
Detecting and Characterizing Developer Behavior Following
Opportunistic Reuse of Code Snippets from the Web

Agnieszka Ciborowska
Virginia Commonwealth University

Richmond, VA, USA
ciborowskaa@vcu.edu

Nicholas A. Kraft
ABB Corporate Research

Raleigh, NC, USA
nicholas.a.kraft@us.abb.com

Kostadin Damevski
Virginia Commonwealth University

Richmond, VA, USA
kdamevski@vcu.edu

ABSTRACT
Modern software development is social and relies on many
online resources and tools. In this paper, we study oppor-
tunistic code reuse from the Web, e.g., when developers copy
code snippets from popular Q&A sites and paste them into
their projects. Our focus is the behavior of developers fol-
lowing opportunistic code reuse, which reveals the success
or failure of the action. We study developer behavior via a
large, representative dataset of micro-interactions in the IDE.
Our analysis of developer behavior exhibited in this dataset
confirms laboratory study observations that code reuse from
the Web is followed by heavy editing, in some cases by a
rapid undo, and rarely by the execution of tests.

KEYWORDS
opportunistic reuse, code snippet, developer behavior, inter-
action data, field study
ACM Reference Format:
Agnieszka Ciborowska, Nicholas A. Kraft, and Kostadin Damevski.
2018. Detecting and Characterizing Developer Behavior Following
Opportunistic Reuse of Code Snippets from the Web. In Proceed-
ings of International Conference on Mining Software Reposito-
ries (MSR’18). ACM, New York, NY, USA, Article 4, 4 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Resources to aid software development — e.g., tutorials, blog
posts, Q&A forums, and chat communities [4] — are abun-
dant on the Web. Developers consult these resources as part
of their daily workflow [6], sometimes copying code snip-
pets from Q&A sites such as Stack Overflow into their code
bases [17]. Indeed, multiple laboratory studies [2, 3, 12] indi-
cate that a pervasive strategy for opportunistic reuse among
developers is to copy code snippets from the Web. For exam-
ple, Brandt et al. [2, 3] report that developers use the Web
numerous times per day as a source to learn or be reminded,
as well as to reuse code snippets for certain repetitive tasks.

The Enriched Event Streams dataset [14] provides field
data for a group of 81 developers. Its logs contain developer

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MSR’18, May 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06…$15.00
https://doi.org/10.475/123_4

micro-interactions with the Visual Studio IDE and list over
11M events that correspond to clicks or key presses recorded
by the developers. Similar datasets have been used to detect
IDE-usage smells from sequences of developer interactions [8,
9] and to estimate technical debt [15, 16]. In this paper we
use the field data from the Enriched Event Streams dataset
to detect and characterize developer behavior surrounding
opportunistic reuse of code snippets from the Web. The goals
of our study are (1) to understand the behaviors exhibited
by developers subsequent to pasting code from outside of the
IDE and (2) to confirm (or dispute) the developer behaviors
observed during past laboratory studies [2, 3, 5, 11–13].

We use a two-step process to understand developer behav-
ior after pasting code from outside of the IDE. First, we use
periods of inactivity to detect pastes of code snippets from
the Web. Next, we analyze occurrences of specific events
and use the Hidden Markov Model [7] to model the behavior
that developers exhibit after such pastes. Via analysis of the
resulting patterns, we look for evidence of developer behav-
iors observed in previous laboratory studies. The observed
behaviors of interest include:

B1: If code is copied from the Web and not examined, the
paste may be followed by an undo or delete [2]
B2: Developers do not immediately test code copied and
pasted from the Web (because they assume that it is cor-
rect) [2]
B3: Developers copy and paste code from the Web to resolve
errors encountered while debugging [2]
B4: Quick, repeated insertion of small changes can lead to
cascading undo operations [12]
B5: Pastes may be followed by field or parameter additions
to achieve syntactic/semantic correctness [12]
B6: Pastes may be followed by variable renames to make
snippets fit in the desired context [12]
B7: Pastes may be followed by commenting or removal of
code sections to reject uneeded portions of copied code [12]
B8: Pastes may be followed by an edit/paste-compile loop to
resolve dependencies [1]
B9: Developers need to adapt code copied and pasted from
the Web (e.g., by adding glue code or refactoring variable
names) [13]

2 RESEARCH METHOD
Our research method consists of two distinct steps, performed
in sequence. First is recognizing the opportunistic reuse events
in the interaction data. Since there are no explicit indicators

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

MSR’18, May 2018, Gothenburg, Sweden Ciborowska et al.

Figure 1: Concept of a pattern for recognizing paste from the
Web based on time dependencies.

of these events in the data, we resort to developing and us-
ing a set of heuristics. Following this, we discover an inter-
pretable Hidden Markov Model representation of the inter-
action sequences following the opportunistic reuse events.

2.1 Recognizing Pastes of Code from Outside of
the IDE

Reuse of code snippets from outside of the IDE (e.g. from
the Web) is usually preceded by some period of inactivity
in the IDE. During this time a developer leaves the IDE to
browse the Web and to find a relevant code snippet, which is
then pasted into the code via the IDE. Several researchers de-
scribe this common behavioral pattern [2, 11, 12]. Thus, we
base our recognition of pasted code on periods of inactivity
and the time elapsed between two specific actions in the En-
riched Event Streams dataset: copy (or cut), and paste. We
recognize copy, cut, and paste actions by identifying events
containing the corresponding command identifiers. We can-
not recognize developer inactivity in quite the same way, as
there is no particular IDE event associated with losing or
restoring focus to the IDE. Yet, we note that if a developer
is using the IDE, then every performed action is registered
as an event. Hence, we can recognize inactivity based on
extended time elapsed between consecutive events.

Figure 1 illustrates interaction characteristics of pastes
from outside of the IDE. We denote time of paste command
as tp and time of a preceding copy or cut command as tc,
whereas tpc stands for time interval between copy or cut
and paste. Inactivity duration is denoted as ti, which is the
difference between inactivity ending (tie) and starting time
(tis). The timespan between inactivity end and occurring
paste command is represented by tpi.

Another important characteristic of pasting code from
Web is that the preceding copy/cut does not occur in the
IDE, so it is not recorded in our dataset. Therefore, to ensure
that pasted content did not originate from within the IDE,
we conservatively exclude paste commands which occurred
less than 5 minutes after cut/copy action was recorded as
it is highly possible that a developer was copy and pasting
code inside the IDE. The requirements can be specified as
tpc > 5 min. As a first step, we preprocessed the dataset and
collected every paste command meeting this requirement.

We defined a lower opportunistic reuse inactivity thresh-
old as a period of time lasting at least 30 seconds, which is
the minimum period we deemed sufficient to launch a Web
browser, search and analyze some code snippets, and copy

Figure 2: Heat map presenting frequency of paste command
occurrence in relation to inactivity duration and time span
between inactivity end and paste command.

one of them into the IDE. We also defined an upper thresh-
old of 20 minutes. After 20 minutes of inactivity, every new
event is considered to belong to a new session, and any in-
formation about the most recent copy/cut command (or in-
activity period) is discarded as invalid for the new session.

Figure 2 presents a heat map that illustrates the num-
ber of paste commands in relation to preceding inactivity
duration(ti) and time span between inactivity ended and
paste occurred(tpi). To increase plot readability, we adjusted
the range of the x and y axes and rejected statistically in-
significant values that were more than three standard devia-
tions from the mean of tpi. As can be observed in this figure,
most pastes took place up to 15 seconds after inactivity pe-
riod ended and were performed after an inactivity duration
lasting up to 80 seconds. In the end, we arrived at the fol-
lowing set of rules to recognize a paste from outside of the
IDE:

(1) tpi < 15 seconds,
(2) tpc > 5 minutes,
(3) ti > 30 seconds.

We did not set any upper bound on inactivity duration, ex-
cluding the session break threshold of 20 minutes, so as not
to lose potentially valid paste commands.

Using this approach we identified 631 opportunistic reuse
of code snippets from outside the IDE.

2.2 Interactive Hidden Markov Model Discovery
Developer behavior immediately following opportunistic code
reuse, in a tight window of time, can be indicative of the steps
developers take to ensure the quality of the reused code. To
investigate this set of behaviors our focus are sequences of
commands directly following pasting code from the Web.

Understanding sequences of low-level developer interac-
tions with the IDE, occurring across numerous scenarios by
many individual developers is challenging. In order to build

Developer Behavior Following Opportunistic Reuse MSR’18, May 2018, Gothenburg, Sweden

a succinct representation, we leverage interactively building
a Hidden Markov Model (HMM) that comprehensively cap-
tures these sequences [7]. HMMs consist of a set of hidden
states, corresponding to high-level behaviors of interest, and
a set of observed states, corresponding to messages in our
input sequences. The approach we use constructs an inter-
pretable HMM model by using human feedback to iteratively
add one hidden state at a time to the model.

The process is as follows. At the outset, the HMM consists
of a single hidden state, which is able to emit all the com-
mands in the interaction data. To begin each iteration, the
system informs the human expert of a set of highly prob-
able sequences that exist in the input data, but are not
captured by the current HMM. Using this prompt, and an
understanding of the semantics of different commands (e.g.
all commands related to debugging) the expert directs the
system to create a new hidden state specifically targeted to
emitting a set of semantically related messages (e.g. related
to debugging). A new HMM is then computed using the
Baum-Welch algorithm. The process then repeats to again
presenting to the expert the sequences that this new HMM
fails to capture, prompting for commands that can be used
for the next hidden state. The final model is produced when
the expert deems the model is successful at capturing the
most probable sequences in the input data. In addition, at
each iteration, the system outputs a probabilistic rating of
the quality of the model, ensuring that the final produced
HMM fits the input sequences.

Specifically to the Enriched Event Stream dataset, we se-
lected all of the CommandEvents, and used their descriptive
names and executions of the FeedBag Visual Studio collec-
tion tool to understand the semantics of ambiguous com-
mand names. We finally constructed the model with 6 hid-
den states and quality rating of over 99% in Figure 3. To
render the model more clearly, we removed the initial state,
which always captures only the remaining commands in the
dataset, and edges that were loops, subsequently rescaling
the edge probabilities.

3 RESULTS
In this section, we examine the results of our analysis of be-
havior following opportunistic reuse of code from the Web,
including results based on the short-term HMM representa-
tion and a longer term exploration of specific behaviors of
interest (e.g., testing [10]). We present evidence as it per-
tains to the behaviors of interest we intended to confirm or
understand with this field study.
Opportunistic reuse is predominantly followed by editing code
(B3, B5, B6, B7, B8, B9).
Our HMM representation of short-term behavior (Figure 3)
indicates that the most likely action following pasting code
from the Web is editing. The Edit state in the HMM corre-
sponds to a large set of commands that add, edit, delete or
refactor lines of code in the IDE. Second to editing behavior,
following a paste, developers may save the code or initiate

Figure 3: Hidden Markov Model of the behavior immediately
following opportunistic code reuse. Nodes represent high-level
behaviors, while edges represent transitions. The transition
probability between two behaviors is encoded as edge thick-
ness. The edges are numbered (and colored) by the length of
the shortest path from the initial state – Paste.

or continue a debugging session. These two behaviors tend
to follow editing with a considerable probability as well.
Undo operations, when they occur, follow opportunistic reuse
in a short timespan (B1, B4).
In examining all undo operations that occurred in the 5 min-
utes following an opportunistic reuse as detected by our in-
teraction data pattern, the median time to their occurrence
was 86 seconds. This is as compared to edit operations, which
followed pasting code with a median time of 125 seconds, test
executions with a median time of 185 seconds, and building
code with a median time of 132 seconds. Further, though
Figure 4 shows a small subset of scenarios following a paste,
undo commands tend to quickly follow the paste.
Developers rarely test immediately after opportunistic reuse
(B2). In Figure 4 we identify all of the opportunistic reuse
sessions that contained a test in the 15 minutes following the
paste, consisting of 21 out of the 631 opportunistic reuse ses-
sions, meaning that only 3% of recognized paste commands
were followed by running tests. To visualize developer be-
haviour occurring after opportunistic reuse, we delineate sev-
eral behaviors, including building the project (successfully
and unsuccessfully), testing (with failing tests or not), and
undos. We observe both the small number of these sessions
and the relatively infrequent occurrence of tests executed
within the first 2 minutes after the paste (only 6 out of 21
sessions).

4 CONCLUSIONS
In this paper, we use interaction data, gathered in the field
during software developers’ daily work, to evaluate a set of
observations made during laboratory studies of opportunistic
code reuse. Our findings indicate a strong prevalence of edits
following pasting code from the Web, the existence of rapid

MSR’18, May 2018, Gothenburg, Sweden Ciborowska et al.

Figure 4: A timeline of actions by developers after opportunistic reuse that include at least one test execution in 15 minutes.
Triangles denote running tests: blue color represents successful or unknown results, red refers to failure. Black squares stand for
successful build, and red for failing build. Undo operations are denoted by yellow circles.

undo commands following paste, and that test execution is
not a typical validation strategy for code that is reused. Each
of these findings lends more support to the prior observations
made in laboratory studies. The prevalence of opportunistic
code reuse in modern development, and the difficulty for de-
velopers to validate the pasted code, exhibited in their IDE
interactions, motivates the need for novel tools or techniques
to further improve code reuse from the Web.

REFERENCES
[1] A. Armaly and C. McMillan. 2016. Pragmatic source code reuse

via execution record and replay. Journal of Software: Evolution
and Process 28, 8 (2016), 642–664.

[2] J. Brandt, P.J. Guo, J. Lewenstein, M. Dontcheva, and S.R.
Klemmer. 2009. Two Studies of Opportunistic Programming: In-
terleaving Web Foraging, Learning, and Writing Code. In Proc.
ACM CHI Conference on Human Factors in Computing Sys-
tems (CHI’09). 1589–1598.

[3] J. Brandt, P.J. Guo, J. Lewenstein, M. Dontcheva, and S.R.
Klemmer. 2009. Writing Code to Prototype, Ideate, and Discover.
IEEE Software 26, 5 (Sept.-Oct. 2009).

[4] P. Chatterjee, M.A. Nishi, K. Damevski, V. Augustine, L. Pollock,
and N.A. Kraft. 2017. What Information about Code Snippets
Is Available in Different Software-Related Documents? An Ex-
ploratory Study. In Proc. 24th IEEE Int’l Conf. on Software
Analysis, Evolution, and Reengineering (SANER’17).

[5] D. Chatterji, J.C. Carver, N.A. Kraft, and J. Harder. 2013. Ef-
fects of cloned code on software maintainability: A replicated
developer study. In Proc. 20th Working Conf. on Reverse Engi-
neering (WCRE’13). 112–121.

[6] C.S. Corley, F. Lois, and S.F. Quezada. [n. d.]. Web Usage Pat-
terns of Developers. In Proc. 31st Int’l Conf. on Software Main-
tenance and Evolution (ICSME’15).

[7] K. Damevski, H. Chen, D. Shepherd, and L. Pollock. 2016. Inter-
active Exploration of Developer Interaction Traces using a Hid-
den Markov Model. In Proc. 13th Int’l Conf. on Mining Software
Repositories (MSR’16).

[8] K. Damevski, D. Shepherd, and L. Pollock. 2015. A Field Study
of How Developers Locate Features in Source Code. Empirical
Software Engineering 21, 2 (2015), 724–747.

[9] K. Damevski, D. Shepherd, J. Schneider, and L. Pollock. 2016.
Mining Sequences of Developer Interactions in Visual Studio for
Usage Smells. IEEE Trans. Softw. Eng. (2016).

[10] R. Delamare and N.A. Kraft. 2012. A genetic algorithm for com-
puting class integration test orders for aspect-oriented systems.
In Proc. 5th Int’l Conf. on Software Testing, Verification, and
Validation. 804–813.

[11] E. Duala-Ekoko and M. Robillard. 2012. Asking and answering
questions about unfamiliar APIs: An exploratory study. In Proc.
34th Int’l Conf. on Software Engineering (ICSE’12).

[12] R. Holmes and R. Walker. 2012. Systematizing pragmatic soft-
ware reuse. ACM Transactions on Software Engineering and
Methodology 21, 4 (Nov. 2012).

[13] H. Li, Z. Xing, X. Peng, and W. Zhao. 2013. What help do
developers seek, when and how?. In Proc. 20th Working Conf.
on Reverse Engineering (WCRE’13).

[14] S. Proksch, S. Amann, and S. Nadi. 2018. Enriched Event
Streams: A General Dataset for Empirical Studies on In-IDE Ac-
tivities of Software Developers. In Proc. 15th Working Confer-
ence on Mining Software Repositories (MSR’18).

[15] V. Singh, L. Pollock, W. Snipes, and N.A. Kraft. 2016. A Case
Study of Program Comprehension Effort and Technical Debt Es-
timations. In Proc. 24th IEEE Int’l Conf. on Program Compre-
hension (ICPC’16).

[16] V. Singh, W. Snipes, and N.A. Kraft. 2014. A Framework for
Estimating Interest on Technical Debt by Monitoring Developer
Activity Related to Code Comprehension. In Proc. 6th IEEE
Int’l Wksp. on Managing Technical Debt (MTD’14).

[17] D. Yang, P. Martins, V. Saini, and C. Lopes. 2017. Stack Overflow
in GitHub: Any Snippets There?. In Proc. 14th Int’l Conf. on
Mining Software Repositories (MSR’17). 280–290.

	Abstract
	1 Introduction
	2 Research Method
	2.1 Recognizing Pastes of Code from Outside of the IDE
	2.2 Interactive Hidden Markov Model Discovery

	3 Results
	4 Conclusions
	References

