
Scaling up Evaluation of Code Search Tools through
Developer Usage Metrics

Kostadin Damevski
Virginia State University
Petersburg, VA 23806

U.S.A.
kdamevski@vsu.edu

David C. Shepherd
ABB, Inc.

Raleigh, NC 27606
U.S.A.

david.shepherd@us.abb.com

Lori Pollock
University of Delaware

Newark, DE 19350
U.S.A.

pollock@udel.edu

Abstract—Code search is a fundamental part of program
understanding and software maintenance and thus researchers
have developed many techniques to improve its performance, such
as corpora preprocessing and query reformulation. Unfortunately,
to date, evaluations of code search techniques have largely been in
lab settings, while scaling and transitioning to effective practical
use demands more empirical feedback from the field. This paper
addresses that need by studying metrics based on automatically-
gathered anonymous field data from code searches to infer user
satisfaction. We describe techniques for addressing important
concerns, such as how privacy is retained and how the overhead
on the interactive system is minimized. We perform controlled
user and field studies which identify metrics that correlate with
user satisfaction, enabling the future evaluation of search tools
through anonymous usage data. In comparing our metrics to
similar metrics used in Internet search we observe differences in
the relationship of some of the metrics to user satisfaction. As
we further explore the data, we also present a predictive multi-
metric model that achieves accuracy of over 70% in determining
query satisfaction.

Keywords—code search, feature location, evaluation metrics,
field studies

I. INTRODUCTION

Developers performing software maintenance have to cope
with increasingly complex systems and rapidly evolving code
bases. Feature (or concern) location is a common activity at
the outset of a software maintenance task, where a developer
searches for an initial point in the code relevant to their
maintenance task to begin their understanding of what needs
to be changed. Developer studies have shown that code search
consumes a substantial amount of time [1], while having an
impact on the quality of the subsequent code changes [2].
To help developers, researchers have proposed and created
a number of code search tools, based on a wide variety of
different retrieval and corpus preprocessing algorithms. These
code search tools commonly retrieve a ranked list of program
elements to a user-supplied query [3].

The variety of proposed code search tools has prompted
research in evaluation approaches that would enable under-
standing the effectiveness of the algorithms and guide future
scientific advancement. Since controlled studies of developers
in the field are expensive and difficult to perform at large
scale, currently, most code search evaluation is performed
using gold sets extracted from development histories of open
source projects, consisting of pairs of bug reports and asso-

ciated changed program elements [4]. The text or title of the
bug report is used as a query in the code search tool, and
metrics such as precision, recall, and accuracy are computed
by comparing the result set retrieved by the code search tool
to the program elements extracted from the change history.

While gold set evaluation is an invaluable prototyping
tool in situ, field evaluations are necessary to ensure results
from controlled studies are valuable to practitioners. Field
data provides a broader data set reflecting the diversity of
projects and purposes to which developers in the field may
apply such tools. This type of evaluation extends the gold set
both qualitatively, as developers may use a code search tool in
unintended ways, and quantitatively, as the number of queries
in a gold set is usually limited. It also helps to confirm or
refute assumptions made in controlled experiments.

Unfortunately, evaluating a code search tool with field data
presents its own set of challenges. Maintaining privacy and
anonymity of actual field data is a requirement, which prohibits
the recording and collection of source code or query strings.
Maintaining good interactive response times during usage data
collection is also a concern.

Our goal in this work is to address these concerns by
enabling the evaluation of code search tools with empirical
data collected from the field as developers perform their regular
daily tasks, with the goal of scaling and transitioning these
tools to increased developer use. Inspired by information re-
trieval evaluations [5], our approach is to infer user satisfaction
with a search tool’s retrieved results for a query by analyzing
users’ anonymized action streams. For instance, a user who
executes a search and immediately opens a result is probably
satisfied. A user who executes a search, browses several results
without opening one, and then executes a modified search is
likely not satisfied [5].

Specifically, this paper investigates a set of possible user
satisfaction metrics that can be inferred from an anonymized
activity stream, automatically collected by a deployed code
search tool. The main contributions of this paper are:

• a proposed set of metrics and their implementation
within the Sando code search tool [6] for inferring
user satisfaction of code search results in the field,

• a controlled experiment to investigate which of these
metrics correspond to user satisfaction,



• a field study on a larger data set, consisting of over
8000 user queries collected from Sando users in the
field,

• the identification of a metric that correlates with user
satisfaction in both user studies, and

• the construction of a predictive model, based on
several metrics, with an accuracy of over 70% in
predicting user satisfaction.

II. RELATED WORK

This work is inspired by efforts and experiences in evalu-
ating both Internet search and code search techniques.

A. Internet Search

Code search often uses similar principles as Internet search,
by considering methods and classes to be documents that are
indexed and searched. Our work was motivated in part by the
prior work of Fox et al. [5], who performed a study to validate
a set of browser evaluation metrics using explicit feedback
collected from users of a modified Internet browser. We adapt
and validate some of the metrics proposed by Fox et al. to the
code search domain, specifically to code search tools that are
implemented as extensions of an IDE. While the study by Fox
et al. is larger in terms of number of participants and queries,
we further validate our metrics on a realistic data set collected
from code search tool users in the field.

Many others have focused on developing metrics to dynam-
ically predict the effectiveness of a query (see [7] for a survey),
to improve the retrieved result set. That work focused on
recommending query reformulations, while we focus on post-
hoc evaluation of code search tools, and develop satisfaction
metrics calculated based on user interaction with a result set.

B. Code Search

A recent comprehensive survey of feature location tech-
niques by Dit et al. [3] supports the motivation for this work,
concluding that a major impediment to progress in feature
location research is the difficulty in comparing approaches.

To address this, researchers have created Tracelab, a frame-
work for rapidly prototyping and evaluating code search and
search-related pre-processing analyses in a controlled exper-
iment setting [4]. Code search algorithms can be rapidly
constructed by composing a set of TraceLab components. Once
such a TraceLab experiment is created, evaluation is conducted
within the environment, using a set of provided gold sets. Our
work is complementary to TraceLab by enabling evaluation in
the field.

Others have proposed pre-retrieval evaluation metrics, com-
monly used to dynamically improve the results of a code
search tool, for instance, by reformulating or expanding the
user query [7]. Such metrics have previously been evaluated
in the context of code search tools [8] and used for query
expansion [9]. In this work, we focus on post-retrieval metrics
because of their capacity to more accurately reflect the quality
of a code search tool [7]. Although many of the metrics
suggested for prediction may be of use for post-hoc evaluation
as well, they are generally considered to be less accurate than

the metrics that involve user interaction with retrieved results,
such as the ones proposed in this paper. For instance, a high
tf*idf score is less indicative of user satisfaction than the user
actually looking at the result [7].

The only work we are aware of for evaluating code search
techniques in the field with the goal of scalability is pairwise
interleaving comparison of code search techniques as proposed
in our prior work [10]. Code search techniques are compared
by interleaving the result sets generated by both techniques
unbeknownst to the user, with preferences determined by
user clicks over time. While this approach was effective in
improving the Sando code search tool, it is difficult to scale
up, has considerable implementation costs, and can present
annoyances to users by polluting the quality of the retrieved
results to hide the presence of multiple techniques from the
users. The work in this paper was motivated by these problems.

III. METRICS

Towards the goal of using user satisfaction feedback to
evaluate code search tools in the field, we investigate several
inexpensive metrics for inferring user satisfaction during daily
use. We focus on developer usage metrics, i.e., metrics that are
computed after the code search tool retrieves the results (which
we refer to as the result set) to the user query and during the
user’s interaction with a result set. While such metrics have
been used to improve Internet search for a decade [5], they
have never been examined in the context of code search where
the corpus (i.e. code) and results (i.e. program elements) may
produce different user behavior patterns from Internet search.

The proposed usage metrics are available to any code
search tool that has an active user base and can be gathered
without any disturbance and with complete anonymity to its
users. Once calculated, the metrics can be used to determine
the effectiveness of the code search tool, (1) over all of the
gathered field usage conditions, (2) for selected users or project
types, or (3) for selected usage scenarios (e.g., to investigate
specific query types that a code search tool may be poor at
handling).

We list and describe the proposed set of code search
evaluation usage metrics as follows:

• Clicked Result Set. Once a code search tool retrieves
a result set to a given query, the user examines the
results and subsequently either clicks or does not click
on a result in the set. This metric is also known as
clickthrough in Internet search. In IDE-based code
search tools, a click usually corresponds to opening
the retrieved result in the IDE editor. The binary metric
CLICKED RESULT SET indicates whether at least one
click was made on any result in a given result set.
The intuition is that clicked result sets are ones that
may have satisfied the user’s information need, while,
conversely, unclicked result sets have failed to provide
any results that the user wants to explore further.

• Time on Result Set. The time spent examining results
can be an indicator of user satisfaction with that result
set. However, it is unclear whether high or low values
of this metric are best. For instance, result sets where
the user quickly moves on to issue another query



may be dissatisfactory, while rapidly finding a desired
result may be satisfactory. Both of these scenarios
have similar values for this metric. Similar arguments
can be made for high values of TIME ON RESULT SET;
it is difficult to tell which is satisfactory and which is
not. In the Internet search domain, high values of this
metric are considered to be satisfactory [5], but this
may not hold for code search.

• Number of Clicks. When the user clicks on a result
set, they may click on any number of results in the
result set, and even again on the same result after
examining other results. For instance, they may click
on one result in the retrieved set, investigate it as
a starting point, and then come back and click on
another result in the set for further exploration. As
in the previous metric, more than one click on a
given result set could indicate either a lesser or higher
quality result set for the code search tool. For instance,
more clicks on a given result set could indicate that the
user wastes time in examining results in the retrieved
result set that end up being fruitless, but in contrast,
it could also be that the user is satisfying his or
her information need with this process. For Internet
search, it is expected that users are most satisfied when
they quickly find a good starting point as one of the
results in the result set, in which case, making only
one click on the result set implies satisfaction.

• Number of Short Clicks. A short click is defined
to occur when after clicking on a result, the user
rapidly, within a short time span (usually less than
10-20 seconds), clicks on another result or issues
another query to the code search tool. Short clicks,
as well as their counterpart, long clicks, have been
known to be used by Google to evaluate their Internet
search engine [11]. We hypothesize that a short click
in a code search tool, where a user spends only a
small amount of time with a result, corresponds to
dissatisfaction with that result. A number of such short
clicks, in turn, reveals dissatisfaction with the entire
result set.

• Number of Long Clicks. Long clicks, where a user
spends a substantial amount of time (considered to
be more than 30 seconds in Internet search) with a
specific result before another interaction event can be
viewed as representing a situation similar to when
users keep relevant program elements in open win-
dows in the IDE [1]. That is, a result set where the
user spends a considerable amount of time, with at
least one long click, indicates that the user believes
that some of the results in the result set are relevant,
implying positive user satisfaction with the result set.
Similar to time spent on result set, this metric may
have noise from the user closing the editor window
to perform some other work and returning later to
the code search tool, not necessarily indicating a long
click.

• Rank of Highest Clicked Result. Eye-tracking stud-
ies of user interaction with search results in general
have shown that most users examine result sets in
a top-down fashion, where the highest ranked result

(i.e.,the lowest rank value in a ranked list 1, 2,
3,...) receives attention first, followed by the second
ranked, etc. [12]. If no promising results are observed,
the user will give up on the entire result set after
examining some number of the results. Consequently,
we hypothesize that clicking on a higher ranked result
(i.e., with a lower rank value) equates to relatively
higher user satisfaction with the specific result set.

IV. EXPERIMENTAL DESIGN

The goal of this work is to validate whether this set of
developer usage metrics can be used to evaluate the effective-
ness of code search tools in the field, which would complement
current gold set evaluation approaches. Specifically, we aim to
answer the following research questions:

RQ1: What characteristics of the usage metrics correspond to
developer satisfaction with a retrieved result set?

RQ2: Which developer usage metrics are most effective for
evaluating code search?

RQ3: Can a statistical model based on the developer usage
metrics be effective at code search tool evaluation?

To answer RQ1, we conducted an exploratory study where
the participants provided explicit feedback on a Likert scale
about their satisfaction with each result set retrieved by a
code search tool. We compared participant satisfaction with
the proposed developer usage metrics to determine how the
two quantities relate (e.g. do high values or low values of
a metric associate with developer satisfaction) as well as to
choose good parameters for the long vs. short click threshold,
necessary for the NUMBER OF SHORT CLICKS and NUMBER
OF LONG CLICKS metrics.

To answer RQ2 and RQ3, we used log data gathered
from field usage of the Sando code search tool, consisting of
large numbers of queries and users. Specifically, we leveraged
queries that were part of a reformulation process, where the
user modified an initial query by adding or removing terms, as
indicators of high or low satisfaction. For RQ2 we used these
queries to determine whether specific developer usage metrics
had the ability to differentiate satisfactory from unsatisfactory
result sets (using hypothesis testing), and whether the metrics
represented mutually independent information (using principal
component analysis). For RQ3, we built a decision tree using
the reformulated queries, which we cross-validated on the same
dataset and tested on the explicit feedback dataset.

V. METRICS EXPLORATORY STUDY

We first performed a small-scale controlled exploratory
study where we obtained explicit feedback from 17 users on
their satisfaction rating of code search results. The explicit user
ratings were used to learn how best to use the developer usage
metrics, by relating the trends in the values of developer usage
metrics with the explicit satisfaction feedback. We focused on
which trends in values for time on result set and number of
clicks on the result set relate to higher user satisfaction ratings.
We also examined the relations between user satisfaction



ratings and the length of times between a click on result set
and the next user interaction. This information provides insight
into how to characterize a click as a short or long click.

A. Participants

To collect explicit user satisfaction feedback, we recruited
17 volunteers who were agreeable to complete a quick survey
after each query result set was shown while they performed a
predefined set of feature location tasks. The participants of this
study were 17 computer science graduate students at Virginia
State University and North Carolina State University enrolled
in graduate software engineering courses. All participants have
some programming experience of varying amounts.

B. Collecting Explicit User Feedback

We created a modified version of the Sando code search
tool [6] such that it uses popup windows to ask the study
participants to rate their satisfaction with the entire result set on
a Likert scale, and with individual clicked results, as depicted
in Figure 1.

Sando is an open-source code search tool1 based on
Information Retrieval (IR) search technology. It is built on
top of the well-know Lucene [13] search library, which uses
the vector space IR model with tf ∗ idf ranking. Sando
includes several code specific techniques, including heuristics
for weighting different parts of code, source code specific
dictonaries for query recommendation, and supports several
popular programming languages (e.g. C#, C, C++, and Java).

The survey for satisfaction with the entire result set is
expressed in terms of how many results in the retrieved result
set that the user believes are relevant to their most recent
query. That is, the users could indicate that “None”, “Few”,
“Some” or “Most” results were relevant. These were clarified
by giving a quantitative match to each of the adjectives (e.g.
“Few” corresponded to less than half of the presented results
being relevant). We also offered the choice of No opinion on
the result set on the popup to allow participants to opt out.

To survey users for satisfaction with an individual clicked
result, the users were presented with a binary choice on the
usefulness of a clicked result. In Sando, a click on a result
opens the result in an editor window in the Visual Studio IDE.
The feedback popup (bottom part of Figure 1) appeared after
users had the time to evaluate the clicked result in the editor;
it did not appear on every click, only periodically, to avoid
annoying the participants. We used the feedback on individual
clicked results to explore the amount of time for determining
a long or short click.

C. Participant Tasks

To minimize effects of subjectivity, each participant per-
formed the same 3 distinct feature location tasks extracted
from real bug reports and feature requests in the Family.Show
application [14], which is an open source genealogy applica-
tion implemented in C#. We chose Family.Show as the subject
project because it has retained a complete issue tracking his-
tory, which provides a number of issues representing realistic
bugs and feature requests.

1http://sando.codeplex.com

Fig. 1. Popups to gather participant feedback for entire result set (top), and
a clicked result (bottom).

1 2 3 4 5 6 7 8 9 10 11 12

1

2

time between clicked result
and next interaction (x 10 seconds)

a
v
e
ra

g
e
 u

s
e
r 

s
a
ti
s
fa

c
ti
o
n

fe
e
d
b
a
c
k
 f
o
r 

c
lic

k
e
d
 r

e
s
u
lt
s

(2
: 
u
s
e
fu

l;
 1

: 
n
o
t 
u
s
e
fu

l)

Fig. 2. Exploratory Study: Plot of explicit satisfaction feedback for individual
results. Each point reflects an average of at least 3 clicked result satisfaction
ratings. Average satisfaction differs most between the range below 20 seconds
and the range above 40 seconds.

The issues used by the participants for feature location were
chosen by reviewing the list of issues, starting with the most
recent, and stopping when we identified three that met the fol-
lowing criteria: (1) the issue was self-contained and written in
a way that a developer with limited knowledge of Family.Show
could understand (e.g., no references to uncommon family tree
data formats); (2) the issue was filed by a user, indicating that
it was realistic. The issues we chose were numbers 949, 429,
and 455, and are available online2.

2http://familyshow.codeplex.com/workitem/list/basic



0 1 2 3 4

1

2

3

4

number of clicks on result set

a
v
e
ra

g
e
 s

a
ti
s
fa

c
ti
o
n
 w

it
h

re
s
u
lt
 s

e
t 
(L

ik
e
rt

 s
c
a
le

)

0 2 4 6 8

1

2

3

4

time spent on result set in minutes

a
v
e

ra
g
e

 s
a

ti
s
fa

c
ti
o

n
 w

it
h

re
s
u

lt
 s

e
t 

(L
ik

e
rt

 s
c
a

le
)

Fig. 3. Exploratory Study: A plot of developer usage metrics, NUMBER OF CLICKS (left) and TIME ON RESULT SET (right), to user satisfaction represented
by a Likert scale of 1-4. Each plot includes data points representing average satisfaction for a specific metric value with at least 5 data points and a regression
line.

D. Procedure

Before being asked to perform the tasks, the participants
were shown a demo of Sando. They also received a demonstra-
tion of the capabilities of the subject application, Family.Show.
In addition, an example of a feature location task, which used a
separate bug report, was performed by the study moderator to
further demonstrate what was expected from the participants.

The participants were given the modified version of the
Sando code search tool, which displayed the popup window
asking user satisfaction feedback after each search. Given the
summary of a bug report or feature request, consisting of a few
declarative sentences, the participants located an initial starting
point in the code for the task using the Sando code search tool
and the Visual Studio IDE. The participants were asked to stop
once they were satisfied with what they had found, or after a
15 minute per-task time span had passed.

The popup was displayed either after a timespan of 5
minutes had expired since the query was issued or when a
participant began to reformulate the query. Logs collecting
information about the participants’ interaction with Sando
were also continuously collected during the tasks. These logs
contained enough information to compute, for each query, the
set of effectiveness metrics of our study.

E. Study Results

To choose a threshold for a click to be considered a long or
short click, we identified individual results that were clicked
by at least 3 users, averaged their satisfaction ratings, and then
plotted the averages against the length of time between the
clicked result and the next user interaction. Figure 2 presents
the data plot showing the range of averages between 1: ‘NOT
useful’ and 2:‘useful’.

While overall satisfaction feedback tended to be mostly
positive (2 or close to 2) across all responses, the averages
are much less in the 0-20 second range than above the 40
second mark, when the averages become completely positive
(equal to 2). Based on this observation, we set the thresholds
as 0-20 seconds for a short click and 40 seconds and above
for a long click. Since there were no data points in the in-
between range of 20-40 seconds, we consider this time interval
as one where it is likely too ambiguous to differentiate between

short and long clicks. In practice, while having this in-between
interval will likely reduce the number of data points that
we can characterize as short or long clicks, it should raise
the fidelity of the long/short click characterization. This is
important as long clicks have a strongly positive while short
clicks a strongly negative connotation with respect to user
satisfaction.

To characterize which trends in values for TIME ON RE-
SULT SET and NUMBER OF CLICKS on the result set relate to
higher user satisfaction ratings, Figure 3. Using the slope of the
linear regression line, we determine that high values indicate
higher user satisfaction ratings for both TIME ON RESULT SET
and NUMBER OF CLICKS metrics.

We summarize the results of our observations, for all of
the proposed developer usage metrics, in Table I. This table,
including the threshold values for short and long clicks, serves
as an answer to RQ1.

TABLE I. METRICS PROPOSED TO INFER SATISFACTION.

Metric Indicator of High Satis-
faction

CLICKED RESULT SET Clicked
TIME ON RESULT SET High value
NUMBER OF CLICKS ON RESULT SET High value
NUMBER OF SHORT CLICKS Low value
NUMBER OF LONG CLICKS High value
RANK OF HIGHEST CLICKED RESULT Low value

F. Threats to Validity

Since the participants needed to be recruited and agreeable
to providing user feedback after each query, the study is
small, consisting of the result set satisfaction feedback of 17
participants on three time-limited tasks. The threat presented
by the small study size is mitigated by the type of research
questions that we aim to answer using the collected data, which
are appropriate for this limited data set.

Another threat is the range of participant experiences
with development in general and code search in particular,
influencing different types of search strategies that could have
been employed during the study. Yet another threat comes from
the fact that while the chosen tasks were unrelated, exploring
separate parts of the code base, there could have been some



participant learning between them which could have biased the
outcomes. Both threats are mitigated by two factors: 1) the
overall positive nature of the participants’ satisfaction scores
is indicative of a high rate of search session success both over
time and across participants; and 2) the proposed metrics are
reflective of search satisfaction with each retrieved result set
in isolation, reducing the effect of search strategies that span
more than one query.

VI. USAGE METRICS AND SEARCH SATISFACTION IN THE
FIELD

To overcome the limitations of the small-scale study and
strengthen the investigation into the potential use of developer
usage metrics for evaluating code search tools, including
addressing RQ2 and RQ3, we conducted a field study of the
developer usage metrics on a larger scale through anonymous
participation with indirect user satisfaction information col-
lected.

We collected data for the metrics computations from un-
known code search tool users who opt-in during tool instal-
lation to anonymized data collection (with no user survey
interruption). The collected data reflects developer behavior
when using the tool during their normal daily tasks, recorded as
a stream of anonymously collected events for computing usage
metrics reflecting limited aspects of the query and corpus.

Specifically, we exploited the extensibility and existing
global user community of the Sando code search tool [6] to
create a prototype of our strategy for automatically-collected,
anonymous field usage data. Sando is currently distributed
mainly via its Visual Studio Gallery site3, where it has gathered
several thousand downloads since its initial release.

A. Usage Data Collection Methodology

We modified the Sando search tool to generate a log of
timestamped events corresponding to user activity (e.g., when
a user submits a query or clicks on a result in a retrieved result
set). Each logged event is further attributed with properties
specific to the event (e.g., the number of terms in the query,
the number of retrieved results). Table II depicts the types of
events we log and their associated properties, to gather usage
data for computing the usage metrics.

The primary requirements in enabling a code search tool
to collect usage data from those who opt-in include, (1)
maintaining low performance overhead, and; (2) protecting
user anonymity and privacy while maximizing the avenues
of use for the collected data. This section describes how we
address these challenges.

1) Low-Overhead Data Collection: To maintain good tool-
user interactivity, we minimized the performance overhead in
several ways. The event log is stored on the user’s machine
during their daily interaction with the Sando search tool and
periodically transmitted to a central server. Sando uploads the
logs to the server at opportune times, when fast user response
time is not critical, but often enough to ensure their size does
not reach proportions where their upload could observably
slow down the system. We used the Amazon S34 cloud storage

3http://visualstudiogallery.msdn.microsoft.com
4http://aws.amazon.com/s3/

TABLE II. LOGGED USAGE DATA EVENTS IN SANDO.

Event Properties

Solution opened hash of solution name
Query recommendation used (if any) small type of recommendation (pre or

post search, spelling, corpus term), rank
of recommendation

Submitted query number of terms, each term’s type
(camelcased, plain, undercore, abbrevi-
ation), term-level similarity to previous
query

Sando retrieved results number of results, average ranking score,
std. deviation of ranking scores

Single or double-click on result rank of result, type of program element
(e.g. class, method), ranking score

service as a means to collect these logs from all Sando users,
due to its relatively low cost and easy setup.

We use asynchronous (nonblocking) communication with a
low-priority background thread to perform the I/O for the log
messages. Many high-level languages now offer efficient event
(publish subscribe) mechanisms that are appropriate for this
purpose. Specifically, our implementation of usage data col-
lection for Sando utilizes the capabilities of the Log4Net5 tool
to persist the logs. We also exploited the common capability
to centralize the log message generation to one component in
the code, which allows for consistency between log messages
especially as the code base evolves and new log messages are
added.

2) User Privacy and Anonymity: Privacy represents the
need of users to keep certain information to themselves, which
often corresponds to the content of the source code and the
content of the queries in code search tools. These items can
often reveal proprietary information that should be excluded
from any usage data collection. A tool that exposes any
private information would likely be banned from use during
professional development at all companies. Sando’s usage
data collection does not include any private information. For
instance, we do not record any file names or user query strings,
even though this information would be helpful for furthering
code search research.

Anonymity, on the other hand, represents the need of users
not to be easily recognized from the data that is recorded
by the code search tool. For this purpose, we typically mask
information that may identify a specific user using a hash
function that is difficult to reverse engineer. For instance, in
Sando’s usage data collection, we record the user’s machine
name to identify a specific user for analysis of his or her
individual search patterns, but we obscure the name via a hash
function.

The collected metrics in Table II are defined to gather
properties without sacrificing the user privacy and anonymity.

B. Measuring User Satisfaction

Collecting usage data from the field of regular users of a
tool cannot rely on direct user feedback through popup survey
windows that can annoy users. Thus, to enable a large-scale
study of the potential of the usage metrics for code search
evaluation we use a feature of the submitted queries as an
indication of user satisfaction in our study.

5http://logging.apache.org/log4net



0 50 100 150 200 250 300

10

20

30

40

50

60

70

80

90

100
pe

rc
en

ta
ge

 o
f S

an
do

 u
se

rs

number of queries

Fig. 4. Cumulative distribution function of the percentage of Sando users
issuing a certain number of queries.

Most models of information-seeking with information re-
trieval tools developed via extensive observational studies
describe search as an iterative process of successively refining
an initial query until the user’s information need has been
met [15], [16]. In some instances, the user retains parts of
the initial query and reformulates it by either removing terms
(which broadens the results) or adding terms (which focuses
the results). This reformulation occurs due to the inadequacy
of a retrieved result set for the specific information need, which
is indicative of user dissatisfaction with that result set. Thus,
the queries that were subsequently reformulated can be used
as an indicator of negative user satisfaction with the result set
just before the reformulation (pre-reformulation).

In contrast, queries on which the reformulation process
terminated (which we call post-reformulation queries) have
likely satisfied the user’s information need, which indicates
satisfaction with the retrieved result set; otherwise, the refor-
mulation process ought to have continued. While it is possible
that the user decided to give up before finding a suitable result,
we believe that this scenario occurs rarely. Since reformulation
requires effort and planning from the user, he or she must
believe the process will result in successful retreival, unlikely
wasting effort reformulating if the likelihood of failure is high.
Further evidence of post-reformulation queries indicating user
satisfaction with the result set was observed in the relative
lengths of the post-reformulation queries versus all queries
in the Sando dataset. Other studies have shown that longer
queries are more satisfactory [17]; our data set shows that
post-reformulation queries consisted of 2.5 terms on average
compared to 1.3 terms across the entire Sando dataset.

Thus, we use query reformulation categorization to indicate
user satisfaction as: queries that were subsequently reformu-
lated indicate result sets that were not satisfactory, while
result sets of queries that resulted from the reformulation, on
which the reformulation process terminated, are are considered
satisfactory. To automatically identify reformulated queries
in our field usage data, we computed the lexical similarity

between two consecutive queries6, to detect when a user has
added or removed terms to the previously issued query.

Since the number of reformulated queries is small com-
pared to the overall dataset (i.e. less than 1 in 10 queries in
our data set were part of a reformulation strategy) it cannot
be directly used to evaluate code search tools at the individual
query level. On the other hand, the metrics proposed in this
paper have the ability to be used at any level of evaluation
granularity.

C. Study Results

In total, we collected usage data over 8164 queries by
developers in the field during their use of the Sando code
search tool. Data collection lasted over a period of 9 months
and included 709 individual Sando users who used the tool on
an average of 1.57 separate software projects7.

To provide some insight into the user population, Figure 4
shows the percentage of the Sando user population that has
issued a specific number of queries or less over the usage
data collection period. The average number of queries per
user was 9.63. While 20% of the users issued only only one
query, super-users generated 100-250 queries using the tool.
The reformulated query portion of this field data set consisted
of 398 queries that were issued and subsequently reformulated
and 274 queries that resulted from the reformulation; a total
of 672 queries.

Table III shows average values for each metric when
result sets were for queries pre-reformulation versus post-
reformulation, including a relevant test statistic and the p-
value indicating the statistical probability of each metric being
independent of result set satisfaction. For instance, 30% of all
post-reformulation queries’ results had at least one click on the
result set, while only 16% of queries with pre-reformulation
queries had at least one click on the result set. The average
time spent on result sets of post-reformulation queries is 1130
seconds (or over 18 minutes), while the average time on pre-
reformulation queries was only 252 seconds (or just over 4
minutes). The average number of clicks on a result set over
all queries for post-reformulation queries was 0.66, and 0.25 on
pre-reformulation queries. The RANK OF HIGHEST CLICKED
RESULT metric can be computed only on reformulation queries
that also have at least one click (of which there are 147 total,
64 pre-reformulation and 83 post-reformulation), as a value for
RANK OF HIGHEST CLICKED RESULT on unclicked queries
does not exist.

To answer RQ1 and RQ2, we evaluated whether the null
hypothesis that each of the metrics does not significantly
differentiate satisfaction, as expressed by whether a query
was pre or post reformulation, using the chi-squared test of
independence for the nominal metric CLICKED RESULT SET
and a one-sided Mann-Whitney U Test on the remaining
metrics. The one-sided test was used with the trend for each
metric that was initially observed in the exploratory study (e.g.
that high values of NUMBER OF CLICKS were better). Based
on a p-value threshold of less than 0.05, there are several

6We use term-level Dice similarity between two consecutively submitted
queries.

7This was identified by the hash of each user’s machine name, machine
domain, and project name.



TABLE III. RELATIONSHIP OF METRICS TO REFORMULATED VS. NON-REFORMULATED QUERIES. METRICS THAT EXHIBIT A STATISTICALLY
SIGNIFICANT RELATIONSHIP (P ¡ 0.05) ARE STARRED.

Metric Pre-Reformulation Query Post-Reformulation Query Test Statistic p-value
(Not Satisfied) (Satisfied)
N = 398 N = 274

CLICKED RESULT SET* 16% 30% X2 = 18.35 0.000
TIME ON RESULT SET* 252s 1130s W = 61141.5 0.003
NUMBER OF CLICKS* 0.25 0.66 W = 62572 0.000
NUMBER OF SHORT CLICKS 0.08 0.14 W = 56495 0.971
NUMBER OF LONG CLICKS* 0.01 0.07 W = 57032.5 0.000
RANK OF HIGHEST CLICKED RESULT
. clicked queries N = 64 N = 83

4.71 5.30 W = 2709 0.587

of the metrics that show statistically significant differences in
satisfaction: CLICKED RESULT SET, TIME ON RESULT SET,
NUMBER OF CLICKS, and NUMBER OF LONG CLICKS. The
NUMBER OF SHORT CLICKS metric had very high p-values
on the one-sided test indicating a strong relationship in the
opposite side of the test, which is further suggestive of the
strong positive influence of a click on the result set, regardless
of the time the user lingers on the individual opened result.
Thus, the larger-scale study confirmed the observations of
trends for the usage metrics with regard to user satisfaction
in the smaller study.

D. Metrics Redundancy

To determine whether each of the proposed code search
evaluation metrics is unique or whether some of them collec-
tively support a specific underlying dimension of behavior in
the searchers, we applied Principal Component Analysis (PCA)
to the Sando dataset. The results, consisting of 4 components
as shown in Table IV, constitute 87% of the variance in the
dataset. The bolded values represent values greater than 0.5,
which we look to when interpreting the PCs. In the bottom
rows of Table IV, we show the proportion of the variance
explained by each PC as well as the cumulative variance for
the PCs up to that point.

TABLE IV. RELATIONSHIP OF METRICS TO REFORMULATED VS.
NON-REFORMULATED QUERIES.

Metric PC1 PC2 PC3 PC4

CLICKED RESULT SET 0.51 0.24 0.06 0.04
TIME ON RESULT SET 0.15 0.26 0.90 0.30
NUMBER OF CLICKS 0.56 0.27 0.07 0.06
NUMBER OF SHORT CLICKS 0.51 0.33 0.14 0.36
NUMBER OF LONG CLICKS 0.32 0.03 0.24 0.88
RANK OF HIGHEST C.R. 0.21 0.83 0.33 0.02

Proportion 39% 17% 16% 15%
Cumulative 39% 56% 72% 87%

The results of PCA analysis support the conclusion that all
of the metrics are fairly unique in representing a dimension of
user behavior. The results indicate that CLICKED RESULT SET,
NUMBER OF CLICKS, and NUMBER OF SHORT CLICKS are
the most correlated; however, this correlation is not extremely
strong, indicated by relative weakness in the representative
factors of PC1: 0.51, 0.56 and 0.51. The remaining metrics,
i.e. RANK OF HIGHEST CLICKED RESULT, TIME ON RESULT
SET, and NUMBER OF LONG CLICKS, each dominate one
specific PC, which is indicative of their independence, while
the corresponding PCs (2 through 4) contribute a similar
amount to the variance in the dataset, ranging from 15% to

17%, indicative of a even distribution of the discriminating
power of each of these metrics.

E. Predictive Model of User Satisfaction

RQ3 focuses on whether a statistical model based on
developer usage metrics could be effective for code search
tool evaluation. To build a predictive model of user satisfaction
with code search, that may use combinations of the metrics,
we require a training set of satisfactory/unsatisfactory queries.
For this purpose, we turn again to the reformulation character-
ization of queries in the Sando dataset, which represent user
satisfaction or dissatisfaction with a retrieved result.

Using this dataset, which consists of a total of 672 queries,
we learned a decision tree using the J.48 algorithm, which
minimizes the information loss at each level of the tree. A
decision tree as a classification tool has the added benefit of
its results being easily interpreted by a human.

The learned decision tree is shown in Figure 5. It has
70% prediction accuracy, which was computed using 10 fold
cross-validation. The first level of the tree uses the TIME ON
RESULT SET metric, classifying result sets with <= 3 seconds
and those with > 66 seconds as satisfactory. The remaining
result sets are classified by the second level of the decision
tree, which utilizes the CLICKED RESULT SET metric, to be
unsatisfactory if unclicked. The third level of the decision
tree classifies the remaining result sets using the NUMBER
OF CLICKS metric, where those that had less than or equal
to 5 clicks are predominantly satisfactory. Also, the learned
decision tree is better at predicting result set dissatisfaction
than satisfaction, where it encounters a large proportion of
false positives on the test set.

To further test its efficacy, we applied the decision tree
on the data gathered in the exploratory study. As a baseline,
the average Likert score for result sets in the exploratory
dataset was 2.75 out of 4. For the result sets predicted to be
satisfactory, the average Likert score was above the average at
3.07, while for those predicted to be unsatisfactory the Likert
score was below average at 2.35. If we assume responses of
the popup of “Many”, “Some” and “Few” to be indicative
of satisfaction, the prediction accuracy is 87%, while if we
consider only “Many” and “Some” to be satisfactory, the
accuracy drops to 74%. Since both of these accuracy levels
are high enough to make this model usable for evaluating code
search tools, we can answer RQ3 affirmatively.



Time on Result Set

Satisfied
(63% of 182)

Clicked Result Set

Satisfied
(83% of 60)

> 66 sec.<= 3 sec.

> 3 sec. && <= 66 sec

Dissatisfied
(78% of 376)

No

Yes

Number of Clicks

Dissatisfied
(100% of 3)

Satisfied
(57% of 51)

> 5 <= 5

Fig. 5. Decision tree to predict result set satisfaction, learned from the Sando dataset.

F. Threats to Validity

The main threat to validity of this study comes from the
source of the ground truth dataset, consisting of reformulated
queries. It is possible that such queries do not represent
the characteristics of most queries issued to Sando. This is
mitigated by the fact that reformulation is a common strategy
in search, corresponding to the accepted “berry picking” model
of human behavior in this task [18]. The reformulated dataset
also represents many different developers using the Sando
search tool in their daily work.

Another threat comes from the use of only one code search
tool - Sando. This threat is mitigated by the fact that Sando has
capabilities representative of most other available code search
tools, such as being based on the popular vector space model,
using word stemming to match words with the same root,
and supporting query recommendation based on artifacts in
the code base.

VII. DISCUSSION

In this section, we discuss the implications of our findings
in two respects: as a means of performing code search evalua-
tion and as they relate to existing knowledge in Internet search
evaluation.

Several of the metrics that we propose had some correlation
to developer satisfaction with a result set. The decision tree
extracted from our dataset also indicates that several metrics
are useful in discerning satisfactory from unsatisfactory result
sets. Two of the metrics CLICKED RESULT SET and TIME
ON RESULT SET were strongest, both in their individual
association to satisfaction and in their role in the decision tree.
Out of the metrics we examined, these two metrics are highly
likely to produce relevant evaluation of code search tools in
the field. The prominence of these two metrics also indicates
that most of the time, developers are discerning searchers that

fairly quickly judge a result set as satisfactory or not and do
not waste clicks or time on unpromising results.

The metrics NUMBER OF CLICKS and NUMBER OF LONG
CLICKS also appeared to be valuable to code search evaluation
by classifying a few corner cases of developer behavior.
NUMBER OF CLICKS is useful for the few cases where too
many clicks yielded dissatisfaction with a result set. NUMBER
OF LONG CLICKS provided a more discerning way of counting
individual clicks, as when a user spends more than 40 seconds,
with an open result we can be very confident of his or
her satisfaction. This metric, however, was relatively sparsely
available in the dataset, which hindered its larger role in the
decision tree. The remaining metrics, NUMBER OF SHORT
CLICKS and RANK OF HIGHEST CLICKED ELEMENT, were
not good predictors of satisfaction in our study. While we
expected a larger number of NUMBER OF SHORT CLICKS to
relate to dissatisfaction with a result sets, we observed that
most of the time a developer click was a good indicator of
satisfaction, regardless of the short period of time. A similar
observation can be made for RANK OF HIGHEST CLICKED
ELEMENT; the rank just did not matter enough to users.

It is intuitive that the relevant values of the developer
usage metrics we describe in this paper might differ between
Internet search and code search, because of the different time
requirement and cognitive load of evaluating a retrieved result
(i.e. an Internet page vs. source code) are likely very different.
Some of the metrics were indeed differently characterized
in code search than Internet search evaluation. For instance,
low values of NUMBER OF CLICKS are considered best in
Internet search, while in code search finding several relevant
program elements in our study was generally beneficial up to
a point. In Internet search, high values of TIME ON RESULT
SET are considered indicative of poor satisfaction, while in our
study of code search, higher values were always beneficial.
This can be attributed to developers being happy with longer



result examination time as a broader program comprehension
strategy.

The learned decision tree also shows that fast lookups
are common in code search and developers are happy when
quickly finding what they are looking for. This further confirms
observations by many others of two types of queries in code
search: those where developers lookup a known program
element, which are best answered quickly and with few clicks,
and those where developers are trying to find and comprehend
a feature [10], [19], which are best answered via many relevant
program elements.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated whether automatically gath-
ered anonymous usage data from code searches in the field
can be used to compute post-retrieval metrics that can then
be used to infer user satisfaction. If so, they could be used to
evaluate a code search tool post hoc from the perspective of a
working developer’s use. Both privacy and user anonymity are
preserved. We designed and conducted both a controlled study
and a larger field study to analyze the potential correlation
between individual post-retrieval metrics with user satisfaction
of a code search tool under different usage.

Our results indicate that several metrics, namely clicking
on a result set, time spent on a result set, number of clicks
and number of long clicks are all correlated with statistical
significance with user satisfaction. We also found, via princi-
pal component analysis, that each of these metrics is fairly
independent of one another, measuring separate underlying
aspects in our data set. A decision tree constructed from these
metrics has an acceptable classification accuracy. Analysis of
the strongest branches of this decision tree indicates that users
are satisfied when they find the result quickly (within 3 seconds
of the query) or when they spend a substantial amount of
time interacting with the retrieved result set (over 66 seconds).
Also, when the result set is neither of the above and also does
not receive a click, then it is highly likely that the user is
unsatisfied.

The data for these metrics can be collected through adding
logging capabilities to the code search tool and the metrics
can be computed while maintaining privacy and anonymity
and without hurting interactive response times. These results
provide a step toward evaluating code search tools based on
field usage in a scalable way, which will help to transition
them into practical use.

More work is needed to investigate how other types of
metrics, derived from the corpus or query, could enhance
the evaluation of code search tools in the field. We are also
investigating other possible developer-centric metrics that can
be computed while achieving the goals of metrics gathered in
the field.

REFERENCES

[1] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information

during software maintenance tasks,” IEEE Trans. on Soft. Eng., vol. 32,
no. 12, pp. 971–987, 2006.

[2] M. Robillard, W. Coelho, and G. Murphy, “How effective developers
investigate source code: an exploratory study,” IEEE Transactions on
Software Engineering, vol. 30, no. 12, pp. 889–903, 2004.

[3] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Soft. Maint. and
Evolution: Research and Practice, 2011.

[4] B. Dit, E. Moritz, and D. Poshyvanyk, “A tracelab-based solution for
creating, conducting, and sharing feature location experiments,” in IEEE
Int. Conf. on Program Comprehension, 2011.

[5] S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White, “Evalu-
ating implicit measures to improve web search,” ACM Transactions on
Information Systems, vol. 23, no. 2, pp. 147–168, Apr. 2005.

[6] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz, “Sando: an
extensible local code search framework,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, ser. FSE, 2012, pp. 15:1–15:2.

[7] D. Carmel and E. Yom-Tov, Estimating the Query Difficulty for Infor-
mation Retrieval. Morgan and Claypool, 2010.

[8] S. Haiduc, G. Bavota, R. Oliveto, A. De Lucia, and A. Marcus,
“Automatic query performance assessment during the retrieval of soft-
ware artifacts,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE. New York,
NY, USA: ACM, 2012, pp. 90–99.

[9] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and T. Men-
zies, “Automatic query reformulations for text retrieval in software
engineering,” in International Conference on Software Engineering
(ICSE), 2013.

[10] K. Damevski, D. Shepherd, and L. Pollock, “A case study of paired
interleaving for evaluating code search techniques,” in Proceedings of
the IEEE Conference on Software Maintenance and Reengineering -
Working Conference on Reverse Engineering (CSMR-WCRE), 2014.

[11] S. Levy, In the Plex: How Google Works, Thinks, and Shapes our Lives.
Simon and Schuster, 2011.

[12] L. Granka, T. Joachims, and G. Gay, “Eye-tracking analysis of user
behavior in www search,” in ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), 2004, pp. 478–479.

[13] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in Action,
Second Edition: Covers Apache Lucene 3.0. Greenwich, CT, USA:
Manning Publications Co., 2010.

[14] Family.Show Geneology Application,
“http://familyshow.codeplex.com.”

[15] A. Sutcliffe and M. Ennis, “Towards a cognitive theory of information
retrieval,” Interacting with computers, vol. 10, no. 3, pp. 321–351, 1998.

[16] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[17] N. J. Belkin, D. Kelly, G. Kim, J.-Y. Kim, H.-J. Lee, G. Muresan, M.-C.
Tang, X.-J. Yuan, and C. Cool, “Query length in interactive information
retrieval,” in Proceedings of the 26th Annual International ACM SIGIR
Conference on Research and Development in Informaion Retrieval,
ser. SIGIR ’03. New York, NY, USA: ACM, 2003, pp. 205–212.
[Online]. Available: http://doi.acm.org/10.1145/860435.860474

[18] M. J. Bates, “The design of brosing and berrypicking techniques
for the online search interface,” Online Information Review,
vol. 13, no. 5, pp. 407–424, 1989. [Online]. Available:
http://ci.nii.ac.jp/naid/80004823012/en/

[19] S. K. Bajracharya and C. V. Lopes, “Analyzing and mining a code
search engine usage log,” Empirical Softw. Engg., vol. 17, no. 4-5, pp.
424–466, Aug. 2012.


