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Repositories
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Abstract—The standard approach to applying text retrieval models to code repositories is to train models on documents representing
program elements. However, code changes lead to model obsolescence and to the need to retrain the model from the latest snapshot.
To address this, we previously introduced an approach that trains a model on documents representing changesets from a repository
and demonstrated its feasibility for feature location. In this paper, we expand our work by investigating: a second task (developer
identification), the effects of including different changeset parts in the model, the repository characteristics that affect the accuracy of
our approach, and the effects of the time invariance assumption on evaluation results. Our results demonstrate that our approach is as
accurate as the standard approach for projects with most changes localized to a subset of the code, but less accurate when changes
are highly distributed throughout the code. Moreover, our results demonstrate that context and messages are key to the accuracy of
changeset-based models and that the time invariance assumption has a statistically significant effect on evaluation results, providing
overly-optimistic results. Our findings indicate that our approach is a suitable alternative to the standard approach, providing
comparable accuracy while eliminating retraining costs.

Index Terms—changesets; feature location; developer identification; program comprehension; mining software repositories; online
topic modeling
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1 INTRODUCTION

Researchers have identified numerous applications for text
retrieval (TR) models in facilitating software maintenance
tasks. TR-based techniques are particularly appropriate for
problems which require retrieval of software artifacts from
large software repositories, such as feature location [1],
code clone detection [2] and traceability link recovery [3].
Due to the rapid pace of change and the large scale of
modern software repositories, TR-based techniques must be
compatible with continual software change if they are to
retrieve accurate and timely results.

The standard methodology for applying a TR model to
a source code repository is to extract a document for each
file, class, or method in a source code snapshot (e.g., a
particular release of a project), to train a TR model on those
documents, and to create an index of the documents from
the trained model [1]. Topic models are a class of TR models
that includes latent Dirichlet allocation (LDA) and has been
applied widely within software engineering, to problems
such as feature location [4], [5] and command prediction in
the IDE [6].

Unfortunately, topic models like LDA cannot be updated
to accommodate the addition of new documents or the mod-
ification of existing documents, and thus these topic models
must be repeatedly retrained as the input corpus evolves.
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Online topic models, such as online LDA [7], natively sup-
port the online addition of new documents, but they still
cannot accommodate modifications to existing documents.
Consequently, applying a TR model to a rapidly evolving
source code repository using the standard methodology
incurs substantial (re)training costs that are incompatible
with the goal of integrating TR-based techniques into the
IDE.

To address the shortcoming of the standard methodol-
ogy, we introduced a new methodology based on change-
sets [8]. Our methodology is to extract a document for
each changeset in the source code history, to train a TR
model on those changeset documents, and to create an
index of the files, classes, or methods in a system from the
trained (changeset) model. The methodology stems from the
observations that a changeset contains program text (like a
file or class/method definition) and is immutable (unlike a
file or class/method definition). That is, the changesets for
a project represent a stream of immutable documents that
contain program text, and thus can be used as input for an
online topic model.

Using changesets as the basis of a text retrieval model
in software engineering is a novel idea, which, in addi-
tion to better adapting to software change, could present
certain additional qualitative advantages. While the typical
program-element-as-document representations encode pro-
gram structure into the model, changesets encode frequently
changed code, prioritizing the change-prone areas of the
source code that may be more relevant for software main-
tenance tasks than the less frequently changed areas. Note
also that there is no loss in fidelity in using changesets, only
a difference in what the model prioritizes, as the complete
set of changesets in a software repository contains a superset
of the program text that is found in a single repository
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snapshot (that is used to build typical text retrieval models
for source code).

In our previous work [8], we evaluated our new method-
ology by comparing two feature location techniques (FLTs)
— one based on the standard methodology and one based
on our new methodology — using 600 defects and features
from four open-source Java projects. In this paper we ex-
pand the investigation of our changeset-based methodology
by examining the:

• Applicability of our methodology to two software
maintenance tasks: feature location and developer
identification

• Configurations of changesets that are most appropri-
ate for use with our methodology

• Characteristics of software repositories which cause
our methodology to produce better/worse results

We conduct our study using over 750 defects and fea-
tures from six open-source Java projects for feature location
and over 1,000 defects and features from those same Java
projects for developer identification.

We also examine the effect of the typical time inconsis-
tency present in the evaluation of text retrieval models for
software maintenance. Time inconsistency stems from the
fact that, in prior evaluations, researchers evaluate queries
using a snapshot of the software that comes much later
than the one(s) for which the maintenance tasks were active.
For instance, evaluations commonly consider all defects or
feature requests submitted between release A and B, with
the queries being issued against release B. This assumption
allows the use of a single TR model, trained on release
B, rather than the use of many TR models trained on the
versions associated with each defect or feature request sub-
mission. However, this assumption implicitly asserts that
changes to the software that occur between the submission
of a particular defect or feature request and the release on
which the evaluation is performed do not affect the evalu-
ation results. We observe that there are in fact statistically
significant differences in evaluation results absent the time
invariance assumption in prior research and that evaluations
that use a time invariance assumption can overstate the
performance of the evaluated technique.

The rest of this paper is organized as follows. We begin
by describing the background and related work for topic
modeling and the two software maintenance applications
of interest, feature location and developer identification, in
Section 2. Next, in Section 3, we describe how we build
topic models from changesets. Section 4 lists the results of
applying this model, including an analysis of various con-
figuration options and a discussion of project characteristics
that work in favor (or against) our methodology. Section 5
discusses the threats to validity of our experiments. Finally,
Section 6 presents the conclusions and future work of this
paper.

2 BACKGROUND & RELATED WORK

Changesets represent developer commits into a repository,
consisting of the lines (of source code or other text) removed
and added, lines of context surrounding where the change
is to be applied, and a natural language commit message
describing the change. While changesets do not typically

contain the full text of the program, they contain a complete
representation of a specific change in the code. As an ex-
ample, consider the changeset in Figure 1, which addressed
Issue #1689 in the Tika open source software.

Topic modeling is a family of dimensionality reduction
techniques that extract a set of topics from a corpus of
documents. The topics represent co-occurring sets of words,
which ideally correspond to an abstract human-recognizable
concept. For instance, one extracted topic from a corpus
of news articles may contain words like ”flood”, ”wind”,
”storm”, ”rain” related to the concept of weather. Latent
Dirichlet Allocation (LDA) [9] is a specific topic modeling
technique that has been found to be useful in a variety of
applications.

A typical application of topic modeling is text retrieval,
where the extracted topic model is used to match a query
to documents in the corpus. Two popular text retrieval
applications in software engineering are feature location,
where a developer searches for code elements relevant to
a maintenance task, and developer identification, where
a maintenance task is mapped to the most appropriate
developer.

In the following, we first describe LDA and then describe
work related to feature location and developer identifica-
tion.

2.1 Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA) [9] is a probabilistic model
that extracts a interpretable representation from a large
high-dimensional dataset. It is commonly applied to doc-
uments containing natural language text. In this context,
given a set of documents LDA extracts a latent document-
topic distribution and a corresponding topic-word distribu-
tion. LDA is considered to be a generative model, which is
to say that by sampling from the extracted document-topic
distribution and topic-word distributions one should be able
to generate the original corpus. Of course, the goal of LDA is
not to generate new documents from these distributions, but
instead, produce a lower-dimensional interpretable model
that is also capable of inferring the topic distributions of
previously unobserved documents.

LDA does not consider the order of words in each
document, i.e. uses a bag-of-words assumption. It models
each document as a probability distribution indicating the
likelihood that it expresses each topic and models each
topic that it infers as a probability distribution indicating
the likelihood of a word from the corpus coming from the
topic.

As a Bayesian model, LDA is configured via a small set
of priors, which influence how the model is extracted from
the input corpus. For instance, the hyperparameters α and β
influence the “smoothness” of the model. Hyperparameter
α influences the topic distribution per document, and hy-
perparameter β influences the word distribution per topic.
For example, lowering β results in each topic becoming
more specific (i.e., a topic is likely to consist of words not
in any other topics), while increasing β causes each topic
to become more general (i.e., it causes words to begin to
appear across multiple topics). Likewise, lowering α causes
each document to express less topics while raising α causes
documents to relate to more topics.
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commit b1432f097ada17573c2dbf81e982915e3e81c815
Author: Tim Allison <########@apache.org>
Date: Fri Jul 24 18:22:47 2015 +0000

TIKA-1689: revert mistakenly flipped sort order of parsers from r1677328

git-svn-id: https://svn.apache.org/repos/asf/tika/trunk@1692564 13f79535-47bb-0310-9956-ffa450edef68

diff --git a/tika-core/src/main/java/org/apache/tika/utils/ServiceLoaderUtils.java b/tika-core/src/main/java/org/apache/
tika/utils/ServiceLoaderUtils.java

index ef278808..5ee1fe86 100644
--- a/tika-core/src/main/java/org/apache/tika/utils/ServiceLoaderUtils.java
+++ b/tika-core/src/main/java/org/apache/tika/utils/ServiceLoaderUtils.java
@@ -38,9 +38,9 @@ public class ServiceLoaderUtils {

if (t1 == t2) {
return n1.compareTo(n2);

} else if (t1) {
- return 1;
- } else {

return -1;
+ } else {
+ return 1;

}
}

});

Fig. 1. Example of a git diff. The first half (in orange), shows the commit id, author name, date of commit, and the message associated with
the change, followed by the actual diff of the change. Green lines (beginning with a single +) denote added lines, and red lines (beginning with
a single -) denote removed lines. Black or blue lines denote metadata about the change useful for applying the patch. In particular, black lines
(beginning with a single space) represent context lines.

To use LDA in a search application, we transform the
query q into a topic probability distribution. First, we vec-
torize q into a vector of term frequencies. Next, we infer
from the model the topic probability distribution for the
query. We use the resulting distribution to make pairwise
comparisons against all documents in the corpus.

Hoffman et al. [7] introduced a variant of LDA which
uses online learning from a stream of documents, instead of
from a static corpus. This is the variant we leverage in our
approach to modeling software repositories.

2.2 Feature Location
Feature location is the act of identifying the source code
entity or entities that implement a feature [10]. It is a fre-
quent and fundamental activity for a developer tasked with
maintaining a software system. Whether a maintenance task
involves adding, modifying, removing a feature, or fixing a
bug, a developer cannot complete the task without first lo-
cating the source code that implements the feature [11], and
both technical debt [12] and code clones [13] can increase
the difficulty of manual feature location.

Marcus et al. [1] used a feature location technique (FLT)
based on the Latent Semantic Indexing (LSI) [14] topic
model to find concepts in the code based on queries from the
user, finding that concepts were identifiable from developer-
specified identifiers. LSI-based FLTs were subsequently pro-
posed by several others [15], [16], [17], [18], [19].

Lukins et al. [4] introduce an FLT based on latent
Dirichlet allocation (LDA) [9] and found that it outperforms
the LSI-based FLT by Poshyvanyk et al. [20]. They used
LDA’s inference technique to infer the topic distributions
of queries, i.e., bug reports. Later, they showed LDA to be
appropriate for software systems of any size [21].

Biggers et al. [22] investigated the configuration parame-
ters for an LDA-based FLT. They show that excluding source
code text such as comments and literals negatively impacts
the accuracy of the FLT. Most importantly, they showed that

configuration parameters taken from the machine learning
and natural language processing (NLP) communities are not
good choices for software. Dit et al. [23] showed the need for
better term splitting techniques for software text retrieval.
Corley et al. [24] examined using deep learning techniques
for feature location.

Bassett and Kraft [25] presented new term weighting
schemes based on the structural information available in
source code. Namely, they found that increasing the weight
of method names increases the accuracy of an LDA-based
FLT. A typical weighting scheme from the NLP communities
is term frequency-inverse document frequency (tf-idf) [26].
Saha et al. [27] show that using structural information
provides improvement over tf-idf, as well.

Rao et al. [28] also target the problem of building topic
models, introducing an incremental framework for bug
localization. Bug localization is the process of identifying
source code entities that implement a bug, or an unwanted
feature [21]. Although practical, the approach involves us-
ing an extended topic modeler to allow updating, adding,
and removing documents from the model and index post-
hoc. While the approach is essentially equivalent to topic
modeling in batch, Rao et al. [28] notes that these algorithm
modifications have limitations and thus models may need
to be periodically retrained.

2.3 Developer Identification
Developer identification is a triaging activity in which a
team member identifies a list of developers that are most
apt to complete a change request and assigning one or more
of those developers to the task [29]. Begel et al. [30] show
that developers need help finding expertise within their
organization more than they need help finding source code
elements.

As noted by Shokripour et al. [31], there are two broad
categories of work in this area: activity-based approaches
and location-based approaches. Activity-based developer
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identification techniques (DIT) use information gained from
a developers activity, e.g., which change requests they have
worked on in the past, while location-based DITs rely on
source code entity information to derive a developer, e.g.,
which developer has worked on the related classes in the
past. The location-based techniques present an opportune
application area for our source code modeling approach.

There are multiple ways to determine the ownership of
source code entities. McDonald and Ackerman [32] present
a heuristic-based recommender system named Expertise
Recommender that uses heuristics derived in a previous
industrial study on how developers locate expertise [29].
The Expertise Recommender considers developers’ exper-
tise profile based on who last changed a module, who is
closest to the requester in the organization, and how con-
nected the requester and expert are by using social network
analysis.

Minto and Murphy [33] propose a DIT that uses multiple
matrices representing file dependency, or how often pairs
of files change together, and file authorship, or how often
a developer changes a file. They evaluate the tool on the
history of three open source projects: Bugzilla, Eclipse, and
Firefox and obtain higher precision and recall compared to
the approach proposed by McDonald and Ackerman [32].

Kagdi et al. [34] present a tool named xFinder to mine
developer contributions in order to recommend a ranked list
of developers for a change. The tool measures the similarity
of vectors consisting of the number of commits to a file, the
number of workdays spent on a file, and the most recent
workday on the file. To find an appropriate developer for
a file, they measure similarity between each developer’s
vector and the file vector. Bird et al. [35] find that measuring
ownership in this way correlates low ownership with post-
release defects.

Linares-Vasquez et al. [36] present an approach that does
not require mining the software history. Using the author
indicated in source code comments with a topic model-
based FLT, they are able to identify the correct developer.
Hossen et al. [37] extend this approach to also include
change proneness to adjust the rank of relevant source code
entities before selecting a developer. Tamrawi et al. [38]
present an incremental DIT approach based on fuzzy sets.

3 BUILDING TOPIC MODELS FROM CHANGESETS

In this section, we will contrast the typical repository
snapshot-based topic model construction to that proposed
in this paper that relies on a stream of changesets. Text
retrieval pipelines consist of a set of indexing steps (left
side of Figure 2), performed once, and any number of
subsequent retrieval steps where the index is queried with
a user specified query (right side of Figure 2).

As a first step in indexing a software repository snap-
shot, the DOCUMENT EXTRACTOR processes the raw data
(i.e., files primarily consisting of source code) and produces
a corpus as output, by normalizing words to lowercase,
stemming [39], or other similar pre-processing steps. Sub-
sequently, the TOPIC MODELER executes the topic model
learning algorithm (e.g., Gibbs sampling) to extract the topic
model. The INDEXER uses the topic model to infer the topic

distribution for each document from the corpus, which it
stores in the Index for fast lookup.

The right side of Figure 2 illustrates the retrieval pro-
cess. The main component of the retrieval process is the
SEARCH ENGINE, which matches a user-specified query in
the INDEX. Search engines based on topic models also need
the trained model in order to infer the topic distribution of
the query prior to matching it. The primary function of the
search engine is to produce a ranked list of documents based
on their (topic) similarity to the query, based on one of many
similarity measures. For comparing the topic distributions
of the query and documents in the index, we typically rely
on metrics appropriate for contrasting discrete probability
distributions, e.g. Hellinger distance.

The overall difference in our approach and the standard
(snapshot-based) approach to build text retrieval systems
based on source code is minimal, shown by the area high-
lighted in Figure 2. In order to use changesets to train the
topic model we only need to make a single adaptation to
the pipeline. That is, at the TOPIC MODELER stage, instead
of using only a snapshot of the repository, we use changesets
as documents and train the model using an online variant
of LDA. The remainder of the pipeline is the same, and
the INDEXER uses the Snapshot Corpus in order to index
program elements at the granularity they are to be retrieved.

The key intuition is that a topic model such as LDA
can infer any document’s topic proportions regardless of the
documents used to train the model, as long as they share the
same vocabulary of words. Note that we do not construct an
index of the changeset documents used to train the model.
We only use the changesets to continuously update the topic
model and only use the repository snapshot for indexing.
To leverage the online functionality of the topic models, we
can also intermix the model training, indexing, and retrieval
steps. We can also perform these steps incrementally as
a project evolves. This is practical because inferencing a
document’s topics is a fairly lightweight operation with
most topic models. On the other hand, the initial learning
performed by the Topic Modeler can be very computation-
ally demanding.

3.1 Rationale for Modeling Repositories Using Change-
sets

We choose to train the model on changesets, rather than
another source of information, because they represent what
we are primarily interested in: program features. A single
changeset gives us a view of an addition, removal, or mod-
ification of a single feature, which may span multiple pro-
gram elements (i.e. classes and methods). In many cases, a
developer can comprehend what a changeset accomplishes
by examining it, much like examining a source file.

While a snapshot corpus has documents that represent a
program, a changeset corpus has documents that represent
programming. If we consider every changeset affecting a
particular source code entity, then we gain a sliding-window
view of that source code entity over time and the contexts in
which those changes took place. Figure 3 shows an example,
where light green areas denote added text, dark green
denote frequently modified text, while red areas denote text
removed in that changeset. Frequently changing program
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Fig. 3. Changesets over time emphasize frequently changed text while including all of the text in a snapshot.

elements in the repository, which are more likely to be
important in future maintenance tasks [40], [41], will be
emphasized by a topic model trained on changesets, but
not by a model trained on a snapshot corpus. At the same
time, the summation of all changes affecting a class over
its lifetime would contain all of the words in its current
version. In other words, topic modeling a changeset will not
miss any information [42].

Using changesets also implies that the topic model may
gain some noisy information from these additional doc-
uments, especially when considering removals. However,
Vasa et al. [40] also observe that code is less likely to be
removed than it is to be changed. Also, pure removals can be
ignored when building a model based on changesets, which
is an option that we experiment with in Section 4. Commit
messages add descriptive information to changesets that can
provide useful domain context for text retrieval.

Another consideration is that it would appear desirable
to remove changesets from the model that are old and no
longer relevant. Online LDA already accounts for this by
parameterizing the influence newer documents have on the
model, thereby decaying the effect of the older documents
on the model.

4 EVALUATION

In this work, we introduce topic modeling source code
repositories in which we incrementally build the model
from source code changesets. By using an online variant

of LDA trained on changesets, we maintain up-to-date
models without incurring the non-trivial computational cost
associated with retraining the topic model. In this section
we describe the design of our study in which we compare
our new methodology with the current practice. For this
purpose, we pose the following research questions:
RQ1. Is a changeset-based FLT as accurate as a snapshot-
based FLT?
RQ2. Is a changeset-based DIT as accurate as a snapshot-
based DIT?
RQ3. Does the time-invariance assumption affect the evalu-
ation of FLT and DIT?
RQ4. What are the effects of using different portions of
a changeset for corpus construction, such as additions,
removals, context lines, and the commit message?

4.1 Datasets and Benchmarks

For the first two research questions, there do exist vari-
ous datasets and benchmarks for each [36], [43], [44]. The
benchmarks are all extracted from real change tasks in the
maintenance history of open source projects. However, these
benchmarks all contain a time invariance assumption, which
may lead to misleading results, resulting from the model
constructed from a (much) newer snapshot of the repository
than the one that existed during each specific maintenance
task. For instance, researchers may extract the benchmarks
from maintenance tasks between releases 1.1 and 1.2, while
indexing and evaluating only using a repository snapshot



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, MONTH YEAR 6

project 
commit 
history

fix
issue 
#51

fix
issue 
#52

changeset 
#abc123

repository 
snapshot

version
0.1

historicalhistorical batch

Fig. 4. We study feature location models constructed after a specific
release of the software (batch training) and models constructed before
a specific issue was closed (historical simulation).

from release 1.2. In certain cases, the snapshot of the repos-
itory is significantly newer than the earliest maintenance
task in the gold set. The specific repository snapshot that
matches the time when the maintenance task was active is
difficult or impossible to recover for these existing datasets.
Therefore, for this paper, we create a new dataset that avoids
this time invariance assumption that the repository will not
substantially change between the time of the maintenance
task and the snapshot.

Figure 4 visualizes the commit history of an example
software project. Each commit consists of a changeset and a
snapshot of the repository files after the changes are applied.
Some of the commits also correspond to the completion of
maintenance tasks (i.e. issues in the project tracker), prior to
which are moments that the historical simulation evaluates
the feature location models using the program elements
necessary for that specific maintenance task. One of the
commits in Figure 4 is tagged with a release of a new
version of the software. Following this commit, the batch
trained feature location models are evaluated using all of
the maintenance tasks in a specific period.

For RQ1 and RQ2 we examine changeset trained mod-
els using batch training, at a specific release version of a
software package, which compares well with existing eval-
uation approaches but still suffers from the time invariance
assumption. For RQ3 we examine changeset topic models
trained as a historical simulation, localized to the state of
the repository when the specific maintenance task was per-
formed, with the aim of determining if the time invariance
assumption does affect the experimental results.

The six subjects of our studies vary in size and applica-
tion domain. BookKeeper is a distributed logging service1.
Mahout is a tool for scalable machine learning2. OpenJPA
is object-relational mapping tool3. Pig is a platform for
analyzing large datasets4. Tika is a toolkit for extracting
metadata and text from various types of files5. ZooKeeper
is a tool that works as a coordination service to help build
distributed applications6. Table 1 summarizes the sizes of
each system’s corpora and dataset.

We chose these systems for our work because develop-
ers use descriptive commit messages that allow for easy
traceability linking to issue reports. Further, all projects use
JIRA as an issue tracker, which has been found to encourage

1. https://bookkeeper.apache.org
2. https://mahout.apache.org
3. http://openjpa.apache.org
4. http://pig.apache.org
5. http://tika.apache.org
6. http://zookeeper.apache.org

TABLE 1
Subject system corpora and dataset sizes

Developers Files Changesets Issues

BookKeeper v4.3.0 5 843 574 164
Mahout v0.10.0 38 1556 3283 133
OpenJPA v2.3.0 26 4968 4616 137
Pig v0.14.0 28 2098 2584 222
Tika v1.8 26 954 2469 40
ZooKeeper v3.5.0 16 927 1245 359

Total 139 11346 14771 1055

more accurate traceability link recovery [45]. Finally, each
system varies in domain and in size, in terms of number of
developers, changesets, and source code files.

To build our dataset we mine the Git repository for
information about each commit: the committer, message,
and files changed. We use the files changed information for
the FLT-based evaluation. Using the message, we extract
the traceability links to issues in JIRA with the regular
expression: %s-\\d+, where %s is the project’s name (e.g.,
BookKeeper). This matches for JIRA-based issue identifiers,
such as BOOKKEEPER-439 or TIKA-42.

From the issue reports, we extract the version the issue
marked as fixed in. We ignore issues that are not marked
with a fixed version. We also extract the title and description
of the issue. For the historical simulation, we also exclude
the few issues (e.g. 7 for FLT) where no existing project files
were changed, i.e. developers resolved the issue only by
adding new files.

We construct two goldsets for each commit linked to an
issue report. The first goldset is for evaluating FLTs, and con-
tains the files, classes, and methods changed in the linked
commit. The second goldset is for evaluating DITs, and
contains the developer(s) that committed those changes7.
We do not consider whether the change was submitted by a
developer and committed by a core contributor. In this case,
we assume that the core contributor, as the subject matter
expert, understands and agrees with the change.

The number of issues for each project, shown in the fifth
column of Table 1, corresponds to the number of searches
(i.e., applications of the DIT or FLT) in our study. Over the
entire history for each of the six projects, the number of
new issues reported each week averages 2.5 for BookKeeper,
3.7 for Mahout, 4.3 for OpenJPA, 9.3 for Pig, 4.6 for Tika,
and 5.8 for ZooKeeper. These numbers represent lower
bounds for the number of applications of the DIT or FLT
in the field. Previous research demonstrates that developers
perform feature location as part of their daily activities [11].
Similarly, project members often must perform developer
identification more than once for an issue, as issue reports
are tossed amongst developers [46], [47].

As a comparison metric, we use Mean Reciprocal Rank
(MRR). Reciprocal rank is often useful when there are few
documents, or only one, relevant to the query. For our
dataset, the median number of files changed per commit is
1 for four of the systems, 1.5 for Tika, and 2 for BookKeeper.
Similarly, the median number of developers involved per

7. Our datasets and scripts are publicly available at:
https://github.com/cscorley/triage
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change is 1 for all six systems. MRR is an average of
reciprocal ranks over different queries, hence it is useful
for evaluating the effectiveness of a search engine [48]. We
also use the Wilcoxon signed-rank test with Holm correction
to determine the statistical significance of the difference
between a pair of rankings. An effect size is calculated
using Cliff’s delta [49], which ranges from -1 (all values in
the first group are larger than the second group) to +1 (all
values in the second group are larger than the first group).
A value of zero indicates that the two groups are identical.
We examined the effect size with the criteria of |δ| > 0.147
= small effect, |δ| > 0.33 = medium effect, and |δ| > 0.474 =
large effect [50].

4.2 Feature Location (RQ1)
To answer RQ1, we evaluate two batch-trained models and
a model trained as a historical simulation. For the batch-
trained models, one is trained on a snapshot corpus, and
the other on a changeset corpus. The process for these
corresponds to Figure 2. Both models index a snapshot
of the corpus that is newer than the last query (or issue),
corresponding to the next tagged version of the project. This
may in fact be significantly later than just after the last issue.

RQ1 asks how well a topic model trained on changesets
performs compared to one trained on source code entities.
Table 2a summarizes the results of each subject system when
evaluated at the file-level. In the table, we bold the greater
of the two MRRs. Since our goal is to show that training
with changesets is just as good, or better than, training
on snapshots, we only care about statistical significance
when the MRR is in favor of snapshots. While statistical
significance in favor of changesets is desirable, statistical
insignificance between snapshots and changesets is accept-
able and also desirable as it showcases that the changeset
approach is on par with snapshots. For example, Pig is a
favorable case for changesets as it has a higher MRR, along
with statistical significance (p < 0.01) and the largest effect
size for FLT (0.1285). Likewise, Tika displays a favorable
case for snapshots in terms of higher MRR, but does not
achieve statistical significance and hence it is not a definite
unfavorable case.

We note an improvement in MRR for 4 of the 6 systems
when using changesets. Mahout is the only system with an
MRR in favor of snapshots and statistically significant at
p < 0.01. For Mahout, however, the effect size is very small
and difference in MRR is negligible (2.54%). Comparing all
systems at once by combining all effectiveness measures,
changesets show slight MRR improvement over snapshots
with statistical significance. This suggests that changeset-
based topic models are on par with snapshot-based topic
models, and for the majority of systems, the better choice.

4.3 Developer Identification (RQ2)
To answer RQ2, we take an approach using the developer’s
profile rather than a heuristic-based approach, which allows
for us to construct a more fair evaluation of batch-trained
models by only varying the training corpus, as described
by Matter et al. [51]. This evaluation requires a snapshot
corpus, a changeset corpus, and a corpus of developer
profiles.

For developer identification using snapshots, we first
build an LDA topic model using the source code snapshot
at a specific release version (i.e., like the FLT evaluation).
Then, we infer the index of topic distributions with a corpus
of developer profiles. For each query in the dataset, we
infer the query’s topic distribution and rank each developer
profile in the index.

For changesets, the process varies only slightly from a
snapshot approach, in that we train the model using online
training with a batch of changesets. Similarly as before,
we infer an index of topic distributions with the developer
profiles, and, for each query in the dataset, we infer the
query’s topic distribution and rank each developer profile.

For the historical simulation, the approach has a few
minor differences to the one described for feature location.
With each mini-batch, we index the topic distributions with
the developer profiles up to that commit. However, each
developer profile of any mini-batch includes all developer
activity up to that commit, i.e., it is an aggregation of all
previous mini-batches, with the addition of activity since
the last mini-batch. The remainder of the approach remains
the same.

RQ2 asks how well a topic model trained on change-
sets performs compared to one trained on source code
entities. Table 3a summarizes the results of each subject
system. While statistical significance in favor of changesets
is desirable, statistical insignificance between snapshots and
changesets is acceptable and also desirable as it showcases
that the changeset approach is on par with snapshots. For
example, OpenJPA is a favorable case for changesets as it has
a higher MRR, along with statistical significance (p < 0.01)
and a non-negligible effect size (0.2135). Likewise, Tika
displays a favorable case for snapshots in terms of higher
MRR, but does not achieve statistical significance and hence
it is not a definite unfavorable case. On the other hand,
Pig is a system with an MRR in favor of snapshots that is
also statistically significant at p < 0.01 and has a medium
effect size. Comparing all systems at once, snapshots show
slight MRR improvement over changesets with statistical
significance.

This result is on par with the result we saw for FLT in the
previous section, where the advantage was slightly towards
changeset-based models. Overall, we see that the compara-
ble results indicate that changeset-based topic models are a
suitable replacement to snapshot-based.

4.4 Historical Simulation (RQ3)

We also ask how well a historical simulation of using a
topic model would perform as it were to be used in real-
time. This is a much closer evaluation of an FLT to it being
used in an actual development environment. To conduct
the historical simulation, we first determine which commits
relate to each query (or issue) and partition mini-batches out
of the changesets. We then proceed by initializing a model
for online training with no initial corpus, and update the
model with each mini-batch. Then, we build an index of
topic distributions for the source files at the commit the
partition ends on. We also obtain a topic distribution for
each query related to the commit. For each query, we rank
each source file in the index with pairwise comparison to
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Subject MRR Wilcoxon Effect
System Queries Snapshot Changesets Spread p-value size

BookKeeper v4.3.0 143 0.4510 0.4567 +0.0056 p = 0.5008 0.0246
Mahout v0.10.0 50 0.2984 0.2730 −0.0254 p < 0.01 −0.0820
OpenJPA v2.3.0 131 0.2724 0.2989 +0.0265 p < 0.01 0.1259
Pig v0.14.0 174 0.3231 0.3930 +0.0699 p < 0.01 0.1285
Tika v1.8 36 0.4778 0.4033 −0.0744 p = 0.4491 −0.0756
ZooKeeper v3.5.0 241 0.4742 0.4818 +0.0075 p < 0.01 0.0618

All 775 0.3907 0.4092 +0.0185 p < 0.01 0.0726

(a) Snapshot-based vs. Changeset-based Feature Location: MRR, Wilcoxon p-values, and effect size

Subject MRR Wilcoxon Effect
System Queries C-set Batch C-set Hist. Spread p-value size

BookKeeper v4.3.0 138 0.4527 0.3019 −0.1508 p < 0.01 −0.2090
Mahout v0.10.0 50 0.2730 0.3542 +0.0812 p = 0.6074 0.0748
OpenJPA v2.3.0 131 0.2989 0.1513 −0.1476 p < 0.01 −0.2823
Pig v0.14.0 174 0.3930 0.2501 −0.1428 p < 0.01 −0.2173
Tika v1.8 34 0.3940 0.3782 −0.0157 p = 0.1821 −0.0545
ZooKeeper v3.5.0 241 0.4818 0.2983 −0.1835 p < 0.01 −0.2450

All 768 0.4077 0.2701 −0.1376 p < 0.01 −0.1978

(b) Changeset-based Batch vs. Changeset-based Historical Feature Location: MRR, Wilcoxon p-
values, and effect size

TABLE 2
Results on Feature Location.

the query’s inferred topic distribution. Since our dataset is
extracted from the commit that implemented the change,
our partitioning is exclusive of that commit. That is, we
update the model with the commit immediately preceding
the linked commit and infer the snapshot index from the
linked commit. This ensures that our evaluations mirror
what a developer would encounter when performing an
actual feature location task.

Table 2b summarizes the results for each subject system
when historical simulation based on changesets is compared
to the batch changeset model, which relies on the time
invariance assumption. In each of the tables, we bold the
greater of the two MRRs. Our goal is to show that temporal
considerations must be given during FLT evaluation.

There is an improvement in favor of historical simulation
in MRR for only 1 of the 6 systems. Four of the 5 results
in favor of batch changesets were statistically significant.
Overall, batch-trained changeset-based topic models per-
form better than a full historical simulation with statistical
significance. This indicates that the two types of evaluations
are indeed different. The results of our historical simulation
evaluation reveal that the accuracy of the changeset-based
FLT is inconsistent as a project evolves, and is actually lower
than indicated by batch evaluation.

Table 3b summarizes the results of using historical simu-
lation for DIT. Again, our goal here is only to show that tem-
poral considerations must be given during DIT evaluation.
For the historical evaluation dataset, there were 12/1055
change tasks (i.e. queries) that were that committers first
change (manually verified), and since there was no prior
history for that developer we removed these from consider-
ation for both changeset-batch and changeset-historical DIT.

There is an improvement in favor of historical simulation
in MRR for only 1 of the 6 systems, while the remainder of
the results are strongly in favor of batch changesets. Overall,
batch changesets performs better than a full historical simu-

lation, which suggests that under historical simulation, the
accuracy of the DIT will fluctuate as a project evolves, which
may indicate a more accurate evaluation is only possible
with a historical simulation. Though the effect is smaller for
DIT, this result aligns with the result we see for FLT that the
two evaluations differ.

4.5 Configuration Analysis (RQ4)
A typical changeset corpus can be decomposed into four
elements: additions (A) context lines (C), commit messages
(M), and removals (R). Figure 1 shows each of these four
elements. Intuitively, it is necessary to always include addi-
tions, as they contain the new words (code) that represent
the feature that was being worked on at that moment.
Likewise, the commit message is also an intuitive inclusion
as it contains words that describe the change itself in natural
language, which may help the model learn words more
likely to be used in queries. It is less clear, however, whether
to include both context lines and removals during corpus
construction as they would increase noise of certain words,
e.g., over emphasizing words that have already appeared in
prior additions, for context lines (C), and duplicating value
of words that have already appeared in additions when they
are no longer valid, for removed words (R).

To gain insight into whether a particular source is bene-
ficial, or detrimental, to performance of a task, we compare
MRRs of all the possible configurations choices in Table 4.
The table summarizes all configurations and their MRRs for
each task of all subject systems and is computed using the
snapshot corpus. We observe that the optimal configurations
is (A,C,M) for FLT, resulting in a significant improvement
in MRR relative to most other configurations. The optimal
configuration for the DIT is (C,M) with the use of only
the commit context lines (C) as a close second. The MRR
for DIT exhibited less sensitivity to different configurations
than for FLT with most of the MRR values in the range of
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Subject MRR Wilcoxon Effect
System Queries Snapshot Changesets Spread p-value size

BookKeeper v4.3.0 164 0.6600 0.6513 −0.0086 p = 0.0134 −0.0632
Mahout v0.10.0 133 0.2374 0.3340 +0.0966 p = 0.0606 0.1884
OpenJPA v2.3.0 137 0.2728 0.3648 +0.0920 p < 0.01 0.2135
Pig v0.14.0 222 0.2870 0.1759 −0.1110 p < 0.01 −0.3536
Tika v1.8 40 0.3915 0.3609 −0.0306 p = 0.3119 −0.1194
ZooKeeper v3.5.0 359 0.4542 0.3985 −0.0557 p = 0.6817 −0.0547

All 1055 0.3977 0.3770 −0.0207 p < 0.01 −0.0412

(a) Snapshot-based vs. Changeset-Based Developer Identification: MRR, Wilcoxon p-values, and
effect size

Subject MRR Wilcoxon Effect
System Queries C-set Batch C-set Hist. Spread p-value size

BookKeeper v4.3.0 163 0.6522 0.5871 −0.0651 p = 0.7327 −0.0451
Mahout v0.10.0 130 0.3310 0.2575 −0.0735 p = 0.0273 −0.1759
OpenJPA v2.3.0 136 0.3650 0.2757 −0.0892 p = 0.0184 −0.1603
Pig v0.14.0 221 0.1722 0.2673 +0.0950 p < 0.01 0.2883
Tika v1.8 39 0.3689 0.4058 +0.0369 p = 0.1240 0.1223
ZooKeeper v3.5.0 354 0.3923 0.3304 −0.0619 p < 0.01 −0.1752

All 1043 0.3742 0.3437 −0.0305 p = 0.8541 −0.0370

(b) Changeset-based Batch vs. Changeset-based Historical Developer Identification: MRR, Wilcoxon
p-values, and effect size

TABLE 3
Results on Developer Identification.

TABLE 4
MRR values of all subject systems using different combinations of parts

from the changesets (additions (A); context (C); messages (M);
removals (R)).

Configuration FLT DIT

(A,R,C,M) 0.4315 0.3784
(A,R,C) 0.4092 0.3770
(A,R,M) 0.4119 0.3646
(A,R) 0.4214 0.3462
(A,C,M) 0.4517 0.3785
(A,C) 0.4010 0.3802
(A,M) 0.4147 0.3537
(A) 0.4031 0.3380
(R,C,M) 0.4013 0.3391
(R,C) 0.3443 0.3373
(R,M) 0.3488 0.3308
(R) 0.3151 0.3147
(C,M) 0.3971 0.4165
(C) 0.3386 0.4148
(M) 0.3838 0.3359

0.33 - 0.38. Note that for RQ1, RQ2 and RQ3, we used the
(A,R,C) configuration.

Examination of the results in Table 4 for both FLT and
DIT indicates that, in most cases, it is beneficial to include
additions, context, and messages, while excluding removals.
Including removals reduces the MRR of both FLT and DIT in
most configurations. This tends to match our intuitive view
that removals would be detrimental to the performance of
the topic model.

We examined the statistical significance of this trend
using the Wilcoxon signed-rank test. The results for DIT are
listed in Table 5 and for FLT in Table 6. For FLT, the results
do not provide clear statistically significant evidence, except
for (R,M) versus (M) where removals are shown to be
detrimental. For DIT, the evidence is statistically significant

TABLE 5
Wilcoxon test results for removals inclusion and exclusion

configurations of the DIT task for all subject systems.

Effect
Configurations MRRs p-value size

(A,R,C,M) (A,C,M) 0.3784 0.3785 < 0.01 −0.0130
(A,R,C) (A,C) 0.3770 0.3802 < 0.01 −0.0157
(A,R,M) (A,M) 0.3646 0.3537 < 0.01 −0.0261
(A,R) (A) 0.3462 0.3380 0.0596 −0.0111
(R,C,M) (C,M) 0.3391 0.4165 < 0.01 0.1869
(R,C) (C) 0.3373 0.4148 < 0.01 0.1591
(R,M) (M) 0.3308 0.3359 < 0.01 0.0708

TABLE 6
Wilcoxon test results for removals inclusion and exclusion

configurations of the FLT task for all subject systems.

Effect
Configurations MRRs p-value size

(A,R,C,M) (A,C,M) 0.4315 0.4517 0.2007 0.0334
(A,R,C) (A,C) 0.4092 0.4010 0.4550 −0.0096
(A,R,M) (A,M) 0.4119 0.4147 0.0252 0.0167
(A,R) (A) 0.4214 0.4031 0.2649 −0.0243
(R,C,M) (C,M) 0.4013 0.3971 0.3120 0.0039
(R,C) (C) 0.3443 0.3386 0.1753 0.0135
(R,M) (M) 0.3488 0.3838 < 0.01 0.0908

most of the time and clearly points towards excluding
removals from the configuration.

4.6 Discussion

There is a strong performance advantage to using online
LDA based on changesets rather than re-building the model
from scratch using a snapshot. To characterize this benefit,
Table 7 lists average model build times we experienced on
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TABLE 7
Average time in seconds to train the LDA model and complete indexing

for FLT task.

Subject Snapshot Changeset
System Indexing Time Indexing Time

BookKeeper 214 79
Mahout 306 109
OpenJPA 795 54
Pig 1798 65
Tika 552 55
ZooKeeper 328 17

a commodity laptop computer for our set of study systems.
The reduction in indexing cost, which includes training the
LDA model and inferring the probability distribution of the
terms in each file in order to construct the index, ranges from
on the order of 2x to 20x, depending on the subject system.
Since FLT and DIT models should be recomputed whenever
a new maintenance issue is taken up by a developer, this
cost can quickly add up in the rapidly changing projects
that are now common in modern software development.

In addition to the performance advantage, our results
show that there is also an accuracy advantage to using
changeset-based topic modeling for some software projects
and a disadvantage to using it in others. This accuracy
variance is present among the two application domains we
considered, feature location and developer identification. In
this section, we aim to further unravel the characteristics of
software projects that are likely to yield more success with
changeset-based modeling.

The major difference between changeset-based and
snapshot-based models is that, in learning the model, for
changeset-based the documents are the changesets, while
for snapshot-based, the documents are structural program
elements. Intuitively, an LDA model prefers terms and
documents it has seen more often during training. There-
fore, since the changeset-based topic model is built from
changesets as documents, it should do better for queries on
frequently changed parts of the source code. On the other
hand, the snapshot-based model does not contain a bias
towards frequently changed source code.

To evaluate this explanation for the accuracy of the mod-
els, we examined the change proneness [52] of the program
elements in the FLT goldset of each of the software systems
we studied. We compute change proneness as the average
of the ratio of the number of changesets with a particular file
(in the goldset) to the overall number of changesets in the
project’s training set. For DIT, a similar metric is the change
involvement of each developer in the goldset, computed
as the average of the ratio of the number of changesets
contributed by a developer (mentioned in the goldset) to
the overall number of changesets in the training set.

We show the results for FLT in Figure 5a and for DIT
in Figure 5b. We observe that the MRR correlates with the
change proneness and change involvement in the goldsets
for FLT and DIT, respectively. That is, low values for these
measures lead to lower MRR scores for systems and high
values for these metrics lead to higher MRR scores. For
instance, by far the lowest MRR for FLT trained on change-
sets was observed for Mahout, which also had the lowest

0.4567

0.2730

0.2989 

0.3930  

0.4033   

0.4818   

(a) Change proneness of the FLT goldset files in each project.

0.6513

0.3340

0.3648

0.1759

0.3609

0.3985

(b) Change involvement of each user in the DIT goldset.

Fig. 5. Change proneness (for FLT) and change involvement for (DIT)
for each project; MRR scores from the prior evaluation are overlaid.

median change proneness. Similarly, for DIT, Pig produced
the lowest MRR and the lowest change involvement among
all of the studied systems. The Spearman test indicates that
these correlations are strong and significant, with correlation
coefficients of 0.89 for FLT MRR and change proneness and
of 0.82 for DIT MRR and change involvement (both with
p < 0.05).

The implications of this are that changeset-based topic
models are more appropriate for systems where change is
more localized and frequent in a particular part of the code,
and poorer when change is highly distributed in the soft-
ware project (i.e. with high entropy). In other words, when
the model is used to retrieve frequently changed features in
the code, it is very likely to recognize them and award them
high scores. Conversely, the snapshot-based topic model is
more uniform with respect to change, as the model simply
reflects the distribution of terms across the structure of the
code. Frequently changed systems are also those that are
likely to require faster FLT or DIT model updating, where
the performance advantage of the changeset based approach
is clear.

5 THREATS TO VALIDITY

Our studies have limitations that impact the validity of
our findings, as well as our ability to generalize them. We
describe some of these limitations and their impacts.
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Construct Validity. Threats to construct validity concern
measurements accurately reflecting the features of interest.
A possible threat to construct validity is our benchmarks.
Errors in the datasets could result in inaccurate effective-
ness measures. Our dataset creation technique closely fol-
lows that of other researchers [43], [53], [54]. Additionally,
datasets extracted source code entities automatically from
changesets, previous work shows this approach is on par
with manual extraction.

Another possible threat to construct validity is that we
did not give special consideration to either tangled com-
mits [55] (where two or more issues are resolved by a
single commit) or multicommit resolutions [56] (where two
or more commits resolve a single issue). Treating all files
touched by a single commit as the goldset for multiple issues
can potentially inflate the reported MRR values. However,
the primary concern of this paper is to compare the accuracy
of the changeset-based method to that of the snapshot-
based method, and our treatment of tangled commits does
not advantage (or disadvantage) either method. Conversely,
treating multiple commits that address a single issue as
separate changes can potentially decrease the reported MRR
values (i.e., provide a conservative estimate of real-world
accuracy).

Internal Validity. Threats to internal validity include
possible defects in our tool chain and possible errors in
our execution of the study procedure, the presence of which
might affect the accuracy of our results and the conclusions
we draw from them. We controlled for these threats by
testing our tool chain and by assessing the quality of our
data. Because we applied the same tool chain to all subject
systems, any errors are systematic and are unlikely to affect
our results substantially.

Another threat to internal validity pertains to the value
of parameters such as the number of topics that we selected
in training the models. We decided that the snapshot- and
changeset-based approaches should have the same parame-
ters to help facilitate evaluation and comparison. We argue
that our study is not about selecting the best parameters, but
to show that our snapshot-based approach is reasonable.

Further, since LDA is a stochastic model, we have de-
termined a certain threat with respect to randomness in
model construction. We control for this by ensuring each
model created uses the same initial state. This is achieved by
running each experiment in isolation and using a uniform
random seed value on the system’s pseudo-random number
generator.

External Validity. Threats to external validity concern
the extent to which we can generalize our results. The
subjects of our study comprise six open source projects
in Java, so we may not be able to generalize our results
to systems implemented in other languages. However, the
systems are of different sizes, are from different domains,
and have characteristics in common with those of systems
developed in industry.

Conclusion Validity. Threats to conclusion validity con-
cern our choice of measurements and how those choices
impact our evaluation and conclusion. We chose to use
mean reciprocal rank (MRR), but we could have also used
mean average precision (MAP) instead. We chose the former
because it lends itself to being paired with the Wilcoxon

signed-rank test as both rely on the same input data.

6 CONCLUSIONS

This paper analyzes the use of streaming (online) topic
models built from changesets, generated from development
activity of a software project, for text retrieval applications
in software maintenance. As case studies, we examined fea-
ture location and developer identification, two well-studied
and popular areas in software maintenance research. Using
historical changes of several representative open source
projects, we examined the effectiveness of changeset-based
topic models, specific configuration options in training these
models, and the effect of how different evaluation strategies
account for time.

The results of our study indicate that: (1) online topic
models are a suitable alternative to conventional topic mod-
els, (2) changeset-based topic models should use the addi-
tions, context and commit parts of the changeset, but avoid
removals, (3) software projects with localized and frequent
changes are likely to benefit the most from such models,
and (4) the result of all feature location and developer
identification experiments in this domain does not take time
and software change into proper account (makes a time
invariance assumption). Our future work is in experimenting
with hybrid models that use a combination of snapshots and
changesets, leveraging online topic models for additional
software maintenance problems, and in improving evalua-
tion of feature location technique with respect to the time
invariance assumption.
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