, and the vector space model to rank retrieved results based on
relevance to the query. Sando is commonly downloaded from the Visual Studio
Gallery Site2, which houses numerous Visual Studio extensions and tools. When
installing Sando, users are asked to participate in volunteer data collection, and if
they agree anonymous usage data is periodically uploaded from their machines to
Sando servers. The Sando dataset spans 10 months and consists of 703 users and
5856 queries. The number of queries for each of the users in the Sando dataset are
shown in the bottom part of Figure 1. This figure shows that, in both the Blaze
and Sando datasets, while the usage quantities vary significantly between users,

2 http://visualstudiogallery.msdn.microsoft.com

A Field Study of How Developers Locate Features in Source Code 7

neither dataset is dominated by few users and therefore should allow for widely
generalizable observations.

3.2 Data Description

3.2.1 Blaze Dataset

The Blaze dataset contains most user clicks or keypresses in the Visual Studio IDE.
Certain events are condensed for performance reasons, to reduce both the impact
of data collection on Visual Studio response time as well as the space overhead
of the gathered logs. For instance, keypresses on the Visual Studio editor window
are logged only if they move the cursor down a line, ignoring edit commands that
do not cause a line break and horizontal movements of the cursor. Certain user
actions within Visual Studio are impossible to record as the IDE did not allow
us to register a listener for that type of event, for instance closing or dragging
and dropping a window within the IDE. Despite this, the number of logged events
in the dataset is substantial, consisting of over 3.2 million entries. Below is an
illustrative listing of events in the Blaze dataset where a developer started the
debugger (Debug.Start) , then moved the cursor on the editor window (View.File
and (View.OnChangeCaretLine), stopped on a breakpoint (Debug.Debug Break

Mode), opened the call stack for a method (View.Call Stack), and used the Find
in Files tool to search the code base (View.Find and Replace, Edit.FindinFiles,
and View.Find Results 1).

2013-11-18 14:50:23.000, Debug.Start
2013-11-18 14:50:23.000, View.File
2013-11-18 14:50:23.000, View.OnChangeCaretLine
2013-11-18 14:50:23.000, Debug.Debug Break Mode
2013-11-18 14:50:33.000, View.Call Stack
2013-11-18 14:51:08.000, View.Find and Replace
2013-11-18 14:51:08.000, Edit.FindinFiles
2013-11-18 14:51:08.000, View.Find Results 1

All developers whose actions were captured in the Blaze dataset had access
to similarly configured versions of Visual Studio with a few exceptions. Some
developers used JetBrains’ ReSharper toolkit for Visual Studio (?), which offers
advanced program navigation and UI capabilities. Developers also had access to
a custom program navigation tool from ABB, Inc. called Prodet, which allows
exploration of a code base by following the call graph.

The developers had three code search tools available to them: Quick Find, Find
in Files, and Sando. Quick Find, launched using the Ctrl+F key press, performs
searches local to the currently open file in the editor using string matching or
optional regular expression input. Find in Files also uses string matching or regular
expressions, but produces results across the entire code base by default. The results
produced by Find in Files are displayed in a separate window, using one line to
describe the file containing the match, the matching line number, and a brief
snippet of the code on that line. The matches from files currently open in the
editor appear first, with the line number as the second order sorting term. Sando

8 Kostadin Damevski et al.

uses sophisticated Information Retrieval algorithms, based on the Vector Space
Model, to index identifiers in the source code and retrieve relevant results. The
results are ordered according to their relevance (using tf*idf scoring) and each
result contains a several line long snippet of code. Double clicking on a Sando
result opens it in the Visual Studio editor. Based on the scope of the search, we
consider Quick Find a file-scope search tool, while we consider Find in Files and
Sando project-scope search tools.

3.2.2 Sando Dataset

As developers issue queries about their software projects, the Sando code search
tool records and collects anonymous and private data on developer interactions
with the tool. The Sando dataset contains several types of information about each
query, including its length and similarity to the previously submitted query, the
retrieved results, including their number and type, and clicks on the retrieved
results, including their rank and similarity to the query. Below is a representative
snippet of the dataset, describing a user opening a Visual Studio solution, issuing
a query, receiving 11 results, and clicking on the 5th result in the list.

2013-10-24 10:06:41,094 Solution opened: SolutionHash=522943624
2013-10-24 10:10:09,845 Query submitted by user: QueryDescription=Plain;

DiceCoefficientToPreviousQuery=0
2013-10-24 10:10:10,006 Sando returned results: NumberOfResults=11;
2013-10-24 10:11:31,268 User double-clicked a result: TypeOfResult=XmlElement;

ResultLanguage=OtherLang; ResultScore=0.051;
ResultRank=5

The Sando dataset contains little contextual information on the size of the
code base, the language its implemented in, or other activities that the developer
performs to locate features in the code outside of code search. Such information is
not gathered due to privacy concerns, which could limit wider adoption of Sando,
especially in the industrial setting. These threats are mitigated, however, by the
size and diversity of the dataset which should produce statistically relevant mea-
surements of developer behavior when performing code search in the field. A listing
of all of the events used in the Sando and Blaze dataset is provided in Appendix A.

3.3 Data Analysis

Our main goal of the field study was to investigate developer behavior in regard to
feature location as developers complete their normal daily activities. Specifically,
we investigate frequency and types of code search tools used, developer behavior
before and after search, types of queries issued by developers, and complex feature
location patterns. Since both the Blaze and Sando datasets are large, spanning
millions of log messages, and our interest is in understanding feature location
developer behavior, we need an approach for identifying these user behaviors in
the dataset. Simple pattern recognition, where certain sequences of clicks represent
particular developer behaviors, is difficult to perform in the Blaze dataset because

A Field Study of How Developers Locate Features in Source Code 9

of the presence of ambiguous sub-patterns of clicks, which can correspond to several
types of behavior.

The key strategy to gain insight into developer behavior from such low-level
logged event data is to use the time of a specific click as a additional clarification
parameter that can help resolve some of the ambiguity in the dataset. Therefore,
based on sets of key log messages corresponding to relevant developer actions in
time, our goal was to extract feature location sessions, where a specific set of key
messages occur one or more times within a short, on the order of seconds, timespan.
Based on the choice of the key messages that we use, we can identify various
types of sessions, for instance, search sessions, structured navigation sessions, or
debugging sessions. Also, by using only the log messages that belong to a specific
tool we can produce, for example, Sando sessions or Quick Find sessions.

To automatically extract feature location sessions in the Blaze dataset, we
use hierarchical agglomerative clustering of log events according to their time
distribution. This clustering algorithm produces a clustering tree, which can be cut
at a variety of places to produce the desired number of clusters. We use a natural
cut, which uses the ratio of time differences of the key messages, to choose the best
number of clusters, constrained to between a 30-second to 5-minute interval. We
used this interval in which to select a cut between the clusters as it reflects general
expectations of user search behavior. This is to say that any two log messages that
are less than 30 seconds apart are required to belong in the same session, while
two messages with a distance of over 5 minutes are assumed not be in the same
session if there is no interaction with the specific tool in that timespan.

For instance, consider three clicks on the Sando code search tools at some
relative times: 0 seconds, 15 seconds and 300 seconds. The clustering algorithm
would definitely group the first two clicks, which are 15 seconds apart into the same
session as they are below the 30 second lower threshold. Since the time between the
second and third click is 285 seconds (or 4 min and 45 seconds), which is below the
5 minute upper threshold, they may or may not be grouped together depending
on the distribution of other Sando clicks in a specific developer’s dataset. If the
ratio of 285/15 seconds is largest, then the second and third click would belong
to different sessions; however, if a larger ratio between two clicks exists for this
developer, then they would be in the same session.

Extracting groups of related developer actions in the Sando dataset is less
difficult, as interactions with the tool are based on a query, and the developer’s
issue of a new query can be used as a delimiter in extracting related log events.
While we sometimes analyze the Sando dataset at the query level, we also use a
hierarchical clustering algorithm with a natural cut, as in the Blaze dataset, to
group queries that are near in time into sessions. In the context of code search,
such sessions represent the developer interacting with the tool to fulfill a single in-
formation need. This sometimes requires several queries, reformulating previously
issued queries until a desired program element is located.

3.4 Threats to Validity

The goal of our field study was to improve on the realism, size and scope of previous
studies in feature location. However, the challenge of a field study is in interpreting

10 Kostadin Damevski et al.

developer behaviors from low-level log data. This challenge is a particular source
of threats to validity to the findings in this paper.

A significant threat to validity arises from our lack of knowledge of the tasks
the developers in our study were trying to accomplish. For instance, we believe
that they were performing software maintenance, though they could have easily
engaged in “greenfield” software development for some of the time. This threat is
mitigated partially in that we make no behavioral assumptions in our analysis and
look solely at the events generated by the developers to form our conclusions.

Our analysis is largely based on clustering individual events into high level
behaviors. While the clustering approach we used was simple and straightforward,
a possible threat is that this mapping could be inaccurate. To mitigate this threat,
we hand analyzed a sample of the clustered behaviors for validity and determined
them to be reasonable.

Our results may not generalize due to several facts: (1) the Blaze dataset re-
flected developers from one company; and (2) all of the developers used Visual
Studio with a few specific plugin extensions. The size of our Blaze dataset, con-
sisting of over 60 developers, mitigates these concerns, as well as the fact that most
IDEs support plugins and many developers use at least some of them, making this
a realistic scenario.

4 Findings

The findings of our study are intended to answer questions that would improve
our understanding of feature location, including (1) how often developers use code
search tools in general; (2) which tools are used, how often, relative to each other;
(3) the types of queries issued to code search tools; and (4) the overall context
following and preceding code search.

We present our findings grouped into two categories: (1) findings on the use
of code search tools and (2) findings on complex feature location sessions. The
first category focuses on examining developer use of code search tools, which are
influential in feature location and commonly represent the first step developers
take in performing feature location. Findings from analyzing the Sando dataset are
presented in this category. Findings from analyzing the Blaze dataset also provide
insights into developer behavior when performing a complex feature location task,
which spans a significant period of time and uses a variety of IDE modalities (e.g.
search and structured navigation).

4.1 Findings on the Use of Code Search Tools

Developers tend to issue project-scope queries within a few minutes
after opening a new code base.

The Sando dataset tracks the open solution event in Visual Studio, representing
when a developer opens a new code base to work on. There are many code bases
that never receive a query, presumably because the developer is already familiar
with the code base. However, our analysis shows that solutions that receive a
Sando query tend to get an initial query soon after the solution is opened.

A Field Study of How Developers Locate Features in Source Code 11

60 120 180 240 300 360 420 480 540 600
0

10

20

30

40

50

60

70

seconds to initial query

p
e

rc
e

n
t

o
f

s
o

lu
ti
o

n
s

Fig. 2 Percent of code bases queried with Sando within a specific time interval (in seconds)
of opening.

The Sando dataset contains 1277 queried solutions by 484 unique developers.
Figure 2 shows the distribution of time between a newly opened code base and
the initial query. A large proportion of solutions, about 50%, are queried within
the first 2 minutes after being opened in Visual Studio.

Developers use both file-scope and project-scope code search tools fre-
quently and consistently.
We differentiate two types of code search tools: project-scope and file-scope. Project-
scope tools, like Find in Files and Sando in the Blaze dataset, are used to query
the entire code base. They are commonly used to find a starting point in discov-
ering a particular feature in the code, but can also have other uses, such as a
lookup of an known identifier in a code base. File-scope code search tools, such as
Quick Find (Ctrl+F) in Visual Studio, search only the currently open file. This
search modality is common across a number of applications (e.g., browser or word
processor) and is commonly used to navigate within an open page of text. Since
it is possible in Visual Studio to produce project-scope search results with the
file-scope search tool (Quick Find) by clicking the Find All drop down button, we
explicitly looked for such sessions and categorized them as project-scope search as
long as they performed at least one such search.

Based on our clustering of log events into sessions and subsequent identification
of sessions as search sessions, each developer in the Blaze study performed an
average of 3.32 search sessions per day. Out of these searches, there were 1.7
project-scope search sessions per user per day, using either Find in Files or Sando,
and there was an average of 1.57 file scope searches that used Quick Find. As a
reference, there was an average of 7.95 editing sessions 3 per developer per day.

3 Editing sessions were identified by applying the session clustering algorithm on editing
events.

12 Kostadin Damevski et al.

0

2

4

6

8

10

12

Blaze users

a
ve

ra
g

e
 s

e
ss

io
n

s
p

e
r

d
a

y

project−scope search
file−scope search

67

Fig. 3 Number of project-scope and file-scope search sessions per user in the Blaze dataset.

Figure 3 shows the overall number of search sessions per day for each of the
67 developers in the Blaze study, and the proportion of those sessions that used
project-scope vs. file-scope search tool(s). For instance, the first user (leftmost bar
in Figure 3) performed a total of 3.4 search sessions per day, with an average of
1.9 being project-scope sessions. There were 4/67 users who did not use any search
tools at all.

Almost all developers (60/67) used a file-scope search tool at some point during
our data collection, and, similarly, a large proportion of the developers used one of
the two project-scope search tools (50/67). Most (47/67) developers used both file-
scope and project scope tools, while 28/67 used a combination of the two during
the same code search session.

Search sessions that combined file-scope and project-scope search tools followed
either an expanding scope or a reducing scope pattern. In expanding scope, de-
velopers started with a file-scope search that did not retrieve satisfactory results,
and they expanded the scope by issuing a project-scope search query. In reducing
scope searches, the developers started with a project-scope search and used file-
scope search only when they had found the file containing the code of interest and
needed to drill down further to the statement level. There was a roughly equal
number of expanding and reducing scope search strategies observed in the Blaze
study.

To investigate the consistency of usage of search tools over time, Figure 4
displays a timeline of the use of search tools for individual users and on average.
The dashed lines in the image represent the number of search tool usage sessions
per day, averaged over a 3-day window, for each individual developer, while the
red solid line denotes the average usage over all developers in the Blaze dataset.
The Sando dataset indicates a similar conclusion to the Blaze dataset and thus is
not shown. The graph indicates a fairly consistent usage of search tools on a daily
basis, with a few outliers who performed considerably more search at times. There
was an average of 3.53 queries and 2.29 sessions per user per day.

A Field Study of How Developers Locate Features in Source Code 13

5 10 15 20 25 30

0

5

10

15

20

days monitored

n
u
m

b
e
r

o
f
s
e
a
rc

h
 s

e
s
s
io

n
s

Fig. 4 A timeline of code search tool usage. Individual users are shown as dashed lines, while
the average across all users is shown as a red line.

We investigated the choice of individual search tools over time per developer
to see if developers used the same tool consistently, switched tools consistently,
or used various tools throughout the monitored time period. Sando is a more
advanced project-scope code search tool than Find in Files: it uses a more sophis-
ticated information retrieval algorithm instead of simple string matching and also
ranks the retrieved results instead of returning a lengthy list. Thus, one might
expect that once developers tried using Sando, they would replace Find in Files
usage with this improved tool. Out of 39 of 67 developers in the Blaze study who
used Sando, only 13 of 39 (one third) never used Find in Files after using Sando.
However, 26 of 39 (two thirds) developers used both tools interchangeably. The
most likely explanation for this is Sando’s limitation in indexing all languages in
the Visual Studio ecosystem, such as Visual Basic and Javascript. Find in Files,
on the other hard, works consistently on all files. The remaining set of developers
(28/67) used only Find in Files, either because they were unaware of Sando or
because they preferred Find in Files.

Developers perform lookup style searches fairly often.

The most frequent interaction prior to and following a click on a code search tool
was a click on the editor window, constituting well over 50% of pre and post
code search events. While we did not capture the actual editor selections from
cut/copy due to the associated slow downs for users, we monitored copy/cut and
paste commands being performed. The logs show that 9% of message immediately
following the opening of a Quick Find window were a paste; 14% of messages
immediately following Find in Files window opening were a paste; and 5% of
messages immediately preceding any Sando interaction were copy and paste. The
use of copy-paste queries suggests that developers are searching for exact parts of
code, i.e., performing lookup searches. However, they are not the only indicator of
lookup style searches, as FindinFiles and Quick Find automatically copy selected
items into the query window and those events are not monitored, as well as there
are queries that are typed directly by the developer that could also be lookup
style searches without using copy and paste commands. Thus, these percentages

14 Kostadin Damevski et al.

1 2 3 4 5 6
0

1000

2000

3000

4000

5000
n
u
m

b
e
r

o
f
q
u
e
ri
e
s

number of terms in query

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

difference in number of query terms

n
u
m

b
e
r

o
f
q
u
e
ri
e
s

Fig. 5 Distribution of the number of terms per query in the Sando dataset (left). Number of
terms difference between an initial and a reformulated Sando query (right).

are a minimum estimate of lookup searches, and thus indicate that lookup searches
occur fairly often with all these search tools.

NavigateTo, generally believed to be the most effective tool for per-
forming lookup-style searches, was rarely used.

In Visual Studio, the NavigateTo tool uses simple string matching to retrieve type
names (e.g. classes), method names, file names, or project names. This kind of tool
is commonly available in many IDEs, such as Eclipse where a similar tool is called
OpenType. Since it only indexes a select group of items, NavigateTo/OpenType
is a very effective lookup-style search tool.

In the Blaze dataset, we detected only two instances of developers using Navi-
gateTo, each by two separate developers. Both of these developers used Sando and
Quick Find fairly consistently, but neither of them used Find in Files. Murphy
et al.’s study of command usage in Eclipse found similar usage characteristics for
OpenType, ranking the tool as the least used navigation command by developers
using the Eclipse IDE (?). The fact that not many developers used NavigateTo in-
dicates that likely many of them are not very familiar with the tool; unfamiliarity
has been reported as a problem with many IDE features in ?. The fact that the
two developers used NavigateTo in one isolated instance, while using other search
tools both before and after, is perhaps indicative of the lack of flexibility of this
tool.

To investigate the amount of searches in the Sando dataset that could have
been answered by NavigateTo, we computed whether the query string could be
found verbatim within the name (e.g., method name or class name) of a result
opened in the Visual Studio editor, which is triggered by a double click on a result
in Sando. 476/5816 (or only 8.18%) of Sando queries retrieved a result that exactly
matched the query that was provided by the user.

Most project-scope queries consist of one plain word term.

The left graph in Figure 5 presents the distribution of number of terms per
query in the Sando dataset. The graph shows that when searching code, developers
who used Sando for code search overwhelmingly issued simple, single plain term
queries. We define a single plain term as a space-delimited sequence of characters

A Field Study of How Developers Locate Features in Source Code 15

that does not contain any punctuation symbols or a camelcase pattern (i.e. a lower
case followed by an upper case letter). This query writing behavior is similar to
that of Internet search engine users, where one term queries are also the norm
(?). One explanation for this behavior is provided by the berry-picking model
for Internet search, which suggests that searchers often issue a shorter general
query followed by a refinement of that query by adding more terms if the initial
result set was unsatisfactory (?). Another explanation is that users are searching
for a known place of the code, that they have visited before, and therefore are
constructing a specific query that is unlikely to yield many ambiguous results (?).
In certain cases, code search tool researchers have assumed that developers issue
longer queries than what we have observed in the field. This is exemplified by the
frequent use of commit messages as a proxy for queries when researchers evaluate
code search tools (?), even though they are commonly sentence-like in length and
structure.

About one in ten project-scope queries were part of a query reformula-
tion sequence, where the developer usually followed a strategy of adding
a single term.

To investigate query reformulation behavior, we examined the Sando dataset to
identify query sequences where the user reformulated a previous query by adding
or removing terms. We used a word similarity measurement between consecutive
queries, where we computed the number of words that were similar in the two
queries. Out of the 5816 queries, 566 (or 9.73%) were part of a reformulation
query sequence.

The right graph in Figure 5 shows the distribution of the number of terms
difference between an initial and a reformulated Sando query. A larger proportion
of reformulated queries followed a strategy of increasing the number of terms in
the query than reducing of maintaining the same number of terms, most often by
one more term. However, there was still a number of reformulated query sequences
where one term was modified (59), leaving the total number of terms in the query
unchanged.

4.2 Findings on Complex Feature Location Sessions

There is no single feature location tool available to software developers, so devel-
opers often exhibit complex patterns of tool usage when locating features in the
code, commonly relying on combinations of code search, structured navigation and
debugging tools in the IDE. To discover complex feature location sessions that in-
corporate a variety of IDE tools and last a significant amount of time, we leverage
a feature location mental model constructed by Wang et al. in a controlled labo-
ratory setting (?). This mental model is detailed enough to be used as a basis for
the interpretation of the data we collected in the Blaze study. The model includes
four different stages: Search, Extend, Validate, and Document. During the Search
phase, the developer locates an initial point in the source code. The developer
explores the surroundings of that initial point by exploring the call graph using
static or dynamic means in the Extend phase, building an understanding of the
code feature, which can be confirmed during the Validate phase. The Document

16 Kostadin Damevski et al.

Search

x� Using a Project-Scope
Code Search Tool

Extend
x� Stepping Into the Program

with Debugger
x� Performing Structured Navigation

Validate
x� Toggling Breakpoints and Quickly

Stepping Over the Program
with Debugger

x� Editing Code and
Running the Program

FINISH

START

Fig. 6 The feature location model proposed by Wang et al., adapted to field data by removing
ambiguous paths through the model.

phase records in writing the results of feature location. This phase is not crucial
to the model and irrelevant to the field data that we analyze.

Figure 6 shows an adaptation of Wang et al.’s model to field data that takes
into account, and removes, feature location behavior that is ambiguous and may
confound analysis (e.g., debugging could be used to fix bugs or for comprehension
so we remove sessions that use debugging in the Search phase). We use this adapted
model to classify feature location behavior in the field, while trading off the ability
to recognize certain feature location patterns that are more ambiguous and difficult
to determine.

A developer may or may not progress through all of the model’s stages for any
feature location task. For instance, simple lookup-type feature location can usually
be accomplished using only a single, rapid code search tool interaction. However,
the complex exploratory tasks that we are interested in here require progressing
to several stages in Wang et al.’s model, which in turn may require using several
different IDE action modes, including searching, navigation and debugging.

We analyzed our Blaze dataset for such complex sessions, extracted using the
previously used hierarchical agglomerative clustering algorithm, constrained to
last for longer than one minute. We explored the extracted sessions to investigate
recurring patterns in how these complex feature location tasks were performed by
the developers in the Blaze dataset.

Our analysis produced 206 complex feature location sessions by 33 of the orig-
inal 67 developers in the Blaze dataset. Sessions that proceeded past the Search
phase were deemed complex in this analysis. The majority of such sessions 196/206
(95%) proceeded to the Extend phase of the feature location model in Figure 6.
Only 10/206 (5%) of these sessions proceeded to the Validation phase.

Structured navigation is the most common Extend phase strategy dur-
ing feature location.

A Field Study of How Developers Locate Features in Source Code 17

Table 1 Distribution of navigation commands in the Extend phase of feature location sessions.

Command Number of Occurrences Percent of Occurrences

Go To Definition 315 47%
∗Prodet Call Graph Navigator 202 30%
Find All References 115 17%
ReSharper Find Usages 27 4%

Structured navigation, including viewing the call hierarchy of a method, viewing
the type hierarchy of a class, and navigating to the definition of a method or
class from their use, is the most frequent strategy taken by developers following
a search in the analyzed complex feature location sessions. There were 190/196
(97%) sessions that used navigation, while the remaining 6/196 (3%) sessions relied
on debugging in the Extend feature location phase.

We further analyzed the distribution of the kinds of navigation commands
employed by the developers. Table 1 shows the results for commands with more
than 1% of overall occurrences, indicating that Go To Definition, which navigates
from a use to a definition of a program element, gets the most use. The Prodet

Call Graph Navigator, a call graph exploration tool proprietary to ABB, Inc., is
second most frequent. However, its popularity relative to other navigation com-
mands is deceptive, since one session using this tool usually requires several clicks,
each of which is summed in Table 1. Find All References is also a popular IDE
command that displays a list of uses for a specific identifier. Finally, the ReSharper
Find Usages command is the Find All References command equivalent in the
popular ReSharper toolkit for Visual Studio.

Developers in complex feature location sessions often switched between
two different tool modalities.

A number of complex feature location sessions (41/206 or 20%) exhibited repet-
itive use of several tools and commands from distinct modalities (i.e. code search,
structured navigation, debugging). For instance, there were 35 sessions where the
developers frequently alternated between project-scope search and structured nav-
igation and 6 sessions where the developers alternated between search and debug-
ging. The alternating pattern was significant, consisting of an average of 2.9 rep-
etitions of search and navigations and 3.6 repetitions of searching and debugging.

One possible reason for these patterns is that the developer realizing after
entering the Extend phase of feature location that the Search phase was inadequate.
Another possibility is that since the search, navigation, and debugging tools do
not share information, the developer has to repeat previous steps when forgetting
specifics about the current feature location task.

5 Implications of Study Findings

Our field study has focused on the frequency and typs of code search tools used,
developer behavior surrounding code search, types of queries issued by developers,
and complex feature location patterns. Our study validates several prior studies
in software maintenance. For instance, code search query length was first reported

18 Kostadin Damevski et al.

in ? and ?. Helping developers easily produce longer queries is beneficial to code
search tool developers. One possibility for this is using a recommender to suggest
related terms to the developer based on the currently written term, an approach
previously suggested by ? and ?. Similarly, since query reformulation is commonly
practiced, code search tools should surface suggestions for reformulations. An en-
compassing strategy for pre and post code search recommendations was previously
suggested by ? and implemented in recent versions of Sando.

The consistent usage of code search tools in daily developer work indicates that
increasingly developers are unable to remember all of the code for the projects they
work on. Since developers are using such tools with significant consistent frequency,
continued efforts by the research community to produce helpful support for code
search are justified.

Good code search tools are important to successful feature location. However,
many instances of developers using code search tools are not centered around
conventional feature location tasks, but smaller lookup-type developer activity
intended to navigate to a known place in the code. In our study, this can be
observed by the overwhelming frequency of one term queries in Sando and copy
and paste command usage prior to all code search tools. Though this type of
behavior was prevalent, a tool specifically crafted for a large class of those lookups
(i.e. lookup of method and class names) was almost never used by the developers
in our study.

The likely causes for this behavior can be several. One may be unawareness
of the existence of this tool. Many IDE tools are rarely used by developers, often
because they are unaware of their capabilities or potential productivity improve-
ments until receiving a recommendation about a tool from a fellow developer (?).
Another potential cause is the availability of a number of code search tools to the
developers in our study that are more flexible than NavigateTo. The developers
may be biased towards code search tools that can handle many different types
of queries, rather than specific and highly-tailored ones. Since the two developers
that used NavigateTo once, never used it again while making use of other search
tools, the inflexibility of NavigateTo seems like a more likely reason for its lack of
use.

Our study showed that query reformulation occurred in at least 10% of submit-
ted Sando queries. The implied “berry-picking” search behavior starts with more
general queries and, if unsuccessful, are followed by more specific queries that may
further limit the search tool’s retrieved result set. Many code search tools proposed
by researchers are not designed with the flexibility to handle this behavior, but
are optimized for retrieval quality on idealized sets of queries that are very specific
in nature.

In complex feature location sessions, it is common, and known to researchers,
that developers use multiple tools to comprehend the source code. Developers of-
ten switch between these tools (e.g. between search and navigation), interacting
with both tools in their information quest. In most IDEs, these tools have no inte-
grated capabilities that could speed up the developers’ workflow. Such integrative
behaviors would likely benefit developers in reducing effort as well as the cognitive
load of remembering relevant information when transferring between the separate
tools. Tools such as Mylar (?) and Eclipse’s Mylyn partially solve this issue by
maintaining a task context consisting of relevant program elements. However, tool
developers can do more to integrate code search and navigation into a similar inter-

A Field Study of How Developers Locate Features in Source Code 19

face, such as providing structural information or the ability to perform structural
exploration directly from the search engine interface.

Acknowledgements The authors gratefully acknowledge developers at ABB, Inc. and users
of the Sando search tool who allowed anonymous data collection during their daily work. We
also acknowledge Will Snipes for collecting and sharing the Blaze dataset and data collection
tool with us.

References

Baeza-Yates RA, Ribeiro-Neto B (1999) Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA

Bajracharya SK, Lopes CV (2012) Analyzing and mining a code search engine
usage log. Empirical Software Engineering 17(4-5):424–466

Bates MJ (1989) The design of brosing and berrypicking techniques for the
online search interface. Online Information Review 13(5):407–424, DOI
10.1108/eb024320, URL http://ci.nii.ac.jp/naid/80004823012/en/

Damevski K, Shepherd D, Pollock L (2014) A case study of paired interleaving
for evaluating code search techniques. In: Proceedings of the IEEE Conference
on Software Maintenance and Reengineering - Working Conference on Reverse
Engineering (CSMR-WCRE)

Dit B, Moritz E, Poshyvanyk D (2011) A tracelab-based solution for creating,
conducting, and sharing feature location experiments. In: IEEE Int. Conf. on
Program Comprehension

Ge X, Shepherd D, Damevski K, Murphy-Hill E (2014) How the sando search
tool recommends queries. In: Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014 Software Evolution Week - IEEE Conference
on, pp 425–428

Howard MJ, Gupta S, Pollock L, Vijay-Shanker K (2013) Automatically min-
ing software-based, semantically-similar words from comment-code mappings.
In: Proceedings of the 10th Working Conference on Mining Software Repos-
itories, IEEE Press, Piscataway, NJ, USA, MSR ’13, pp 377–386, URL
http://dl.acm.org/citation.cfm?id=2487085.2487155

Kersten M, Murphy GC (2005) Mylar: A degree-of-interest model for ides. In:
Proceedings of the 4th International Conference on Aspect-oriented Software
Development, ACM, New York, NY, USA, AOSD ’05, pp 159–168, DOI
10.1145/1052898.1052912, URL http://doi.acm.org/10.1145/1052898.1052912

Ko AJ, Myers BA, Coblenz MJ, Aung HH (2006) An exploratory study of how
developers seek, relate, and collect relevant information during software main-
tenance tasks. IEEE Trans on Soft Eng 32(12):971–987

Murphy GC, Kersten M, Findlater L (2006) How are java software developers
using the eclipse ide? IEEE Software 23(4):76–83, DOI 10.1109/MS.2006.105,
URL http://dx.doi.org/10.1109/MS.2006.105

Murphy-Hill E, Parnin C, Black AP (2009) How we refactor, and
how we know it. In: Proceedings of the 31st International Confer-
ence on Software Engineering, IEEE Computer Society, Washington,
DC, USA, ICSE ’09, pp 287–297, DOI 10.1109/ICSE.2009.5070529, URL
http://dx.doi.org/10.1109/ICSE.2009.5070529

20 Kostadin Damevski et al.

Murphy-Hill E, Jiresal R, Murphy GC (2012) Improving software developers’ flu-
ency by recommending development environment commands. In: Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Soft-
ware Engineering, ACM, New York, NY, USA, FSE ’12, pp 42:1–42:11, DOI
10.1145/2393596.2393645, URL http://doi.acm.org/10.1145/2393596.2393645

ReSharper :: The Most Intelligent Extension for Visual Studio (2014)
http://www.jetbrains.com/resharper/

Robillard M, Coelho W, Murphy G (2004) How effective developers investigate
source code: an exploratory study. IEEE Transactions on Software Engineering
30(12):889–903

Sillito J, Murphy GC, De Volder K (2006) Questions programmers ask during soft-
ware evolution tasks. In: Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ACM, New York, NY,
USA, SIGSOFT ’06/FSE-14, pp 23–34, DOI 10.1145/1181775.1181779, URL
http://doi.acm.org/10.1145/1181775.1181779

Wang J, Peng X, Xing Z, Zhao W (2011) An exploratory study of feature loca-
tion process: Distinct phases, recurring patterns, and elementary actions. In:
Software Maintenance, IEEE Int. Conf. on, IEEE, pp 213–222

Yang J, Tan L (2012) Inferring semantically related words from software context.
In: Mining Software Repositories (MSR), 2012 9th IEEE Working Conference
on, IEEE, pp 161–170

A Field Study of How Developers Locate Features in Source Code 21

A Appendix: List of Relevant Events in Blaze and Sando Datasets

Table 2 Blaze Dataset Events

Category Event Number of Occurrences

Navigation Edit.GoToDefinition 9681
View.Find Symbol Results 4866
View.Code Navigation Window 4175
Edit.FindAllReferences 1719
ReSharper.ReSharper FindUsages 634
View.Call Hierarchy 100
View.CodeMap1.dgml 30
EditorContextMenus.CodeWindow.CodeMap 3
Debug.ShowCallStackonCodeMap 1

Edit Edit.BreakLine 67592
Edit.Delete 60685
Edit.Paste 46284
Edit.Undo 24632
Edit.InsertTab 13996
Edit.Cut 8428
Edit.CommentSelection 1787
Edit.FormatDocument 989
Edit.FormatSelection 185

Debug Debug.Debug Run Mode 181290
Debug.Debug Break Mode 174110
Debug.StepOver 102566
Debug.Start 57689
Debug.StepInto 35402
Debug.ToggleBreakpoint 7536

Table 3 Sando Dataset Events

Category Event Number of Occurrences

Solution Level Solution opened 12839
Query Level Recommendation item selected 54027

Query submitted by user 5856
Sando returned results 5856

Result Set Level User previewed a result 21933
User clicked a result 12172

