
Automatically Selecting Follow-up Questions for
Deficient Bug Reports

Mia Mohammad Imran
Virginia Commonwealth University

Richmond, Virginia, U.S.A.
imranm3@vcu.edu

Agnieszka Ciborowska
Virginia Commonwealth University

Richmond, Virginia, U.S.A.
ciborowskaa@vcu.edu

Kostadin Damevski
Virginia Commonwealth University

Richmond, Virginia, U.S.A.
kdamevski@vcu.edu

Abstract—The availability of quality information in bug re-
ports that are created daily by software users is key to rapidly
fixing software faults. Improving incomplete or deficient bug
reports, which are numerous in many popular and actively
developed open source software projects, can make software
maintenance more effective and improve software quality. In
this paper, we propose a system that addresses the problem
of bug report incompleteness by automatically posing follow-up
questions, intended to elicit answers that add value and provide
missing information to a bug report. Our system is based on
selecting follow-up questions from a large corpus of already
posted follow-up questions on GitHub. To estimate the best
follow-up question for a specific deficient bug report we combine
two metrics based on: 1) the compatibility of a follow-up question
to a specific bug report; and 2) the utility the expected answer
to the follow-up question would provide to the deficient bug
report. Evaluation of our system, based on a manually annotated
held-out data set, indicates improved performance over a set of
simple and ablation baselines. A survey of software developers
confirms the held-out set evaluation result that about half of the
selected follow-up questions are considered valid. The survey also
indicates that the valid follow-up questions are useful and can
provide new information to a bug report most of the time, and
are specific to a bug report some of the time.

Index Terms—follow-up questions, bug reporting, bug triage

I. INTRODUCTION

In many popular software projects, bug reports arrive with
frequency and in bursts that can overwhelm even well-
resourced and well-organized bug triage. At the same time,
a significant proportion of the arriving bug reports lack suffi-
cient actionable information for bug triagers to reproduce the
bug. Researchers have observed this problem of bug report
deficiency (or incompleteness), e.g., reporting that over 60%
of bug reports lack any steps to reproduce and over 40%
lack any description of the expected behavior [1]. Missing
information in bug reports was also a key concern in the
first open letter to GitHub from the maintainers of open
source projects [2] [3], which was partially addressed via a
bug report template mechanism. While nowadays some of
the software projects on GitHub rely on specific templates
or publish bug reporting guidelines that bug reports must
follow, there are many cases where templates are ignored and
guidelines are poorly followed by reporters. Posting a quick
follow-up questions in order to obtain additional information
from bug reporters is one method bug triagers use to augment
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Fig. 1: The text for bug report #829 of the bootstrap-sass
project is similar to other bug reports with already posed
follow-up questions. The similarity between a pair of bug
reports is illustrated as the length of the line connecting them.

the bug reports with necessary information. However follow-
up questions are only effective if they are posed quickly, before
the user reporting the bug loses focus on the specifics. In this
paper, we examine how posing such follow-up questions for
bug reports can be performed automatically, designing and
describing a system to reduce bug triage effort, and improving
overall bug report quality by automatically posing follow-up
questions for deficient bug reports.

We base our automatic follow-up question posing system
on the following assumptions and ideas: 1) relevant follow-up
question are common, not overly specific, and have already
been posed in other prior bug reports in the current project
or in others; 2) similar bug reports necessitate similar follow-
up questions; and 3) the utility of the answer provided to a
prior similar follow-up question is indicative of its value to
the current bug report. Based on this, our system performs an
information retrieval task, locating the most relevant and useful
follow-up question for a specific deficient bug report, given a
large corpus of previous bug reports, follow-up questions, and
their answers. For instance, consider the example shown in
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Fig. 2: Daily issue creation activity in 2019 for a selection
of ten highly active (by number of commits) repositories on
GitHub.

Figure 1, where the text of the bug report boostrap-sass #829
is similar to several other bug reports on GitHub with existing
follow-up questions. In our system, choosing the right follow-
up questions is a combination of the similarity between bug
reports and the utility of the expected answer to the follow-up
question. A requirement for a system that locates candidate
follow-up questions and then ranks them in order of their
perceived utility is a large-scale corpus.

To curate a corpus of prior bug reports, follow-up questions,
and their answers we leverage GitHub, where we focus on
popular repositories that have a high level of activity and there-
fore are likely to have numerous relevant follow-up questions,
encoded as GitHub issue comments. We gather the answers
to these follow-up questions that occur either as additional
GitHub issue comments or as edits to the original bug report
text. We base our estimate of the utility of an answer on
the quantity of Observable Behavior (OB), Expected Behavior
(EB) and Steps to Reproduce (S2R) it contributes, which we
identify using the linguistic patterns published by Chaparro
et al [1]. We evaluate our prototype in two ways, based on
its ability to predict valid follow-up questions on a manually
annotated held-out dataset, and based on a developer survey
that aims to gauge the usefulness of the follow-up questions we
recommend. The results indicate that the technique is viable,
with 0.677 MRR on the held-out dataset, 53% of respondents
indicating that the follow-up questions are valid, and 92% of
the valid questions asking for new information for each bug
report. To summarize, the primary contributions of this paper
are:

1) mechanism for automatically posing follow-up questions
to aid with incomplete bug reports;

2) metrics to select follow-up questions for a specific bug
report from a corpus of bug reports, follow-up questions
and their answers extracted from bug triage histories;

3) process for curating a large and high-quality corpus of
bug reports, follow-up questions and answers from online
software development platforms like GitHub.

Relative to the prior efforts by the software engineering
research community towards improving the quality of bug
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Fig. 3: Bug report with follow-up question and OB in answer.

reports, this paper is the first to propose follow-up questions.
Automatically posing follow-up questions has been proposed
in several other domains, e.g., for improving the quality of
Web forum posts [4], product reviews in online retail [5], and
improving query quality in Web search [6].

II. BUG REPORTING IN OPEN SOURCE PROJECTS

The overall trend in software development in recent years is
towards increased speed of development and delivery. There
are nowadays numerous projects on popular public software
collaboration platforms like GitHub that have large develop-
ment teams and user communities. Many of these projects
experience significant bug reporting traffic [7]. Figure 2 shows
the issue creation frequency for a selection of ten GitHub
repositories that are currently active with a high numbers of
commits and developers. Three of these repositories have a
median of over 40 issues created daily, where most of them
are bug reports reported by GitHub identities that have not
contributed to the project (i.e., users). In addition, the same
three projects exhibit high variance in daily issue creation,
likely indicative of bursty and hard to predict bug reporting
activity. This is a considerable burden for bug triagers and it
motivates the need for the type of work as described in this
paper, which intends to make bug triage more efficient and
less of a burden for project maintainers.

Posing follow-up questions is an already practiced miti-
gation strategy for deficient bug reports. To quantify how
widespread is the use of follow-up questions, we performed a
small scale study of the prevalence of follow-up questions on
GitHub, focusing on the 10 active projects used in Figure 2.
From each of the 10 repositories, we randomly sampled 50
closed bug reports (500 in total) and manually examined them
(by two of the paper’s authors) for follow-up questions. We



were also interested whether the answers to those questions (if
they are present) provide any of the three key parts of a bug
report: Observable Behavior (OB), Expected Behavior (EB) or
Steps to Reproduce (S2R). We found that follow-up questions
were present in 23.6% (118/500) of bug reports and about
73% (86/118) of them were answered with 57% (49/86) of the
answers containing Observable Behavior, Expected Behavior
or Steps to Reproduce. Our analysis of this small randomly-
sampled dataset indicates that, since follow-up questions tend
to be answered by bug reporters at a relatively high rate (73%
in our study) with answers that seem to add value to the
bug report, an automated technique to pose such follow-up
question should be of value.

We highlight one of the bug reports we examined (ansi-
ble/ansible #3933) in Figure 3. The follow-up question What
OS/version of Ansible was this on? elicited an answer that
provided key OB to this bug report, leading to its quick subse-
quent fix. Developer surveys have confirmed the importance of
OB, EB and S2R in bug reports, observing that S2R is among
the most valuable aspects of a bug report with OB and EB
closely behind [8], [9]. The availability of existing follow-up
questions on social coding platforms like GitHub provides the
preconditions for the approach described in this paper, which
leverages such existing follow-up questions to automatically
rank and select the most appropriate one to be asked for a
newly written, incomplete bug report. In the remainder of this
paper, we describe the design of this system, which we entitle
Bug-AutoQ – Bug Automated Questioner1.

III. SYSTEM DESCRIPTION

As input, our system for retrieving follow-up questions,
Bug-AutoQ, requires: 1) a bug report of interest; 2) a corpus
of already posed follow-up questions extracted from GitHub
issues, including their corresponding bug reports and answers.
When the bug report is deficient in OB, EB, or S2R (computed
based on the language patterns described in Section III-C2),
Bug-AutoQ poses a single follow-up question (or a small set)
appropriate to the deficient bug report. The overall vision
of Bug-AutoQ is shown in Figure 4. The left side of the
figure shows the online part of Bug-AutoQ that determines
the optimal follow-up questions for a deficient bug report,
while the right side shows the steps necessary for the offline
generation of a corpus of follow-up questions for reuse. In
this section, we describe our system, including how we create
a large corpus of follow-up questions to recommend, how
we select candidate follow-up questions from this corpus for
a specific incomplete bug report, and how we rank these
questions in descending order of their potential utility to the
bug report.

A. Selecting a Corpus of Bug Reports

Our goal in curating a corpus of bug report-related follow-
up questions and their answers is to find a large, representative

1Replication package available at: https://tinyurl.com/y4k43fll

and high-quality corpus. Manually curated corpora are of high
quality but they are difficult to scale-up. Automatic curation
can easily scale but it can be affected by significant noise,
leading to low data quality, unless care is taken to filter and
sample follow-up questions in a way that noise is mitigated.
As corpus size is an important factor in our system, we opt
for an automated approach with numerous filters to ensure
the data is of highest possible quality. With the number of
active repositories available on GitHub providing a very large
input domain, we can afford to err on the side of being overly
restrictive in our filtering. To automatically curate our corpus,
we: 1) select GitHub repositories that have high bug reporting
activity, as measured by the number of issues created by non-
contributors over some fixed period of time; 2) select issues in
those bug repositories that contain rapidly asked and succinct
follow-up questions contained in GitHub issue comments; 3)
locate answers to the follow-up questions encoded as either
comments or as edits to the original bug report.

In more detail, we used the following sequence of steps
to curate the corpus. The highlights of the corpus curation
process are also illustrated on the right part of Figure 4.

1) Using the public GitHub APIs, we scraped a set of public
GitHub repositories with a high rate of non-contributor
created issues, where a non-contributor is a GitHub
user that has never committed any code in the specific
repository. GitHub repositories with these characteristics
form our target population, i.e., projects that are more
likely to be in need our technique. In order to somewhat
constrain the number of GitHub repositories, we focused
on longer-running projects, specifically, with repositories
created between 2008-2014, and recently active with new
issues created after Jan 1, 2019.

2) For each of these repositories, in descending order of
their number of non-contributor created issues per day,
we selected all issues from each repository’s GitHub issue
tracker that are labeled as “bug”, “crash”, “fix”, “defect”
or unlabeled. As an example, the bug report in Figure 3
is labeled as “bsd” and “bug”. Our goal for this step
was to avoid feature requests and focus on bug reports.
We observed that issue labels were not used consistently
enough in projects on GitHub, which is why we opted
to include unlabeled issues. Since we are interested in
deficient bug reports, we selected bug reports that do not
contain any Observable Behavior, Expected Behavior, or
Steps to Reproduce.

3) We further selected only issues that contain follow-up
questions in one of the issue comments. We identified
follow-up questions as comments containing only ques-
tions, identified by both starting with an interrogative
word and ending with a question mark. In order to
ensure we selected follow-up questions and not just any
questions, we constrained our selection based on time
and comment sequence. That is, the comment containing
the follow-up question must have been posted within 60
days of the issue creation date and must have occurred
as the comment immediately following the post. We also
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Fig. 4: Overall workflow for how the Bug-AutoQ system is used to improve bug report quality.

avoided follow-up posts by the issue author by ensuring
that the comment was authored by a different user from
the author of the issue.

4) The set of issues and candidate follow-up questions from
the previous step were further filtered to retain issues and
follow-up questions where an answer was provided. A
key heuristic we used for recognizing an answer was that
it was authored by the original issue creator and occurred
as the the next sequential comment to the follow-up
question. We also searched for answers that were encoded
as edits to the original issue text by the author, which
occurred after the follow-up question was posted and
were limited to add at least 4 additional words to the
original text in order to avoid minor spelling or grammar
modifications.

We stopped the collection process when we gathered a
dataset of 25K GitHub issues, which we deemed to be suffi-
cient for our purpose. With 25K issues, the dataset provided a
distribution of OB/EB/S2R in the answers, specifically 10930
answers containing OB, 3100 answers containing EB, and 266
containing S2R. Each data point in our dataset is a triple of
bug report, follow-up question, and answer. Together, the 25K
triples form the primary corpus we used to retrieve and rank
follow-up questions for a given incomplete bug report.

B. Selecting Candidate Follow-Up Questions

Selecting a set of most appropriate candidate follow-up
questions for a specific incomplete bug report of interest from
the corpus of 25K triples (bug reports, follow-up questions and
their answers) can be formulated as an information retrieval
problem. That is, as a query we use the text of the incomplete
bug report. We represent the corpus as an inverted index of
the bug report text (i.e., using Lucene), and use tf*idf as
the ranking mechanism. In this way, we retrieve a set of
10 candidate follow-up questions for each incomplete bug
report of interest, where these 10 candidates have the most
similar bug report text to the bug report of index. Later,
through manual annotation of a set of bug reports, as shown
in Figure 6, we confirmed that 10 is a good upper-bound for
the number of valid follow-up questions per bug report.

More specifically, we create a Lucene index of the corpus
of bug reports by following this set of steps:
• Filtering. Removing code or stack traces from bug reports

in our index allows for more accurate matching. GitHub
issues use markdown so we remove all text surrounded
by triple-quotes as this is typically how source code and
stack traces are encoded. We also remove quoted text
(i.e., lines that start with the greater than symbol) as these
typically refer to some external information, which, again,
is often stack traces, code, or project documentation.

• Tokenization. We perform standard tokenization used
in software engineering applications of information re-
trieval [10], [11]. We tokenize on white space, remove
punctuation (except for horizontal dashes) and split on
camel case and dashes, while also keeping the original
unsplit tokens.

• Indexing. We use Lucene’s standard configuration to
index the title and the body in separate fields. In order
to provide more context, we add to the index the labels
on GitHub that the bug report is associated with (e.g.,
fix-later, critical) and the labels the GitHub repository is
associated with (e.g., java, linux, web-server). The former
provides specifics on the issue while the latter usually
denotes technologies the project uses or broad categories
it belongs to.

To create a query out of the incomplete bug report, we
tokenize its title and body using the equivalent process to the
one we performed on the bug reports in the corpus. While
Lucene returns a ranked list of follow-up questions according
to tf*idf, our use of this mechanism is only in retrieving a
set of 10 candidates. In the following section, we describe an
improved, customized ranking, which takes into account both
the question’s compatibility and its utility in order to select
which follow-up question to pose to the deficient bug report.

C. Ranking the Candidate Follow-Up Questions

To rank the set of candidate follow-up questions we re-
formulate and apply towards bug reporting the notion of
the Expected Value of Perfect Information (EVPI), initially
proposed as a means to rank follow-up quesitons by Rao et



al. [4]. To evaluate a follow-up question, EVPI suggests using
the (expected) value of its answer, i.e., for an incomplete bug
report, EVPI estimates the value of the information provided
by the answer to the follow-up question. The higher the EVPI
the higher we rank a follow-up question from the candidate
set.

Given an incomplete bug report of interest, br, we express
the EVPI of a specific follow-up question qi from our candi-
date set as the product of: 1) the compatibility of a specific
follow-up question to the bug report, i.e., the probability of a
specific question and answer pair occurring for that bug report,
P (qi + ai|br), and 2) the utility of that question, U(qi).

EV PI(qi|br) = P (qi + ai|br) ∗ U(qi)

The utility of a question is further expressed in terms of the
average quality of the answers it has received, i.e.,

U(qi) =
1

|A|
∗
∑
â∈A

|OB(â)|+ |EB(â)|+ |S2R(â)|
|â|

,where A is the set of answers the question qi has received
across all of its one or more occurrences in the corpus, â is
one of those answers, and OB(â), EB(â) and S2R(â) are
the sentences describing Observable Behavior (OB), Expected
Behavior (EB), or Steps to Reproduce (S2R) found in the
answer. We use the | · | operator to denote the cardinality
of a set. The idea of this metric is that questions whose set
of answers have a high proportion of OB, EB, or S2R have
higher utility than questions whose answers do not contribute
much in terms of this type of information. Bug-AutoQ uses
this formulation of EVPI, the product of compatibility and
utility, which we estimate using a set of steps that we describe
next. Rao et al. [4] initially defined EVPI as the product of
the probability distribution (which we call compatibility) and
the utility, but their definition of these two constituent terms
and how they are computed differs in significant ways from
ours.

1) Estimating Compatibility: To compute the probability
of a follow-up question occurring for a given bug report,
P (qi + ai|br), we use a neural network approximation, using
a deep NN consisting of 3 layers (as shown in Figure 5). As
the first layer, in order to introduce semantics, we encode the
bug report text with GloVe word embeddings that we pre-
trained on the entirety of Stack Overflow (using the most
recent Stack Overflow data dump as of June, 2020) with
default parameters (vector size = 200;window size = 15).
As the second layer, in order to capture the word sequence, we
train a LSTM and compute an average across the hidden states.
As the third and final layer we use a dense neural network.
The output of the entire network is a vector that is intended
to be as similar as possible (according to cosine similarity)
to the concatenated average word embeddings of qi and ai
(using the same GloVe vectors as above). We train the neural
architecture using the actually posed follow-up questions and
answers as positive labeled examples for qi and ai and the
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Fig. 5: The neural architecture for estimating Compatibility.
The neural network outputs a vector similar to the ”ideal”
question and answer for the input bug report.

remaining 9 question-answer pairs in the candidate set as
negatively labeled. We use cosine embedding loss and weight
balancing to manage the resulting class imbalance as the
negative examples significantly outnumber the positive ones,
9 to 1.

2) Estimating Utility: To compute the utility of the follow-
up question, U(qi), we leverage the pattern based identification
of the constituent pieces of a bug report (OB, EB and S2R)
created by Chaparro et al. [1] We implement 5 of the most
common and most productive patterns for each of OB, EB
and S2R, as described by the authors. Each of the total 15
patterns rely on predefined sets of keywords and part-of-speech
tagging to ensure high precision2. We value high precision over
recall since we believe it is more important for Bug-AutoQ to
produce fewer false positives rather than fewer false negatives,
i.e, it is better to pose a good follow-up question rather than
ensure a follow-up question for all incomplete bug reports.

In order to compute the average utility of the answers for
a particular question in the corpus, we again rely on Lucene
to provide matching between questions and we reserve 10 of
the most similar question variants for each queried follow-

2Depending on the choice of patterns, Chaparro et al. report average EB
precision of 95.1%-96.7%, recall of 46.1%-76.6% and average S2R precision
of 81.6%-84.5% and recall of 31.0%-38.5%; OB results were not reported [1].
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up question. The intuition is that it is beneficial to estimate
the utility of a follow-up question not by what is in a single
answer, which can be noisy, but by the average amount of
OB/EB/S2R across a number of answers of this question (or its
close variants). In other words, individual answers on GitHub,
even to well posed follow-up questions, can sometimes be
inadequate, but, when averaging over several instances of the
similar question we can more accurately estimate its utility.
Note that Lucene is used at two different stages of Bug-AutoQ;
we used Lucene to compare the incomplete bug reports as well
as here within the Utility computation.

IV. EVALUATION

We implemented a prototype of the follow-up question se-
lection of the Bug-AutoQ system (i.e., Offline Corpus Curation
and Selecting Follow-Up Questions, as shown in Figure 4)
with the aim of evaluating its combined efficacy along a few
different dimensions. First, we use metrics and a held-out
data set to evaluate the quality of the recommendation, i.e.,
how well the system selects valid follow-up questions for
incomplete bug reports. We define valid follow-up questions
as those that are a match to the topic and content of a specific
bug report. Second, we use a survey of software developers to
evaluate the follow-up questions on their usefulness, novelty
and specificity. We define usefulness as the perceived ability of
the follow-up question to elicit additional valuable information
for diagnosing the bug; novelty as the perceived ability to
elicit new, previously unreported information, and specificity
as how much the follow-up question is tailored for the target
bug report vs. applicable to a broad range of other bug reports.

A. Quality of Follow-Up Question Ranking

One way of evaluating the ranking system, based on a held-
out dataset (of bug reports and candidate follow-up questions),
is by using the posed questions as the ground truth. How-
ever, this simple setup has a serious deficiency in that the
actually posed question may not always be the most optimal
among the set of candidate follow-up questions. As evidence
for this, we sometimes observed cases when bug reporters
responded negatively to the posed follow-up questions, e.g.,

answering “why is that relevant” (https://github.com/mautic/
mautic/issues/1550). More importantly, several of the remain-
ing candidate questions may be valid and (more) relevant to the
bug report and therefore should not be considered as negatively
labeled instances for evaluation. Therefore, in order to provide
an evaluation set that identifies all of the valid questions in
the candidate set, we perform manual annotation that clearly
identifies all of the valid follow-up questions for a specific bug
report.

1) Annotation: We annotated 400 randomly chosen bug
reports that were held-out from training in our original corpus
of 25K (curated as described in Section III-A). The annotation
was performed by two of the authors following an agreed-upon
predefined procedure. We focused our annotation on the 10
candidate follow-up question retrieved by Lucene. For each
bug report, each annotator 1) read the bug report carefully,
spending a few minutes to understand its context, e.g., by
looking at the purpose of the overall GitHub project and the
types of technologies it relies on; 2) marked all of the follow-
up questions for the candidate set of 10 that were valid. Both
of the annotators processed the same set of 400 bug reports,
marking an average of 3.45/10 of the follow-up questions as
valid with an inter-annotator agreement (Cohen’s kappa) of
0.60. The distribution of valid follow-up questions is shown
in Figure 6. We use the set of follow-up questions that both
annotators agreed were valid, i.e., the intersection between
their annotations.

2) Baselines: The baselines we identified are meant to
convey both straightforward approaches to ranking (e.g., di-
rectly using the Lucene output) and ablation, i.e., using one
part of our ranking function but not the other (e.g., ranking
based only on the question utility, U(qi)). We did not find
directly related prior techniques to compare against, since the
research direction is novel and models from other domains
with a similar purpose are too different in form. Below is an
enumerated list of all of the ranking baselines we used.
• Random – A random permutation of the candidate follow-

up question list. We present metrics averaged over 10
runs.

• Lucene – Lucene uses the vector space model (i.e.,
tf*idf) to rank follow-up questions based on the similarity
between the bug reports. This baseline just transfers
Lucene’s ranking, which we use to generate our candidate
set of 10 follow-up questions, as the system’s output.

• Rao et al. [4] – The technique proposed by Rao et al.
targeting Web forum posts.

• Utility only – U(qi) – The utility function, described in
detail in Section III-C, computes the average amount of
OB, EB or S2R found in the answers to the specific
follow-up question.

• Compatibility only – P (qi + ai|br) – The compatibility
function computes the probability a bug report can be
combined with a specific follow-up question and answer
pair. The implementation uses a deep NN architecture to
compute this value.



TABLE I: Evaluation results contrasting our system (Bug-AutoQ) relative to several baselines.

MRR Wilcoxon Effect P@1 Wilcoxon Effect P@3 Wilcoxon Effect P@5 Wilcoxon Effect
p-value size p-value size p-value size p-value size

Bug-AutoQ 0.677 - - 0.486 - - 0.492 - - 0.446 - -
BASELINES:

Random 0.542 p < 0.01 0.229 0.319 p < 0.01 0.167 0.368 p < 0.01 0.216 0.355 p < 0.01 0.214
Lucene 0.534 p < 0.01 0.252 0.347 p < 0.01 0.139 0.318 p < 0.01 0.308 0.317 p < 0.01 0.294
Rao et al. [4] 0.551 p < 0.01 0.218 0.342 p < 0.01 0.144 0.336 p < 0.01 0.279 0.342 p < 0.01 0.245
Utility only 0.646 p = 0.11 0.059 0.468 p = 0.60 0.019 0.443 p = 0.01 0.087 0.412 p = 0.01 0.077
Compatibility only 0.612 p = 0.01 0.115 0.426 p = 0.11 0.060 0.383 p < 0.01 0.196 0.377 p < 0.01 0.152

3) Metrics: We use two popular information retrieval evalu-
ation metrics: Mean Reciprocal Rank (MRR) and Precision@n
(P@n).

The goal of MRR is to evaluate how effective is our
technique, or a baseline, in locating the first valid follow-up
question, as, presumably, this is a proxy for the ease with
which an end-user would locate a follow-up question in the
ranking. It is computed as:

MRR =
1

|B|

|B|∑
i=1

1

ranki

,where B is the set of bug reports in the test set and ranki
is the ranked position of the first valid follow-up question for
the ith bug report.

The goal of Precision@n is to measure the number of valid
results when considering the top n positions in the ranking.
Unlike MRR, it consider all, not only the topmost ranked,
results. It is computed as:

P@n =
1

|B|

|B|∑
i=1

|v|
n

,where, as before, B is the set of bug reports in the test set
and v is the set of valid follow-up questions ranked in the top
n positions. We use values of 1, 3 and 5 for n.

We compute Wilcoxon’s signed rank test for each of the
above metrics to estimate the statistical significance of the dif-
ference between our technique Bug-AutoQ and the baselines.
The effect size of the comparison is calculated using Cliff’s
delta (δ) [12], which ranges from -1 (all values in the first
group are larger than the second group) to +1 (all values in
the second group are larger than the first group). A value of
zero indicates that the two groups are identical. The criteria
for interpreting δ is that |δ| > 0.147 → small effect, |δ| >
0.33 → medium effect, and |δ| > 0.474 → large effect [13].

4) Results: We summarize the results of our technique
(Bug-AutoQ) versus the identified baselines in Table I. Our
results indicate that Bug-AutoQ outperforms all of the base-
lines, with the ablation-type baselines performing better than
the simple baselines. The Lucene ranking does surprisingly
poor, basically in line with the Random baseline. The Utility
only baseline is the ones that comes closest to the performance
of the full system. Perhaps the most intuitive result is P@1,
where Bug-AutoQ scores 0.49, indicating that just about half
of all of the top selected follow-up questions by our system
were valid. The Wilcoxon’s signed rank test and the Cliff’s

delta confirm the observations from the raw metric values,
i.e., that Utility only has a strong similarity to Bug-AutoQ
and could be strong contributing factor to the approach’s
effectiveness. They also confirm that Bug-AutoQ has a strong
advantage over the simple baselines.

We interpret the results to mean that our formulations of
Utility and Compatibility, which are designed to be more
resilent to noisy data than Rao et al. [4] are indeed effective.
We also observe that within the top 10 candidate bug report, as
retrieved by Lucene, there is usually a reasonable number of
good candidates so that a random choice within them (i.e.,
the Random baseline in Table I) is fairly effective with a
reasonable MRR and P@1 of almost one third. However, past
the initial retrieval of the top 10, the Lucene ranking within
them (i.e., the Lucene baseline in Table I) does not seem to
provide much quality as is equivalent to the Random baseline.

B. Developer Survey

While a recommended follow-up question may be valid, it
may not possess other properties that would encourage its use
in practice, i.e., in a system that automatically poses follow-up
questions for incomplete bug reports. For instance, a follow-
up question may be overly generic, lacking detail or context
specific to the bug report (e.g., Can you provide additional
information?). To investigate how Bug-AutoQ performs across
several such dimensions of interest we conducted a survey with
software developers.

Through personal contacts, we e-mailed 10 software de-
velopers about the study, providing the basic context of our
project, brief definitions and examples of the characteristics,
and a link to a Web form containing the survey. None of the
developers were aware about the details of our technique. The
developers were half (5) from academia (graduate students
at institutions in the U.S. and Europe) and half professional
developers from industry. All had programming experience of
4 or more years with popular languages like Java and Python
and all indicated one of their primary responsibilities was
developing software.

We randomly assigned the developers into two groups of
5 and each group was assigned 12 instances of bug report
and follow-up question pairs, where all of the follow-up
questions were the top-1 selected by Bug-AutoQ. Each group
was presented with bug reports from our corpus that belong
to GitHub projects where Java or Python are the primary
technologies. For each of the assigned bug reports, a developer
was presented with a screenshot from GitHub containing the



All Responses

0 10 20 30 40 50 60 70 80 90 100
Percentage

New Information 5 59

No Yes

FQ9

FQ22

FQ14

FQ8

FQ19

FQ10

FQ12

FQ18

FQ17

FQ2

FQ6

FQ3

FQ5

Specificity Usefulness New Information

0 20 40 60 80 100
Percentage

0 20 40 60 80 100
Percentage

0 20 40 60 80 100
Percentage

Strongly disagree Disagree Neutral Agree Strongly agree No Yes

0 10 20 30 40 50 60 70 80 90 100
Percentage

Specificity

Usefulness

6 12 9 25 12

1 3 13 31 16

Strongly disagree Disagree Neutral Agree Strongly agree

Fig. 7: Responses to developer survey grouped per category (top) and per follow-up question (bottom). FQn = Follow-Up
Question n.

TABLE II: Comparison of the Bug-AutoQ follow-up question and the actually posed (original) follow-up question for three
of the highest rated instances by the survey respondents.

Instance Bug report Bug-AutoQ follow-up question Original follow-up question
FQ22 Title = “Plugin is not working on latest android”

Body = “On app start: [...]
On Button Click: [...]
I am running the example code on Arch Linux with Java 8, latest Android
SDK with target API 22 and default nexus 5 ADM Config. Any ideas why the
SpeechRecognition object is not being initialized?”

[...] Are you waiting for the de-
vice ready to fire before calling the
SpeechRecognition?

[...] Are you waiting for the de-
vice ready to fire before calling the
SpeechRecognition?

FQ14 Title = “Multiple time tests discovering”
Body = “I have strange problem with running xunit tests as part of my build
process. Since yesterday after running all tests my tfs build starts discovering
tests again and after that it runs tests again. And that’s repeated 15 times. Below
I have log from TFS: [...]”

Can you describe your scenario a
little more? One way of doing this
is described in [...]

Can you check if you have multiple
copies of the xUnit adapter under
[...]? Thanks!

FQ8 Title = “32-bit Intel tests for python2 for test fitpack fail with segfault in fpbisp
#8122”
Body = “Environment: Archlinux 32, python-scipy 1.0.0, python-numpy 1.13.3,
python 2.7.14 [...]”

Do you have a more verbose log?
It looks like it’s not picking up the
python library at all judging by the
error.

How did you install or build SciPy?
Compiler versions, build log?

title and text of the bug report, the follow-up question, and a
link to the project the bug report came from for context. Prior
to beginning the survey, we gave instructions to the developers
to read both the bug report and the follow-up question before
answering the provided set of survey questions. A preliminary
survey question, which was posed on an initial screen, asked
Is the follow-up question valid?. A negative response indicated
that the follow-up question was invalid and unusable, therefore
we asked no additional questions for that specific bug report -
follow-up question pair. The remaining survey questions only
appeared for instances deemed valid by a developer.

For a valid follow-up question, we posed a yes/no survey
question asking Does the follow-up question ask for new in-

formation currently not included in the description?, followed
by two Likert score survey questions (5 point; Strongly Dis-
agree, Disagree, Neutral, Agree, Strongly Agree) interrogating
whether The follow-up question is specific to the bug report
and The follow-up question is useful to the bug report. In
the following, we refer to the first (yes/no) survey question as
measuring New Information, the second measuring Specificity,
and the third measuring Usefulness.

The survey results showed that out of the 24 different bug
report - follow-up question pairs, a majority of participants
(at least 3 out of 5) considered 13 follow-up questions as
valid, and 11 as invalid. This ratio is analogous to the results
we observed for Precision@1 in the held-out set evaluation



presented above, confirming our expectations.
The results of the survey, along each dimension, are pre-

sented both at the granularity of an individual response and at
the granularity of a bug report (and follow-up question pair) in
Figure 7. The survey results indicate that among the categories
of Usefulness, Specificity, and New Information, the follow-
up questions selected by Bug-AutoQ provide the most of New
Information, followed by Usefulness and Specificity. However,
all three categories were generally positive with over 50%
of all responses on each either agreeing or strongly agreeing
with the statements on Specificity and Usefulness or affirming
that the follow-up question was asking for New Information.
Considering the data per follow-up question, in the bottom
part of Figure 7, we observe most follow-up questions, which
were deemed as valid, were rated positively. Some follow-
up questions have strongly positive ratings, e.g., follow-up
question 14 (FQ14) was rated by all 5 respondents as valid, 4/5
agreeing or strongly agreeing that the question was specific,
4/5 agreeing or strongly agreeing that the question was useful,
and 5/5 agreeing that the question aimed to provide new
information for the bug report.

To further illustrate Bug-AutoQ’s performance, we contrast
the Bug-AutoQ follow-up questions to the ones posed in
the original bug report for three of the highest rated survey
instances in Table II. While for one of the instances, FQ22, the
recommended follow-up question matches the posed follow-
up question, which is possible since the original follow-up
question is among our candidate set, the follow-up question
in FQ15 is different, asking the question of Can you describe
your scenario a little more? and providing some additional
context on how to do so in the succeeding sentence. In FQ8
both the Bug-AutoQ and original follow-up questions inquire
about a log in order to better investigate a Python library
dependency issue.

C. Threats to Validity

The presented approach is affected by several limitations
that may negatively impact the validity of our findings.
Construct validity. One threat to construct validity is our use of
a manually annotated dataset for the held-out dataset evalua-
tion. We limited this threat by following an annotation process
that required the annotators to get familiar with each project.
We also observed reasonable Cohen’s Kappa values between
the two annotators. Another threat to construct validity is
using Chaparro et al.’s [1] definitions to find OB/EB/S2R in
bug reports. We did not perform an explicit validation of the
pattern accuracy as that would have required us to curate a
non-trivial dataset specifically for this purpose. Instead, we
aimed to control noise introduced in recognizing OB/EB/S2R
by our formulation of EVPI. A threat to construct validity
is also in the preprocessing of bug reports, since we focus
only on the textual content of an issue and ignore other
enclosed types of information, such as images or links. As
a result, for some deficient bug reports, our technique may
miss potentially relevant information to locate the most useful
follow-up questions. This threat is partially mitigated by the

size of the corpus, containing 25K GitHub issues with various
characteristics and content. The notion of utility of a follow-
up question poses another threat to validity, since it is based
only on a subset of information that can be enclosed in a bug
report. To mitigate this threat and select the most useful type
of information, we followed prior studies that reported S2R,
OB and EB among the most helpful categories of information
according to software developers [14].
Internal validity. The limited number of follow-up questions
associated with each bug report poses a threat to internal
validity. Each bug report is assigned 10 candidate question
to rank, instead of processing the whole corpus of available
questions. This may lead to omitting follow-up questions that
are valid and specific in the context of a particular bug. We
partially mitigate this threat by selecting the most similar bug
reports, while also extending the content of each bug report
with the bug’s labels and repository tags in order to provide
Lucene with contextual information that can be leveraged
when locating similar issues.
External validity. In this study, we leveraged a dataset of 25K
GitHub issues, however, during evaluation we use a subset
of 400 manually annotated bug reports. The limited size of
the test set may impact our observations as it covers only
a small subset of population. To mitigate that threat, we
include bug reports from 357 open-source software projects
leveraging different frameworks and technologies. Moreover,
to ensure the quality of the proposed approach, we conducted
a user study with 10 software developers. We observed that
the number of valid follow-up questions in the user study
nearly matched the result obtained in the held-out evaluation,
emphasizing the overall quality of the system and supporting
validity of the results. The scope of the developer survey poses
another threat to external validity due to the low number of
enclosed bug reports and selection of issues only from Python
or Java-related software projects. We partially mitigate bias
caused by limiting the bug reports to only two technologies
by sampling issues with different content characteristics (e.g.,
with or without stack traces) from multiple projects. To ensure
the quality and generalizability of the survey results, each pair
of bug report and follow-up question was assessed by half of
the respondents.

V. RELATED WORK

To our knowledge, the proposed approach is the first effort
towards improving the quality of bug reports by asking follow-
up questions. Prior research related to this area can be broadly
grouped into three main categories including evaluation of bug
reports quality, approaches for improving deficient bug reports,
and techniques automatically posing follow-up questions in
domains external to software engineering field.
Analyzing the quality of bug reports. The quality of user
written bug reports is a topic that several researchers have
been interested in. Linstead et al. applied Latent Dirichlet
Analysis to a large corpus of bug reports to study their
semantic coherence [15], while Huo et al. investigated how
the content of a bug report changes depending on the level



of expertise of its author [16]. Di Sorbo et al. observed that
issues marked as “won’t fix” often contains numerous errors
in their reports [17], while insufficient amount of information
supplied within a bug report can lead to developers not being
able to reproduce as bug, as noted by Joorabchi et al. [18].
Researchers have been extensively investigating the content
of bug reports to determine the most useful information
leading to locating and fixing buggy code efficiently. To
this end, Davies et al. manually analyzed a corpus of bug
reports from four popular open-source projects finding that
observable behavior and expected behavior are among the most
consistently encountered parts of a bug report [19]. Survey of
software developers conducted by Sasso et al. reveled that
steps to reproduce, test cases and stack traces are the most
helpful types of information, however they were also the
hardest for users to supply [20]. These finding were confirmed
and further expanded in the study of Laukkanen et al. who
indicated the importance of application’s configuration [9].
Chaparro et al. developed a technique leveraging language
patterns to automatically extract observable behavior, expected
behavior, and steps to reproduce from a bug report [1]. Liu et
al. proposed to improve Chaparro’s technique by eschewing
predefined patterns, instead relying on pre-trained classifier to
identify steps to reproduce [21]. Recently, Yu et al. developed
a tool, S2RMiner, that extracts steps to reproduce from a bug
report with high accuracy [22].
Improving inadequate bug reports. Researchers have ap-
proached the problem of improving the quality of bug reports
from a few different angels. One line of work, with numerous
proposed techniques, is to detect duplicate bug reports [23]–
[25]. Another research avenue is to classify bug reports into
valid vs. invalid or easy vs. difficult bug reports [26]–[28].
Researchers have also attempted to automatically improve
specific parts of bug reports. Moran et al. provided auto-
completion for the steps to reproduce portion of bug reports
by leveraging image processing of screenshots taken from the
application’s UI [29]. Chaparro et al. explored how bug report
quality can be improved based on unexpected vocabularies
in the steps to reproduce [30]. Recently proposed BEE tool,
implemented as a GitHub plugin, extracts observable behavior,
expected behavior, and steps to reproduce from a bug report
in order to alert bug reporters when this information is not
provided [31].
Automatically posing follow-up questions. Research on au-
tomatic question generation has been applied within a few
different domains and applications. One topic of extensive
prior research is on generating questions from an existing
document, i.e., questions whose answers can be found within
the given text [32]–[37]. For instance, such generated ques-
tions can be used for educational assessment and automation.
More recently, researchers have envisioned a future where a
user’s information need will be satisfied via dialog with a
virtual assistant, i.e., follow-up questions that are automatically
posed to clarify the user’s intent. To this end, Braslavski et al.
analyzed clarification question patterns on question-answering
(QA) websites in order to understand users behavior, and

the types of clarification questions asked [38]. Trienes et al.
focused on detecting when the original questions in com-
munity QA sites are unclear and clarification questions are
needed [39]. Qu et al. curated and published a large dataset of
question and answers intended to help develop conversational
search systems [40]. In Web search, follow-up questions have
been used for improving document retrieval for low-quality
queries [6], [41], [42]. Targeting information that is missing
from a document, Rao et al. used generative adversarial
neural networks to automatically generate questions that seek
to augment Amazon product reviews [5]. Asking follow-up
questions has been explored in several other contexts such as
chatbots [43], open domain question answering systems [44],
[45], search engines [46], search within a Q&A forum [47],
and image content [48].

VI. CONCLUSIONS AND FUTURE WORK

This paper describes a technique for posing follow-up
questions for incomplete bug reports that lack important in-
formation for triage, e.g., the bug’s observable behavior. Our
technique automatically selects follow-up questions from a
corpus of such questions mined from the development histories
of open source projects on GitHub. We first identify by using
tf*idf a set of candidate follow-up questions whose original
bug reports have high similarity to the deficient bug report of
interest. Next, we use neural estimates of two metrics, com-
patibility and utility, to rank and select the optimal follow-up
question to recommend. To evaluate our technique we curated
a dataset of 25K bug reports from 6452 unique repositories
and implemented four baselines. Our technique outperformed
the baselines across the board, with a reasonable Precision@1
score for our model of 0.49, i.e., nearly half of the top most
recommended follow-up questions were considered valid. We
also performed a survey of software developers which showed
a follow-up question validity rate that aligned to the held-out
dataset evaluation and also indicated that developers, at a high
rate, considered the selected follow-up questions as: useful,
specific, and asking for new information not contained in the
bug report.

There are several avenues of future work. First, follow-
ing Rao et al. [5], we can attempt to automatically gener-
ate follow-up questions using sequence-to-sequence neutral
network models [49]–[51]. Second, following Braslavski et
al. [38], we can work on generating frequently asked question
patterns in bug reports. Third, we can develop a tool and
integrate the Bug-AutoQ model with real world platforms like
GitHub or JIRA in order to assist developers in the field and
gather more developer feedback. Lastly, another line of future
work can be on broadening the evaluation, since it is a vital
challenge to determine the most relevant follow-up question
for different software development contexts and requirements.
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dialogue after deployment: Feed yourself, chatbot!” in ACL, 2019.

[44] M. De Boni and S. Manandhar, “Implementing clarification dialogues
in open domain question answering,” Natural Language Engineering,
vol. 11, no. 4, pp. 343–362, 2005.

[45] ——, “An analysis of clarification dialogue for question answering,”
in Proceedings of the 2003 Human Language Technology Conference
of the North American Chapter of the Association for Computational
Linguistics, 2003, pp. 48–55.

[46] P. Ren, Z. Chen, Z. Ren, E. Kanoulas, C. Monz, and M. de Rijke,
“Conversations with search engines,” ArXiv, vol. abs/2004.14162, 2020.

[47] N. Zhang, Q. Huang, X. Xia, Y. Zou, D. Lo, and Z. Xing, “Chatbot4qr:
Interactive query refinement for technical question retrieval,” IEEE
Transactions on Software Engineering, 2020.

[48] N. Mostafazadeh, I. Misra, J. Devlin, M. Mitchell, X. He, and
L. Vanderwende, “Generating natural questions about an image,”
Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2016. [Online].
Available: http://dx.doi.org/10.18653/v1/P16-1170

[49] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[50] J. Yin, X. Jiang, Z. Lu, L. Shang, H. Li, and X. Li, “Neural generative
question answering,” arXiv preprint arXiv:1512.01337, 2015.

[51] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau,
“Building end-to-end dialogue systems using generative hierarchical
neural network models,” arXiv preprint arXiv:1507.04808, 2015.


