
How and When to Transfer Software Engineering
Research via Extensions
David Shepherd∗, Kostadin Damevski†, Lori Pollock‡

∗ABB Corporate Research
940 Main Campus Dr., Raleigh, NC 27606

Email: david.shepherd@us.abb.com
†Virginia State University, Petersburg, VA

Email: damevski@acm.org
‡University of Delaware, Newark, DE

Email: pollock@cis.udel.edu

Abstract—It is often reported that there is a large gap between
software engineering research and practice, with little transfer
from research to practice. While this is true in general, one
transfer technique is increasingly breaking down this barrier:
extensions to integrated development environments (IDEs). With
the proliferation of app stores for IDEs and increasing transfer
effort from researchers several research-based extensions have
seen significant adoption. In this talk we’ll discuss our experience
transferring code search research, which currently is in the
top 5% of Visual Studio extensions with over 9,000 downloads,
as well as other research techniques transferred via extensions
such as NCrunch, FindBugs, Code Recommenders, Mylyn, and
Instasearch. We’ll use the lessons learned from our transfer
experience to provide case study evidence as to best practices
for successful transfer, supplementing it with the quantitative
evidence offered by app store and usage data across the broader
set of extensions. The goal of this 30 minute talk is to provide
researchers with a realistic view on which research techniques
can be transferred to practice as well as concrete steps to execute
such a transfer.

Index Terms—extensions, tech transfer, integrated development
environment

I. THE BATTLEFIELD: WHY EXTENSIONS ARE AN
EFFECTIVE TRANSFER VEHICLE

While integrated development environments (IDEs) have
existed for years, the barrier to IDE customization was, until
recently, relatively high. Fortunately, IDE app stores like the
Eclipse Marketplace 1 and Visual Studio Gallery 2 now allow
users to seamlessly install third party extensions from their
IDE. These IDE app stores have become popular, serving
thousands of downloads per day. For researchers creating
extensions as well as developers seeking to consume cutting
edge ideas, the previously high cost of packaging, installation,
and deployment has been dramatically reduced.

II. CHOOSING YOUR BATTLES: WHICH RESEARCH IS RIPE
FOR TRANSFER

Due to the reduced cost of deploying new research as
extensions, more and more researchers are targeting practical,

1http://marketplace.eclipse.org/
2https://visualstudiogallery.msdn.microsoft.com/

relevant problems. Thus, many new technologies may even-
tually be transferred into practice, but which ones are ready
for transfer now? In our experience, there are two factors that
lead to a technology being ready to transfer.

First, the technology must be an obvious improvement over
the state-of-the-practice, as incremental improvements are not
valuable enough to motivate developers. In our experience
with Sando [1] the ability to search code using Google-style
queries [2], formerly impossible, was a clear improvement.
Similarly, developers utilizing NCrunch’s continuous testing
extension [3], [4] claim that NCrunch’s ability to drastically
reduce their feedback loop was a clear improvement.

Second, the technology’s improvement must be proportional
to its impact on the developers’ workflow. Take for example,
Code Recommenders, an extension that provides guidance
on how to use APIs effectively based on how others have
used them [5], [6]. Its success, as it has served hundreds of
thousands of queries [7], is partially based on how easily
it integrates into the user’s existing workflow; instead of
displaying all completions alphabetically (see Figure 1) it only
shows the most relevant items (see Figure 2), optimizing the
common case while requiring no changes in the workflow of
the user.

III. PREPARING FOR THE OFFENSIVE: HARDENING THE
RESEARCH PROTOTYPE

One of the most challenging issues surrounding transfer-
ring research is hardening the prototype enough to cross
the chasm, or the theoretical gap between different types of
user groups [8]. While asking researcher colleagues to try a
new extension is possible–they are often eager to try new
technology first–making the jump to developer colleagues
and especially to unfamiliar developers requires significant
implementation effort. Fortunately there are several success-
ful strategies, as evidenced by existing extensions, for both
initial implementation and subsequent hardening stages. One
strategy, successfully used to develop Sando to target early
adopters, is to form an open source project and recruit both
academic and industrial partners. Another, used by Dig et
al. to contribute refactorings to Netbeans [9], [10], is to



Fig. 1. The default Eclipse drop-down is a well-used feature, but certain
objects can lead to overwhelmingly long lists.

Fig. 2. Code Recommenders provides the same code completion experience
(i.e., the drop-down), yet only the most relevant entries are shown.

piggyback onto an industrial group that is already creating
related developer tooling. This strategy reduces the overall de-
velopment effort for the researchers by leveraging the quality
assurance and release engineering already in place. Finally
another approach, as in the case of Mylyn [11], [12], Code
Recommenders, and NCrunch, is to form a company that either
fully or partially funds your development. We will discuss the
advantages and disadvantages to each approach, as well as
practical challenges that a technology transferring researcher
will face, such as how to ensure the implementation continues
even after the original grant funding is exhausted.

IV. LAUNCHING THE ATTACH: EVANGELIZING AND
POPULARIZING YOUR RESEARCH

A common roadblock for researchers during tech transfer is
their inexperience in evangelizing to developers. While proofs
and in-lab experimental evaluations may convince academic
colleagues software developers are both more skeptical and
more pragmatic. To illustrate this point, a FindBugs [13]
researcher once approached Eclipse committers, asking them
“Did you know that there are X bugs in your component?

I found them using FindBugs, a cutting-edge static analysis
tool.” Far from being impressed by an academic tool, the
pragmatic committers replied, “Great! Did you file bugs so
we can fix the issues?” Humbled, the researcher retreated. Yet
he began to file bugs, and was able to convince developers that
his technology worked on real code bases, eventually earning
widespread adoption of his tool [14]. In this section of the
talk we will discuss our own successes and failed efforts at
evangelization, focusing on the differences between selling to
researchers and evangelizing to developers. We will discuss,
backed by download statistics, which strategies worked for
Sando, such as technical blog posts. We will include key
lessons learned including how developers react negatively to
most marketing material yet are open to technical articles.

V. SPEAKER BIOGRAPHY: DAVID SHEPHERD

David Shepherd, the primary speaker for this session, is
an experienced practitioner who has been developing IDE
extensions for over a decade. As employee #9 at Tasktop Tech-
nologies, Inc., a spin-off from University of British Columbia,
he implemented and evangelized research-born technologies.
As project lead on the open source Sando code search tool
he transferred research conceived of in 2004, generating over
9,000 downloads and thousands of field usage reports. As team
lead at ABB Corporate Research he oversees the design and
implementation of extensions to improve the productivity and
quality of ABB’s codebase.

REFERENCES

[1] D. Shepherd, K. Damevski, and B. Ropski. (2014) Sando’s homepage.
[Online]. Available: http://sando.codeplex.com

[2] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” in Working
Conference on Reverse Engineering. IEEE, 2004, pp. 214–223.

[3] R. Mulder. (2014) Ncrunch’s homepage. [Online]. Available:
http://www.ncrunch.net/

[4] D. Saff and M. D. Ernst, “An experimental evaluation of continuous
testing during development,” in ACM SIGSOFT Software Engineering
Notes, vol. 29, no. 4. ACM, 2004, pp. 76–85.

[5] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in foundations of software engineer-
ing. ACM, 2009, pp. 213–222.

[6] M. Bruch. (2014) Codetrail’s homepage. [Online]. Available:
http://www.codetrails.com/

[7] CodeTrails. (2014) Codetrail’s usage homepage. [Online]. Available:
http://download.codetrails.com/tracker/proposal-kind-duration/

[8] G. A. Moore, “Crossing the chasm,” 2002.
[9] A. Gyori, L. Franklin, D. Dig, and J. Lahoda, “Crossing the gap

from imperative to functional programming through refactoring,” in
Foundations of Software Engineering. ACM, 2013, pp. 543–553.

[10] Oracle. (2014) Netbeans’s homepage. [Online]. Available:
http://netbeans.org

[11] M. Kersten and G. C. Murphy, “Using task context to improve program-
mer productivity,” in Foundations of software engineering. ACM, 2006,
pp. 1–11.

[12] Tasktop. (2014) Tasktop’s homepage. [Online]. Available:
http://tasktop.com

[13] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines
of code later: using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[14] B. Pugh and A. Loskutov. (2014) Findbug’s homepage. [Online].
Available: http://findbugs.sourceforge.net/


