
What Information about Code Snippets Is Available
in Different Software-Related Documents?

An Exploratory Study
Preetha Chatterjee∗, Manziba Akanda Nishi†, Kostadin Damevski†,

Vinay Augustine‡, Lori Pollock∗ and Nicholas A. Kraft‡
∗ University of Delaware, Newark, DE, USA

Email: {preethac, pollock}@udel.edu
† Virginia Commonwealth University, Richmond, VA, USA

Email: {nishima, kdamevski}@vcu.edu
‡ABB Corporate Research, Raleigh, NC, USA

Email: {vinay.augustine, nicholas.a.kraft}@us.abb.com

Abstract—A large corpora of software-related documents is
available on the Web, and these documents offer the unique
opportunity to learn from what developers are saying or asking
about the code snippets that they are discussing. For example, the
natural language in a bug report provides information about what
is not functioning properly in a particular code snippet. Previous
research has mined information about code snippets from bug
reports, emails, and Q&A forums. This paper describes an
exploratory study into the kinds of information that is embedded
in different software-related documents. The goal of the study is
to gain insight into the potential value and difficulty of mining
the natural language text associated with the code snippets found
in a variety of software-related documents, including blog posts,
API documentation, code reviews, and public chats.

I. INTRODUCTION

Integrated development environments today include sophis-
ticated program modeling and analyses behind the scenes
to support the developer in navigating, understanding, and
modifying their code. While much can be learned from results
of static and dynamic analysis of their source code, developers
also look to others for advice and learning. As software
development teams are more globally distributed and the open
source community has grown, developers rely increasingly
on written documents for help they might have previously
obtained through in-person conversations.

Developer communications (e.g., developer blog posts, bug
reports, API documentation, mailing lists, code reviews, and
question & answer forums) offer the unique opportunity to
learn from what the developers are saying or asking about
the code snippets they are discussing. E-books, online course
materials, videos, and programming manuals offer learning
opportunities, often explaining concepts using code examples.
Similarly, technical presentations and research papers often
use code examples to demonstrate challenges addressed by
their work. Developers can also learn from code in benchmark
suites, standards documents, and code snippets from reposito-
ries such as GitHub Gists and Pastebin.

While individual developers can learn from the afore-
mentioned sources, the publicly available, large corpora of
software-related documents also provide the opportunity to
automatically learn common API behaviors, properties, and
vulnerabilities, as well as to complement similar information
learned by mining software repositories. Researchers have
performed empirical analysis of developer communications
in order to understand specific software enclaves or novel
techniques used by developers in the field, for instance, exam-
ining modern code reviews using tools like Gerrit [1], or the
information encoded in tutorials for mobile development [2].
The captured insights can be integrated into the development
of new models and analyses to enhance software engineering
techniques and tools.

The knowledge that can be gained from these sources is
typically embedded in the natural language describing the code
or the properties it exhibits. For example, the natural language
might note that the code is a good example of a correct,
efficient, or secure solution to a particular problem, or that the
code exemplifies a common code bug, security vulnerability,
or energy bug to avoid, possibly in a particular context.

Researchers have also developed analyses to mine various
information from the natural language text surrounding code
snippets in emails [3], [4], bug reports [3], Q & A forums [5],
[6], [7], and tutorials [8]. For example, Panichella et al. [3]
developed a feature-based approach to automatically extract
method descriptions from bug tracking systems and mailing
lists. Vassallo et al. [5] built on their previous work [3] to
design a tool called CODES that extracts candidate method
documentation from StackOverflow discussions and creates
Javadoc descriptions. Wong et al. [6] mine comments from
Stack Overflow by extracting text preceding code snippets
and using the code-description mappings in the posts to
automatically generate descriptive comments for similar code
snippets matched in open-source projects. Collectively, these
efforts demonstrate the potential for extracting and using
information embedded in natural language text of software-

related documents for software engineering tools. They also
raise the questions of what other kinds of information can
be extracted from these particular types of documents and of
what kinds of information can be extracted from other types
of software-related documents.

This paper describes an exploratory study that investigates
the following questions:

1) What are the characteristics of the code snippets embed-
ded in different types of software-related documents?

2) What kind of information is available in each document
type? Which document types provide similar informa-
tion? Which information is most readily available across
all document types?

3) What are the cues that indicate code snippet related
information? How do the cues differ across different
document types? What influential words/phrases indicate
the different kinds of information in different document
types?

Our results provide preliminary indications regarding the
document types that would serve as the most fruitful sources
for different kinds of information, and also provide insights
into what cues might help in automatically extracting that
information.

II. METHODOLOGY

Figure 1 depicts the major steps of our exploratory study.
After selecting a set of documents of each document type
under investigation, we redacted the code snippets, and asked
human annotators to make as many observations about what
they could learn about the missing code snippets strictly from
the text and also to highlight the text on which they based
their observations. We then developed a labeling scheme to
code the observations and analyzed both the codings and other
information gained from the frequency and sizes of the code
snippets across different document types. Figure 2 provides an
illustrative example of steps 1–3.

documents
of 12 types

study
results

redact
code
snippets

identify
code-
related text

code the
identified
content

analyze
snippets and
coded text

1 2 3 4

Fig. 1. Methodology Procedure

A. Subjects of Study

Table I specifies the 12 document types that we studied,
some example sources from which we sampled the documents,
and the unit of granularity that we studied for each document
type. We collected 60 document instances, with at least two
instances for each type. We randomly selected document
instances from 51 distinct sources, all well known, popular
sites or high-profile projects. We excluded documents that had
no code snippets.

After assembling the corpus, we redacted all multi-line code
snippets from each document. We redacted the code snippets
because we wanted to determine what could be learned about

TABLE I
SUBJECTS OF STUDY

Document Type Example Origin Unit of Analysis
Blog Posts MSDN, Personal blogs Individual blog posts

Benchmarks OpenMP NAS One chapter or section

Bug Reports GitHub Issues,
Bugzilla

Contents of an issue

Code reviews GitHub Pull Requests,
Gerrit

One pull request

Course materials cs.*.edu One PDF

Documentation readthedocs.org One documentation
page or API

E-Books WikiBooks Used single book
chapter

Mailing lists lkml.org One conversation
thread

Papers ACM Digital Library,
IEEE Xplore

Complete paper

Presentations SlideShare Entire slide deck

Public Chat Gitter, Slack Single conversation
with related snippets

Q&A sites StackOverflow, MSDN Single question plus
answers

them from only the contextual information in the documents.
Redaction was performed using the redaction tools in Adobe
Acrobat. Annotators were given documents with each line of
a code snippet blacked out or covered entirely with a black
rectangle. We did not redact small code snippets that were
embedded within paragraphs of text.

B. Identifying Code Snippet-related Information

We assigned 37 documents to 35 annotators. The annotators
comprised 20 undergraduate, 13 graduate, and 2 professional
researchers, all with prior programming experience. We as-
signed each annotator 3 documents to review. All of the
documents were assigned to multiple annotators to review.
We received 59 responses from 19 of the annotators (8
undergraduate, 11 graduate, 2 professional). The annotators
submitted 49 reviews of 31 distinct documents, constituting
of 2-4 documents of each type. 14 of these documents were
annotated by multiple people, and in these cases we merged
the observations from different annotators.

Each annotator was asked to enumerate as many obser-
vations as possible about the redacted code snippets. They
also indicated which code snippet they believed was being
described when there were multiple redacted code snippets
in the same document. They highlighted the text from which
they made each observation. Thus, they created an implicit
mapping between code snippet, related text, and observation
from that text. The annotators made 322 observations in total.

C. Coding the Identified Relevant Text

Two of the authors identified core code properties that
were mentioned throughout the annotators’ observations. We
defined eight major categories of labels, or codes, for the
observed code properties. We further defined subcategories
for each of these labels, which we call sublabels, to provide

Fig. 2. Annotation Example

more detailed categorization of the observations for qualitative
analysis. Table II presents the eight labels and their sublabels
that we established. Finally, two authors coded each annotator
observation with the labels and sublabels based on the occur-
rence of specific cues embedded in key phrases or key words.

Figure 2 gives an example of a document being analyzed
from start to finish. In step 1, an annotator highlights the parts
of the document that they think are related to the redacted code
snippet. The annotator numbers each highlighted text segment.
In step 2, the annotator writes and numbers observations for
each highlight. In step 3, we determine a label, sub-label, and
the phrases or words in the original highlighted text associated
with the observation that cued the labeling.

D. Analyzing Snippets and Coded Text
To compare the number and size of code snippets in each

document type, the authors manually counted the number of
code snippets in each document and the non-empty lines of
code per code snippet. Since document types may vary in the
length of a text line, we computed a normalized measure. We
first took a sample from each document type and counted the
number of characters (including white space and punctuation)
to identify the range of number of characters per text line. We
then automatically counted the number of characters in the
whole document, and divided by an average character count
per line for that document type.

We performed two analyses of the coded text and anno-
tators’ observations. To determine the kinds of information
available in each document type, we computed the frequency
of occurrence of the different labels and sublabels. To gain an
insight into how the different information is provided for each
label, we examined the text highlighted by the annotators to
identify the cue words or phrases that most likely triggered
the annotator to highlight that information.

III. PRELIMINARY RESULTS AND DISCUSSION

In this section, we provide qualitative and quantitative
support for the kinds of information we observed in the various
software-related documents. We present preliminary quantita-
tive evidence for the characteristics of the code snippets and
related natural language information in each document type
considered in our study, as well as the frequency of occurrence
of each kind of information we coded. Qualitatively, we
present a set of influential word cues found in the different
document types we examined, specific for each of the labels
and sub-labels we coded.

Code Snippet Characteristics across Document Types. For
each document type in our study of code snippet characteris-
tics, Table III shows the number of instances in the study (with
a total of 60 document instances), the mean number of code
snippets in the unit of analysis for that document type, the
mean number of lines of code (LOC) in those code snippets,
and the mean number of lines of natural language text in the
unit of analysis for that document type. Counting the number
of code snippets in a document is straightforward except for
code reviews.

For code reviews, the code snippets are not embedded in the
document; instead, they are being described and discussed and
attached to the code review (via hyperlinks). Thus, to count the
number of code snippets in a code review, we examined the
files that are attached to the review. Each file that is attached
is two screens showing a diff. We computed the number of
code snippets for a code review by counting each file as 2
code snippets and computed the number of lines of code for
each code snippet as the size of the displayed code in the code
window, which includes the diff and context lines of code.

Counting the number of lines of code per code snippet
is straightforward; however, counting the number of lines
of natural language text as a comparable measure across
document types is complicated by the fact that some document
types have different lengths of text lines. For instance, a
research paper could be two columns of text, while a blog
post might have a different length of lines than mailing lists.
Thus, to compute the number of lines of natural language
text, we counted the number of characters of natural language
text in each document, and divided that number by 80 as an
average length of a line. This provides the information is a
more traditional unit of number of lines rather than characters,
and normalizes the measure over different document types.

The mean number of code snippets per unit of analysis of
each document type varies from 1.2 for public chats to 8.6
for blog posts and research papers. Blog posts, code reviews,
research papers, and presentations have the higher number of
code snippets (> 7), while mailing lists and public chats have
only between 1.2 - 2.6 code snippets. Thus, mailing lists and
public chats might not prove to be the richest resources for
mining code snippets.

The mean length of code snippets varies from 8 lines of
code in public chats and documentation to 47 lines of code
in mailing lists. In this case of mailing lists, developers often
included entire classes or methods to provide context for their

TABLE II
DESCRIPTION OF LABELS AND SUBLABELS WITH EXAMPLE CUES IN TEXT

Labels Sub-Labels Description Cue Words & Phrases
Programming Language Programming language Java; C# related names in stacktrace

Design Framework Framework used RxJava; use HorizontalScrollView
Time/Space Complexity Code complexity O(nlogn)

Data Structure Data structures or variable types multidimensional array; cast float as int
Structure Control Flow Types of control statements used for loop; if-block

Data Flow Data flow chains included data flow chain; TPL data flow usage scenario
Lines of code Length of code line 27 follows

Rationale Why being implemented in this way block tridiagonal systems are solved for each direction
Functionality What is being implemented perform 3D Fourier transform; this can be done like:

Explanatory Methodology How functionality is implemented with NumCpp; this can be done
Output of code Results of running code the end results is
Similarity Syntactic or semantically similar code blocks in a similar way;
Modification Change(s) to existing code allows you to do the same thing with code like:

Testing Code for testing purposes depicts such a test method

Origin Origin of code example adapted from StackOverflow

Clarity High Code is clean and understandable see how much cleaner it is
Low Code is unclear or overly complex it’s a mouthful; hard to parse

Efficiency Efficient Better/efficient code example returns very quickly to its caller
Inefficient Inefficient code example has the effect of delaying
Assumptions Conditions to be met to ensure correctness only 1-d and 2-d arrays are supported

Erroneous Compilation Code that fails to compile failed to compile; invalid typecast
Runtime Contains runtime errors or exceptions thrown each error is paired with an output

questions. Many of the document types contain code snippets
in the range of 10 to 13 lines of code. This size code snippet
may indeed be code examples for single, specific actions,
that would be useful to examine further for mining to help
developers in different contexts.

As expected, research papers are outliers in size of natural
language text in the document with over 400 mean lines of
text. However, it is interesting to note that benchmarks, blog
posts, and code reviews provide from 65 to 88 mean lines of
text, while all the other document types range between 12 to
33 lines of text. This may suggest that research papers, bench-
marks, blog posts, and code reviews provide more opportunity
for mining descriptive information about the code snippets.

In summary, there are wide variations in the numbers of
code snippets, mean size of code snippets and mean lines
of natural language text across the different document types.
Larger numbers of available code snippets per document
provide more opportunity for code snippet mining. More
text per document provides more opportunity for descriptive
information about the embedded code snippets. The kinds of
information that is available in the text could vary, which is
the focus of the next section.

Available Code-related Information in Document Text. Our
human annotators and the coding of their observations were
used to gain insight into the kinds of information that the
natural language text provides about embedded code snippets
in different document types. Specifically, we focused on iden-
tifying whether there are certain kinds of information prevalent

TABLE III
CODE SNIPPET AND DESCRIPTION AVAILABILITY BY DOCUMENT TYPE

Document Type # Docs Mean
Code
Snippets

Mean #
LOC Per
Snippet

Mean #
Lines of
Text

Benchmarks 2 4.5 13.0 86.7

Blog Posts 10 8.6 13.1 88.3

Bug Reports 6 2.7 20.1 17.2

Code Reviews 7 7.1 33.3 64.9

Course Materials 3 3 12.8 12.6

Documentation 6 3.5 7.8 22.8

E-books 5 2.6 21.4 37.4

Mailing Lists 5 1.6 46.6 17.6

Papers 5 8.6 10.3 439.9

Presentations 3 8.3 11.6 18.7

Public Chat 5 1.2 8.3 15.6

Q&A Sites 3 4.7 12.6 32.8

Total 60

across many different document types and whether there
are kinds of information embedded only in certain kinds of
document types. Using the code snippet-related text identified
by the human annotators, as well as the observations that they
made from that identified text in 31 distinct documents and
our labeling of the annotators’ observations, we created the
heat map in Figure 3. The heatmap illustrates the frequency
of occurrence of the different kinds of information indicated
by our eight labels for the code snippets in each document
type. A darker-colored square indicates a higher frequency of

Des
ig

n

St
ru

ct
ur

e

Ex
pl

an
at

or
y

Te
st

in
g

Orig
in

Cla
rit

y

Ef
fic

ie
nc

y

Er
ro

ne
ou

s

Q&A Sites

Public Chat

Presentations

Papers

Mailing Lists

E-books

Documentation

Course Materials

Code Reviews

Bug Reports

Blog Posts

Benchmarks

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

Fig. 3. Heatmap of the frequency of occurrence of different kinds of
information for the code snippets in each document type in our study.

occurrence for a particular kind of information in a particular
document type, while a lighter-colored square indicates a
lower frequency of occurrence. We created the heat map using
mean occurrences of each label across the instances of each
document type. For example, the four mailing list instances
that were coded contained, in aggregate, seven code snippet-
related observations that were coded as Erroneous, resulting in
a mean of 7/4 = 1.75 occurrences of error-related information
in mailing lists.

The heatmap in Figure 3 indicates that Explanatory infor-
mation is prevalent across most of the document types that we
considered, and is the dominant category for several document
types, such as blog posts, documentation, e-books, papers, and
public chats. This aligns with that fact that the main purpose
of these document types is to explain aspects of the imple-
mentation in the code snippets. Another kind of information
that shows up fairly often across different document types is
design information, which includes programming language,
framework, and time/space complexity of the code snippet.
Based on this exploratory study, information about origin and
clarity of the code snippet is rarely available in any of the
studied document types. Information about efficiency is found
almost exclusively in bug reports, while testing information
was found almost exclusively in code reviews.

By examining the heat map from the perspective of an
individual document type, bug reports, code reviews, docu-
mentation, mailing lists, papers and public chats appear to
contain the highest amount of diversity in information about
code snippets, relative to other document types.
Word and Phrase Indicators of Code-related Text. The third
column of Table II depicts examples of words and phrases that
appear in the document text highlighted by the annotators.

Based on these samples, we note that sometimes individual
words are adequate cues for a given kind of information (e.g.,
a name of a programming language or framework), while
sometimes a cue requires a phrase, or sequence of words
(e.g., “see how much cleaner it is”, “hard to parse”). In fact,
for most kinds of information, phrases are needed to cue the
kind of information available in the text. These phrases are
quite different across information types, which suggests that
automating the detection of the kind of information embedded
in the natural language text about a code snippet is not trivial.
Detection techniques will most likely require natural language
processing and machine learning.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we described an exploratory study in which
we investigated the kinds of information available in dif-
ferent software-related documents. We reported our prelim-
inary results, which address research questions about the
characteristics of the code snippets embedded in different
document types, the kinds of information contained in those
code snippets, and the cues that indicate code snippet related
information. Of course, a much larger study is needed to
definitely answer our research questions. However, this paper
provides a methodology for doing so, as well as initial
indications of which software-related documents are the most
promising candidates for mining descriptions or properties of
code snippets at a large scale. Future work includes conducting
such a large scale study and using the results to guide the
development of mining tools that can extract information about
code snippets for a wide variety of software-related documents
to support the construction of new models and analyses that
enhance software engineering techniques and tools.

ACKNOWLEDGMENT

We acknowledge the support of the DARPA MUSE program
under Air Force Research Lab contract no. FA8750-16-2-0288.

REFERENCES

[1] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?” in Proc.
11th Working Conf. Mining Software Repositories, 2014, pp. 202–211.

[2] R. Tiarks and W. Maalej, “How Does a Typical Tutorial for Mobile
Development Look Like?” in Proc. 11th Working Conf. Mining Software
Repositories, 2014, pp. 272–281.

[3] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and G. Canfora,
“Mining source code descriptions from developer communications,” in
Proc. Int’l Conf. Program Comprehension, June 2012, pp. 63–72.

[4] A. Bacchelli, M. D’Ambros, and M. Lanza, “Extracting source code from
e-mails,” in Proc. 18th Int’l Conf. Program Comprehension, June 2010,
pp. 24–33.

[5] C. Vassallo, S. Panichella, M. Di Penta, and G. Canfora, “CODES: Mining
source code descriptions from developers discussions,” in Proc. 22nd Int’l
Conf. Program Comprehension, 2014, pp. 106–109.

[6] E. Wong, J. Yang, and L. Tan, “AutoComment: Mining question and
answer sites for automatic comment generation,” in Proc. 28th Int’l Conf.
Automated Software Engineering, Nov 2013, pp. 562–567.

[7] C. Treude and M. P. Robillard, “Augmenting API documentation with
insights from Stack Overflow,” in Proc. 38th Int’l Conf. Software Engi-
neering, 2016, pp. 392–403.

[8] G. Petrosyan, M. P. Robillard, and R. De Mori, “Discovering information
explaining API types using text classification,” in Proc. 37th Int’l Conf.
Software Engineering, 2015, pp. 869–879.

