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Abstract. As scientific computing experiences continuous growth of the
size of simulations, component frameworks intended for scientific com-
puting need to handle more components and execute on numerous hard-
ware resources simultaneously. Our distributed component framework
CCALoop presents a novel design that supports scalability in both num-
ber of components in the system and distributed computing resources.
CCALoop also presents several other beneficial design principles for dis-
tributed component frameworks such as fault-tolerance, parallel compo-
nents, and support for multiple users. To provide scalability it distributes
the responsibility for data queries and updates equally to all nodes in the
system through a distributed hash table mechanism, while providing low
latency in these operation through a method that guarantees one-hop
routing of framework messages.

1 Introduction

In recent years, component technology has been a successful methodology for
large-scale commercial software development. Component technology encapsu-
lates a set of frequently used functions into a component and makes the im-
plementation transparent to the users. Application developers typically use a
group of components, connecting them to create an executable application. The
components are managed by a component framework that exists on each com-
puting node where components may be instantiated or executed (see Figure 1).
A component framework provides a set of services to components: locating other
components in the system, instantiating, connecting, executing, reporting error
messages or results, etc. It can also provide a user interface, often a Graphical
User Interface (GUI), to compose, execute and monitor components. In order
to manage a large component application that uses many components and uti-
lizes sets of distributed computing resources, one or more component frameworks
have to exist on each separate computing resource. This requires that multiple
frameworks cooperate in some fashion to manage and monitor a large component
application.

Component technology is becoming increasingly popular for large-scale scien-
tific computing in helping to tame the software complexity required in coupling
multiple disciplines, multiple scales, and/or multiple physical phenomena. The



Fig. 1. Three distributed framework nodes located on separate computing resources.

Common Component Architecture (CCA) [1] is a component model that was
designed to fit the needs of the scientific computing community by imposing low
overhead and supporting parallel components. The CCA standard also provides
for the inclusion of Single Program Multiple Data (SPMD) parallel components.
These components exists in several address spaces and are internally managed
by message passing (e.g. Message Passing Interface (MPI)). A compliant frame-
work needs to provide the facilities to instantiate, manage, and execute this novel
type of component. The CCA model selects a lightweight component framework
that optimizes execution efficiency. Several software frameworks are targeted at
the CCA component model, including SCIRun2 [2], CCAFFEINE [3], XCAT [4]
and others. These systems enable creation of complex high-performance simu-
lations through the assembly of software components. Component frameworks
aimed at scientific computing need to support a growing trend in this domain
toward larger simulations that produce more encompassing and accurate results.
The CCA component model has already been used in several domains, creating
components for large simulations involving accelerator design, climate modeling,
combustion, and accidental fires and explosions [5]. These simulations are often
targeted to execute on sets of distributed memory machines spanning several
computational and organizational domains [6]. To address this computational
paradigm a collection of component frameworks that are able to cooperate to
manage a large, long-running scientific simulation containing many components
are necessary.

In each of the CCA-compliant component frameworks, facilities are provided
to support the collaboration among several distributed component frameworks.



However, existing designs do not scale to larger applications and multiple com-
puting resources. This is due to a master-slave (server-client) communication
paradigm. In these systems, the master framework manages all the components
and their metadata while also handling communicating with the user through the
GUI. The slave frameworks act only as component containers that are completely
controlled by the master. This centralized design is simple to implement and its
behavior is easy to predict. As component and node numbers grow however,
the master framework is quickly overburdened with managing large quantities
of data and the execution time of the entire application is affected by this bot-
tleneck. Moreover, as simulation size grows even further, the master-slave design
can inhibit the efficiency of future scientific computing applications. We present
an alternative design that is highly scalable and retains its performance under
high loads. In addition to the scalability problem, the master framework presents
a single point of failure that presents an additional liability for long-running ap-
plications and simulations.

A component framework’s data is queried and modified by a user (through a
GUI) and by executing components. In both cases it is imperative that the frame-
work provides quick responses under heavy loads and high-availability to long
running applications. The goal of our work is to present a solution to several key
issues is distributed component framework design. The system described in this
paper is architected to: (1) scale to a large number of nodes and components, (2)
maintain framework availability when framework nodes are joining and leaving
the system and be able to handle complete node failures, (3) facilitate multiple
human users of the framework, (4) support the execution and instantiation of
SPMD parallel components. Our distributed component framework, CCALoop,
is self-organizing and uses an approach that partitions the load of managing the
components to all of the participating distributed frameworks. The responsibil-
ity for managing framework data is divided among framework nodes by using
a technique called Distributed Hash Tables (DHT) [7]. CCALoop uses a hash
function available at each framework node that maps a specific component type
to a framework node in a randomly distributed fashion. This operation of map-
ping each component to a node is equally available at all nodes in the system.
Framework queries or commands require only one-hop routing in CCALoop. To
provide one-hop lookup of framework data we keep perfect information about
other nodes in the system, all the while allowing a moderate node joining/leaving
schedule and not impacting scalability. We accommodate the possibility that a
framework node may fail or otherwise leave the system by creating redundant
information and replicating this information onto other frameworks.

We organize the discussion of our distributed component design as follows.
Section 2 contains a discussion of related work. In Section 3 we show a detailed
view of our design and implementation of the CCALoop distributed component
framework, while in Section 4 we discuss some of the preliminary benchmarks
we have taken of our system. Finally, we finish with conclusions and future work
of the project in Section 5.



2 Related Work

The work of this paper is largely motivated by the lack of attention to scalabil-
ity in current CCA framework implementations. The SCIRun2 [2] and XCAT [4]
CCA-compliant frameworks enable distributed components existing on a variety
of resources. Both of them follow a paradigm of a master framework connected to
a number of slave frameworks and, as we mentioned before, this design does not
support large simulations and further growth. The CCAFFEINE [3] framework
is different in that it is not distributed, but only a parallel framework. It commu-
nicates internally by using MPI communication, but is unable to communicate
with frameworks not part of the same MPI communicator. The CCAFFEINE
framework is an SPMD application that minimizes interoperation between the
parallel cohorts and does not follow the master/slave approach of the other
CCA-compliant frameworks mentioned. We argue that CCAFFEINE has simi-
lar problems scaling as the other approaches because it creates an architecture
where each framework process contains all of the framework data (all nodes are
master nodes). This incurs the same scalability problems, while also paying even
larger performance penalties when the framework contains a large number of
nodes. Additionally, the redundancy of data in CCAFFEINE does not mean
fault tolerance: if one MPI process fails the rest of them will usually hang.

The design of our CCALoop component framework follows previous work
on peer-to-peer communication and systems. Specifically, the use of Distributed
Hash Tables (DHT) [7] for distributed systems that was pioneered by systems
such as Chord [8]. Several other systems apply these design principles to appli-
cations such as file-sharing, although we are unaware of a component framework
application. The work by Gupta et al. [9, 10] argues for the use of a one-hop
lookup scheme in distributed Chord-like systems that do not have an extremely
dynamic membership. Our domain of high-performance computing does not have
high node turnover and requires that we provide low-latency communication
within the framework which was best accommodated through a one-hop design.
Therefore, we adopted this approach in our component framework.

Highly distributed systems aimed to support middleware have been devel-
oped with the advent of the Internet. The Grid [11] is one of them that is also
directed toward scientific computing applications. A system designed for the
Grid that is based on DHT is the approach for a range queried grid information
service [12]. This approach extends the DHT design principle to enable range
queries (e.g. memory > 250 Mbytes) and apply them to a grid information ser-
vice. A CCA framework has similarities to a grid information service as they both
answer system information queries. However, in this task a CCA framework has
stricter latency and efficiency requirements. A CCA framework is additionally
responsible for a number of other tasks like connecting, instantiating and exe-
cuting components. Therefore, we directed the focus of our work to low latency,
scalability, multi-user capabilities, and parallel components.



3 Design

Current distributed framework design is inappropriate in accommodating com-
ponent applications with numerous components that use many computing re-
sources. We implemented a CCA-compliant distributed component framework
called CCALoop that prototypes our design for increased framework scalability
and fault tolerance. CCALoop scales by dividing framework data storage and
lookup responsibilities among its nodes. It is designed to provide fault-tolerance
and uninterrupted services on limited framework failure. CCALoop also provides
the ability to connect multiple GUIs in order for users to monitor an application
from multiple points. While providing these capabilities CCALoop does not add
overwhelming overhead or cost to the user and satisfies framework queries with
low latency. In this section we will examine the parts that form the structure
of this framework. We begin by looking more closely at the tasks and roles of a
CCA-compliant component framework.

The main purpose of a component framework is to manage and disseminate
data. Some frameworks are more involved, such as Enterprise Java Beans [13],
but in this work we focus on the ones in the style of CORBA [14] that do
not interfere with the execution of every component. This kind of a component
framework performs several important tasks in the staging of an application, but
gets out of the way of the actual execution. Executing components may access
the framework to obtain data or to manage other components if they choose
to, but it is not usually necessary. CCA-compliant frameworks also follow this
paradigm as it means low overhead and better performance.

CCA-compliant frameworks store two types of data: static and dynamic. The
majority of the data is dynamic, which means that it changes as the applica-
tion changes. The relatively small amount of static data describes the available
components in the system. In a distributed setting, static data consists of the
available components on each distributed framework node. The dynamic data
ranges from information on instantiated components and ports to results and
error messages. A significant amount of dynamic data is usually displayed to
the user via a GUI. In our design, we distribute management of framework data
without relocating components or forcing the user to instantiate components on
a specific resource. The user is allowed to make his or her own decisions regarding
application resource usage.

One of the principal design goals of CCALoop is to balance the load of man-
aging component data and answering queries to all participating frameworks.
This is done by using a DHT mechanism where each node in the system is as-
signed a unique identifier in a particular identifier space. This identifier is chosen
to ensure an even distribution of the framework identifiers across the identifier
space. We provide an operation that hashes each component type to a number in
the identifier space. All metadata for a given component is stored at the frame-
work node whose identifier is the successor of the component hash as shown in
Figure 2(b). Given a random hash function the component data is distributed
evenly across the framework nodes. The lookup mechanism is similar to the stor-
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Fig. 2. (a) Framework data replication across node’s two successors. Shown
as node 25 is leaving the system and before any data adjustments have been
made. (b) The data responsibilities of the CCALoop framework with four
nodes.

age one: to get information about a component, we compute its hash and query
the succeeding framework node.

3.1 Loop Structure

CCALoop’s framework nodes are organized in a ring structure in topological
order by their identifier numbers. Each framework node has a pointer to its
successor and predecessor, allowing the ring to span the identifier space regard-
less of how the system may change or how many nodes exists in a given time.
CCALoop also facilitates a straightforward way of recovering from node failure,
by naturally involving the successor of the failed node to become new successor
to the queried identifier. Use of a loop structure with a DHT lookup is commonly
found in several peer-to-peer systems such as Chord [8].

Adding framework nodes to the system splits the responsibility for framework
data between the joining node and its current owner. It is a two step process that
begins at any already connected node in the system. The first step is assigning an
identifier to the joining node that best distributes the nodes across the identifier
space. The identifier in the middle of the largest empty gap between nodes
is selected based on the queried framework node’s information. Later, we will
explain how every node in the system contains perfect information about the
existence of other nodes in the distributed framework. Apart from a well-chosen
identifier, the node is given the address of its predecessor and successor. The
second step is for the joining node to inform the predecessor and successor that



it is about to join the network so that they can adjust their pointers. This step
also resolves conflicts that may occur if two joining frameworks are assigned the
same identifier in the first step by two separate nodes. If this conflict occurs,
one of the nodes is assigned a new identifier and forced to repeat the second
step. Removing nodes in the system has the opposite effect as adding nodes:
the successor of the leaving node becomes responsible for the vacated identifier
space and associated framework data.

Periodically, nodes invoke a stabilize() method that ensures that the successor
and predecessor of that node are still alive. If one or both has failed, the node
adjusts its predecessor or successor pointer to the next available node. Since
perfect loop membership information is kept at every node, finding the next
node in the loop is straightforward. The process of updating the predecessor
and successor pointers ensures that the loop structure is preserved, even when
framework nodes leave the system. When a node leaves and this readjustment
takes place, the identifier distribution may become unbalanced. This will last
until a new framework joins; when it will be instructed to fill the largest current
gap in the identifier space.

In order to enable seamless functioning of CCALoop during framework node
failure we replicate the data across successor nodes, so that if a framework fails,
its successor is able to assume its responsibilities. To be able to handle mul-
tiple simultaneous failures we can increase the number of successors to which
we replicate the framework data. This incurs a bandwidth cost proportional to
the number of replicas. If a node joins or leaves the system, some data read-
justment is performed to ensure that the replication factor we have chosen is
restored. CCALoop targets the high-performance scientific computing domain,
which uses dedicated machines with high availability. Machine failures or inter-
mittent network failures are possible, but infrequent. Because of this, we are
content with providing two or three replicas for a particular framework node’s
data. Figure 2(a) shows an example of data replication across two successors as
a node leaves the framework.

3.2 One-hop Lookup

An advantage of our distributed framework design is the ability for nodes to
contact other nodes directly, or through “one-hop”. The one-hop mechanism
was initially designed as an alternative to Chord’s multi-hop query design [9].
One-hop lookup enables low latency querying, which is important in maximizing
performance to components in a distributed framework. In order to support one-
hop lookups, full membership awareness is required in the framework; every node
needs to keep updated information about all other nodes in the system. There
is certainly a cost to keeping this information current in the framework and it
is proportional to the joining and leaving (turnover) rate. As with data repli-
cation, our expectation is that framework nodes comprising a CCA-compliant
distributed framework will not have the same framework turnover rate as one
of the popular file sharing networks, where turnover is an issue. Therefore, our
design is unlikely to encounter very high levels of node turnover. When node



turnover does occur, our distributed framework would provide graceful perfor-
mance degradation.

CCALoop uses a multicast mechanism to provide easy and quick dissemi-
nation of membership information. This mechanism creates a tree structure to
propagate node leaving and joining information to all nodes in the system. We
divide our loop structure into a number of slices, and assign a “slice leader”
node to each slice. In CCALoop, the slice leader is the node with the smallest
identifier in the slice. When a node joins the framework, its successor contacts
the slice leader. The slice leader distributes this information to all other slice
leaders as well as all the other nodes in the slice. Finally, each slice leader that
received the message propagates it to all members of its slice. This hierarchy en-
ables faster membership propagation which in turn enables CCALoop to reach a
steady state faster. Additionally, this reduces errant queries as well as providing
the means for low-latency access to framework nodes.

3.3 Multiple GUIs

Providing a graphical user interface is an important role of a scientific component
framework. A framework’s user is interested in assembling a simulation, steering
it, and analyzing intermediate and final results. In large, cross-organizational
simulations several users may need to manage a simulation, and several others
may be interested in viewing the results. State of the art CCA-compliant sci-
entific computing frameworks provide the capability to attach multiple GUIs
and users. However, each of these frameworks provides that capability only at
the master node, which hinders scalability as previously discussed. One of the
opportunities and challenges of a scalable distributed framework like CCALoop
is to handle multiple GUIs.

CCALoop allows a GUI to attach to any cooperating framework node. A user
is allowed to manage and view the simulation from that node. When multiple
GUIs are present, we leverage the slice leader multicast mechanism to distribute
information efficiently to all frameworks with GUIs. We establish a general event
publish-subscribe mechanism with message caching capability and create a spe-
cific event channel for GUI messages. Other channels may be created to service
other needs. GUIs on which some state is changed by the user are event publish-
ers, while all the other GUIs in the system are subscribers. We route messages
from publishers to subscribers through the system by passing them through
slice leaders while ensuring that we are not needlessly wasting bandwidth. All
messages are cached on the slice leader of the originating slice of nodes.

The reason we use the hierarchical mechanism to transfer GUI messages over
a more direct approach is to cache the GUI state of the framework. CCALoop
provides a mechanism that is able to update a GUI with the current state when
this GUI joins after some user operations have already occurred. To prepare for
this scenario, we continuously cache the contribution to the GUI state from each
slice at its slice leader. This is advantageous since we expect GUIs to often join
at midstream, then leave the system, and possibly return.



An additional concern with multiple distributed GUIs is the order of state-
changing operations. We use a first-come-first-serve paradigm and allow every
GUI to have equal rights. A more complex scheme is possible and would be
useful, but that is outside the scope of this paper.

3.4 Parallel Frameworks

To support CCA’s choice of SPMD-style parallel components, a framework needs
to be able to create a communicator, such as an MPI Communicator, which
identifies the set of components that are executing in parallel and enables their
internal communication. This internal (inter-process) communication is embed-
ded in the algorithm and it is necessary for almost any parallel computation. To
produce this communicator a framework itself needs to be executing in parallel:
In order to execute the component in parallel we first execute the framework in
parallel. A parallel framework exists as a resource onto which parallel compo-
nents can execute. Parallel component communication and specifically parallel
remote method invocation can be quite complex and it has been studied exten-
sively [15].

A concern of this work is the inclusion of parallel frameworks in a distributed
framework environment involving many other parallel and non-parallel frame-
works. The parallel framework can be handled as one framework entity with one
identifier or it can be considered as a number of entities corresponding to the
number of parallel framework processes. We choose to assign one identifier to
the entire parallel framework to simplify framework-to-framework interaction.
This needs to be done carefully, however, to ensure that communication to all
parallel cohorts is coordinated. By leveraging previous work in the area of paral-
lel remote method invocation we gain the ability to make collective invocations.
We use these collective invocations to always treat the parallel framework as one
entity in a distributed framework.

Even though we choose to treat all parallel framework processes as one par-
allel instance, the component’s data that the framework stores is not limited
to one entry per parallel component. To enable a more direct communication
mechanism, we need to store an amount of data that is proportional to the num-
ber of parallel processes of the parallel component. Large parallel components
are a significant reason that more attention should be directed toward scalable
distributed component frameworks.

4 Results

In this section, we intend to show that scalability of component frameworks is a
practical concern in large-scale simulations consisting of many components and
computational resources. The CCALoop component framework implementation
is designed to scale gracefully under heavy loads due to its design that distributes
the load across the distributed framework. In contrast, other frameworks that are



Fig. 3. Scalability comparison of SCIRun2 and CCALoop for 10, 16, and 32 nodes.

not designed with scalability in mind, such as SCIRun2, ought to significantly
degrade in performance after the number of components reaches some threshold.

To understand the scalability constraints of CCA-compliant frameworks we
benchmarked and compared CCALoop and SCIRun2. The CCALoop frame-
work implements the distributed framework design discussed in this paper, while
SCIRun2 uses a master/slave hierarchy. In each of these frameworks, we imple-
mented a simple real-world scenario: instantiate a large number of components
and then attempt to connect some of their ports. This benchmark is a simplified
group of the tasks any CCA framework would be asked to perform in the setup
stage of a simulation (in pseudo-code):

framework.createInstance(‘‘Hello’’);

framework.createInstance(‘‘World’’);

ComponentID hello_id = framework.getComponentID(‘‘Hello’’);

ComponentID world_id = framework.getComponentID(‘‘World’’);

hello_ports = framework.getProvidedPortNames(hello_id);

world_ports = framework.getUsedPortNames(world_id);

framework.connect(world_ports[0], world_id,

hello_ports[0], hello_id);

We measure the time it takes to execute this benchmark in SCIRun2 and
CCALoop and present the results in Figure 3. We executed the benchmark on
a cluster of dual-processor P4 Xeon nodes with 2GB of memory per node. The
graph shows the the average time it takes to complete one iteration of the bench-
mark in CCALoop and SCIRun2 as the number of components per framework



node increase. We show multiple lines presenting benchmark execution on a
different number of nodes in the cluster.

Each of the lines (in light gray) showing the SCIRun2 benchmark runtime
have a steadily increasing slope indicating that the number of components has
a negative effect of SCIRun2’s ability to perform basic tasks. It may seem that
a very large number of components are possible before SCIRun2’s performance
degrades. We also notice that the performance of SCIRun2 get worse at a faster
rate in the lines representing larger number of nodes. On the other hand, the
performance of CCALoop (in dark gray) remains steady across executions on
different node sizes. The intersection of the corresponding (by number of nodes)
SCIRun2 and CCALoop lines moves in the left direction to smaller numbers of
components as the node numbers increase.

This indicates that simulations executed on 128 or more nodes, which are
common in the scientific computing domain, may be adversely affected by SCIRun2’s
centralized design at small numbers of component instances. In addition, these
large simulations often include parallel components whose effect on the frame-
work is approximately proportional to their number of processes. Therefore we
expect that frameworks similar in design to SCIRun2 will be easily overwhelmed
in these cases, making CCALoop the necessary framework choice.

5 Future Work and Conclusions

The future work of this project is to include these features, which we have shown
to be implementable and beneficial in CCALoop, into our production-level CCA
framework SCIRun2. This will produce an in-depth practical evaluation of the
usefulness of this distributed framework design. We also intend to include im-
proved resolution of conflicting user actions in CCALoop. Currently, the frame-
work accepts the first user action and rejects any conflicting actions that arrive
later. Parallel components and their communication are also a continuing area
of interest to this project.

This paper presents a design that enables scalability and fault tolerance
in distributed frameworks. It also provides, through our prototype framework
CCALoop, an implementation of the CCA component model that supports mul-
tiple GUIs and parallel components. Each of these capabilites is important to
the creation of a next-generation component framework supporting the future
needs of component-based scientific simulations. As parallel components become
more prevalent and as simulations grow larger and more encompassing the need
for the design attributes that CCALoop provides will become more apparent.
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