
Reducing Component Contract Overhead by Offloading
Enforcement

[Extended Abstract]

Kostadin Damevski
Virginia State University

1 Hayden Dr.
Petersburg, Virginia, 23806,

USA
kdamevski@vsu.edu

Hui Chen
Virginia State University

1 Hayden Dr.
Petersburg, Virginia, 23806,

USA
hchen@vsu.edu

Tamara L. Dahlgren
Lawrence Livermore National

Laboratory
Livermore, CA, 94550, USA

dahlgren@llnl.gov

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Programming
by contract

General Terms
Design, Reliability

Keywords
Runtime Checking, Contract Offloading

1. INTRODUCTION
In recent years, component technology has been a success-

ful methodology for large-scale commercial software develop-
ment. It is also becoming increasingly popular for large-scale
scientific computing in helping to tame the software com-
plexity required in coupling multiple disciplines, multiple
scales, and/or multiple physical phenomena. The Common
Component Architecture (CCA) [1] is a component model
that was designed to fit the needs of the scientific comput-
ing community by imposing low overhead and supporting
parallel components. CCA has already been used in several
scientific domains, creating components for large simulations
involving accelerator design, climate modeling, combustion,
and accidental fires and explosions [6].

Executable interface contracts present a way to better
specify interfaces through which components interact, and
to dynamically verify whether this specification is adhered
to by an executing application. In this way, composability
of applications and the quality of software components is
improved. Contracts uncover both errors which would have
resulted in the application being killed by the OS and er-
rors where the application produces incorrect results, which
are more difficult to trace. Although they present a perfor-
mance overhead, in order to be most effective contracts need

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBHPC’09, Nov. 15-16, Portland, OR, USA
Copyright 2009 ACM 978-1-60558-718-9/09/11 ...$10.00.

to be executed during all uses (and through a variety of pa-
rameters) of a software component, including in production
scenarios. Contracts are used in many computational do-
mains ranging from embedded systems to high-performance
computing. High-performance computing applications are
particularly performance overhead averse, forcing contracts
for scientific components to suffer from reduced use due to
the performance cost. Contracts have been developed for
the CCA component software paradigm which is used in
scientific computing [3], but their user isn’t prevalent in this
community.

We posit that contracts can be just as effective in deter-
mining the existence and source of application errors if they
are enforced at a different time from the execution of the ap-
plication. To realize this, we propose a system to reduce the
overhead of contract enforcement in CCA component appli-
cations by offloading it to a separate space and time. Instead
of taking up precious application resources, contracts are
offloaded to and enforced by a specialized component that
performs this task when or where computational resources
are available with minimal interference to the application
itself. By offloading contracts in this manner we introduce
a separation between the time when specific contracts are
encountered by an application, when they are checked, and
when the application is informed of possible contract viola-
tions. This introduces a few new scenarios in the appear-
ance of contract violations to the executing application. In
addition, due to certain optimizations in our design, a possi-
bility (though relatively small) is introduced that a contract
may not be checked altogether because of the inability of
the contract enforcement to keep up with the executing ap-
plication. However, since the missed contract is randomly
chosen, based on system load and CPU scheduling, there is a
good chance that it will be checked in subsequent executions
of the same application. In this paper, we argue that our ap-
proach to enforcing executable contracts is a feasible way to
apply this software engineering technique to overhead-averse
scientific applications.

We organize the discussion of our offline contract enforce-
ment system as follows. Section 2 contains background and
discussion of the problem. In Section 3 we describe and
analyse our design, while in Section 4 we discuss the related
work. Finally, we finish with conclusions and future work of
the project in Section 5.

2. BACKGROUND
A CCA component consists of one or more ports, and a

port is a group of method-call based interfaces. A CCA port
is represented by an interface, which is specified through
the Scientific Interface Definition Language (SIDL). A SIDL
specification is compiled into glue code that is later com-
piled into an executable together with the user-provided im-
plementation code. The prevalent way of compiling SIDL
is by using the Babel compiler [4]. Babel has the capabil-
ity of compiling SIDL to bindings for several popular pro-
gramming languages (C++, Java, Python, Fortran77 and
Fortran90), which allows creating applications by combin-
ing components written in any of these languages. Babel
has a large and growing user community and has become a
cornerstone technology of the CCA component model.

Executable interface contracts in Babel consist of method
preconditions and postconditions, assumed to hold true be-
fore and after the execution of the actual method respec-
tively. A failed contract indicates a runtime unrecoverable
error in the application. Some contracts are simple, such
as checking a pointer for null, and enforceable in constant
time. Others may involve checking whether an entire array
of values is within a certain tolerance of zero, or perform-
ing a more complex computation, and can be linear time or
slower. Babel offers an expressive contracts grammar that
includes support for logical operations (e.g. and,or,if and
only if and others), function calls, as well as a number of
predefined array functions (e.g. sum, min, max and others).

A user-specified limit in the contract enforcement over-
head, where contracts encountered after the limit is reached
are ignored, is one of the approaches taken in order to make
contracts more attractive to the high-performance comput-
ing domain [2]. This approach presents several policies (adap-
tive, random, periodic etc.), some of which enforce a part of
the available contracts up to a given overhead limit (e.g.
20% of application runtime).

In order to be able to express and enforce contracts in a
complete manner, and be able to enforce them in deployment
scenarios, one has to contend with a possibly large overhead.
In this work, we attempt an approach that would greatly
reduce the overhead to the application by offloading complex
and time consuming contracts.

3. DESIGN
Our system offloads the enforcement of contracts to a sep-

arate contract enforcer component, adding very little over-
head on the running application. The contract enforcer
component contains a queue of contracts that need to be
executed, together with a low priority level thread that pro-
cesses the contracts. This thread executes when the proces-
sor is free 1 and checks as many contracts as it can within
its timeslice. When a contract violation is detected, the
contract enforcer component informs the application who,
in turn, stops execution and informs the user at the next
opportune moment - usually, at the beginning or end of a
method. This happens regardless of whether the component
that incurred the violation is still active in the application.
In order to provide a bound the memory taken up by the
contracts queue, we use a circular queue where the most

1In a single core system it would be when the application is
waiting on I/O, while if more processing units are available
this thread may execute continuously.

recent contracts may overwrite the ones which have been
stored the longest. We accept the fact that some contracts
may be left unchecked, because of the inability of the thread
to keep pace when the system is busy. An overview of this
design is also shown in Figure 1. When an application ex-
ists successfully (without a noticeable exception), we offer
the user the possibility of checking its remaining contracts
in the queue. In order to differentiate between queued con-
tracts that belong to separate applications, we use a two-
level circular queue where the 1st-level circular queue holds
the heads to the 2nd-level circular application queues.

A side-effect of offloading contracts is that the reporting of
contract violations to the application may be delayed. One
can differentiate between three types of delayed contract vi-
olations based on their arrival time: 1) the application is
still executing, 2) the application has finished executing, or
3) the application encountered an error. If the application is
still executing when the contract violation is reported to it,
it will report this occurrence by (usually) throwing an ex-
ception. The extra processing performed by the application
in the period of time until it receives the contract violation
should be discarded. On the other hand, if the application
has finished executing and there is a contract violation to
report, we attempt to deliver this to the user using some
mechanism, such as through a log or user interface message.
The third case, when a new error was encountered while the
offloaded contracts are being checked, is due either to the
same application inconsistency as the contract violation it-
self or due to a separate reason altogether. In either case, we
take a similar approach as before and find a way to report
the contract violation to the user.

As mentioned earlier, we use a circular buffer in order to
limit the memory consumption of the contract enforcer com-
ponent. Depending on the size of this buffer, the amount of
contracts offloaded, and the speed of enforcement, it is pos-
sible that newer contracts overwrite unchecked contracts in
the circular buffer resulting in missed contracts. We accept
this loss as part of our decisions to offload contracts and limit
their memory storage while minimizing interference with the
running application. As long as missed contracts are infre-
quent, it is unlikely they will impact the system significantly
since contract violations usually occur relatively infrequently
in well tested software.

3.1 Feasibility Analysis
A component application can be divided into a series of

method calls mx, x ∈ 1...n, each of them belonging to an
individual component. Each method can have a number of
contract clauses enforced at its entry and its exit, prex,1...prex,m

and postx,1...postx,k, each of them internally consisting of
one or more assertions. The runtime of the overall applica-
tion is the sum of all its methods and contracts2,

n
X

i=0

m
X

j=0

l
X

k=0

mi + prei,j + posti,k

Each contract clause performs computation on some data
ccompd in order to determine whether the condition it im-
poses is met. When offloading the contract enforcement, the
application no longer suffers the cost of contract enforce-
ment while it incurs a new type of a performance overhead,
which is the cost of performing an in memory copy of the

2For simplicity, in this cost equation we are neglecting to
account for the driver method (or main()).

Component A

Component B

Component C

Circular Buffer

Contract Enforcer Component

Figure 1: Diagram of the system to offload contract enforcement to a separate contract enforcer component.

data needed to enforce the contracts. A copy is necessary
in this case, as the application may modify the data that
should be checked by a contract clause. We represent the
time it takes to copy the contract clause as copyd. While this
operation’s complexity is linear (O(n)), it is relatively inex-
pensive in practice for data that is able to fit into memory.
In order to have a performance gain, the cost of copying
contract clauses needs to be less than the cost of enforc-
ing them (i.e. copyd < ccompd). It naturally follows that
larger the computational complexity computation of a con-
tract clause, the bigger the performance benefit of offload-
ing it. For clauses that do very little computing (e.g. con-
stant time complexity) offloading may even be more expen-
sive than checking the contract and would adversely impact
performance. Therefore, we limit the offloading to contract
clauses which are linear time or more in cost.

Babel’s contract system tags each contract in terms of
its computational complexity. Using Babel, we execute and
benchmark the following method that calculates vector dot-
product and includes contracts:

double vDot(in array<double> u, in array<double> v,

in double tol)

throws

sidl.PreViolation, sidl.PostViolation;

require

not_null_u: u != null;

not_null_v: v != null;

same_size: size(u) == size(v);

non_negative_tolerance: tol >= 0.0;

ensure

no_side_effects: is pure;

same_uv: nearEqual(u, v, tol) implies

(result >= 0.0);

zero_case: (irange(u, 0.0, tol) and

irange(v, 0.0, tol))

implies

nearEqual(result, 0.0, tol);

The vDot method has a number of preconditions, listed

under the requires SIDL keyword, and a number of post-
conditions, under the ensures keyword. The postconditions
contain a number of linear time contracts, which are defined
using Babel array built-in functions. The nearEqual function
determines whether the elements of two arrays are within a
given tolerance of each other, while the irange function de-
termines whether all elements of an array are within a given
range. A visualization of the contract overhead in executing
this method compared to offloading it is shown in Figure 2.
To offload the contract, the data needs to be copied into the
circular buffer, which still presents an overhead. This bench-
mark was executed on a single machine with an 2 GHz Intel
Core 2 Duo processor and 1GB of RAM, with vectors con-
taining 5000 elements, and averaged from 100 executions.
We observe that there is a performance improvement in of-
floading the contracts that would grow further with larger
data sizes and frequent invocations of this method in an ap-
plication. We also observe that the cost of copying the data
to offload it is significant and only worthwhile for complex
contracts that include more that one linear computation.

4. RELATED WORK
We are unaware of any previous work discussing offloading

contracts outside of the application’s context, as described
in this paper. The efforts of Dahlgren to establish the con-
tracts facility for the CCA component model [3], and, sub-
sequently, to provide an adaptive enforcement strategy that
limits the cost of contracts [2] forms the foundation for the
work in this paper. Several other approaches have been
taken in reducing the overhead of contracts.

Liblit et al. [5] propose a system to gather and analyse
program invariants (assertions) across a large group of dis-
tributed program executions; an example application given
is that of Microsoft Office, where a large user community
exists. In order to impose only negligible overhead to in-
dividual users, a clever scheme is designed that distributes
assertion checks across many executions in a way that only
few assertions are checked per run, while providing overall
good coverage of each assertion.

vDot offload

0 100 200 300 400 500 600 700

vDot

microseconds

method pre post copy

Figure 2: Comparison of executing the vDot method with and without contract offloading.

An approach in software engineering of embedded systems
performs post processing of application’s log data in order to
detect errors [7]. By integrating two tools: the Avrora sensor
network simulator, and the MaC (Monitoring and Checking)
program verification tool the authors offer an approach to
improve the quality of software for wireless sensor networks.
The Avrora simulator, a well established tool in this field, is
used to collect runtime data, which is analysed by MaC to
determine whether the application’s guarantees are met.

5. CONCLUSIONS AND FUTURE WORK
In this paper we discussed our design of a system to offload

executable interface contracts in order to reduce their over-
head and increase their acceptance in the high performance
computing community. We argue that such a system would
be beneficial in that it improves application performance
while still enforcing the majority of contracts. The new sets
of behaviors introduced by delayed and missed contracts are
a necessary nuisance in this endeavor. Through the analy-
sis we performed, we conclude that contract offloading can
improve application performance but only when used ju-
diciously. It only makes sense to offload complex contracts
(with at least part of the contract requiring linear time com-
putation) due to a significant overhead of data copying.

The future work of this project is to explore better ways to
estimate the computational complexity of contracts. We also
plan on testing our system on a production-level application,
in order to determine it’s overall efficacy. Each of these
advances in our system will be important in achieving broad
applicability and acceptance in the CCA and applications
communities.

6. REFERENCES
[1] Allan, B. A., Armstrong, R., Bernholdt, D. E.,

Bertrand, F., Chiu, K., Dahlgren, T. L.,

Damevski, K., Elwasif, W. R., Epperly, T. G. W.,

Govindaraju, M., Katz, D. S., Kohl, J. A.,

Krishnan, M., Kumfert, G., Larson, J. W.,

Lefantzi, S., Lewis, M. J., Malony, A. D.,

McInnes, L. C., Nieplocha, J., Norris, B.,

Parker, S. G., Ray, J., Shende, S., Windus, T. L.,

and Zhou, S. A component architecture for

high-performance scientific computing. Intl. J.
High-Perf. Computing Appl. 20, 2 (May 2006), 163–202.

[2] Dahlgren, T. L. Performance-driven interface
contract enforcement for scientific components. In
Proceedings of the 10th International Symposium on
Component-Based Software Engineering (CBSE-07)
(2007), vol. 4608 of Lecture Notes in Computer Science,
Springer.

[3] Dahlgren, T. L., and Devanbu, P. T. Improving
scientific software component quality through
assertions. In Proceedings of the Second International
Workshop on Software Engineering for High
Performance Computing System Applications
(SE-HPCS ’05) (New York, NY, USA, 2005), ACM.

[4] Kohn, S., Kumfert, G., Painter, J., and Ribbens,

C. Divorcing language dependencies from a scientific
software library. In Proceedings of the 10th SIAM
Conference on Parallel Processing (Portsmouth, VA,
2001).

[5] Liblit, B., Aiken, A., Zheng, A. X., and Jordan,

M. I. Bug isolation via remote program sampling. In In
Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation
(PLDI ’03) (2003), ACM Press, pp. 141–154.

[6] McInnes, L. C., Allan, B. A., Armstrong, R.,

Benson, S. J., Bernholdt, D. E., Dahlgren, T. L.,

Diachin, L. F., Krishnan, M., Kohl, J. A., Larson,

J. W., Lefantzi, S., Nieplocha, J., Norris, B.,

Parker, S. G., Ray, J., and Zhou, S. Parallel
PDE-based simulations using the Common Component
Architecture. In Numerical Solution of PDEs on
Parallel Computers, A. M. Bruaset and A. Tveito, Eds.,
vol. 51 of Lecture Notes in Computational Science and
Engineering (LNCSE). Springer-Verlag, 2006.

[7] Sokolsky, O., Sammapun, U., Regehr, J., and

Lee, I. Runtime verification for wireless sensor network
applications. In Runtime Verification (2008),
B. Finkbeiner, K. Havelund, G. Rosu, and O. Sokolsky,
Eds., no. 07011 in Dagstuhl Seminar Proceedings,
Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany.

