
Imprecise Exceptions in Distributed Parallel

Components

Kostadin Damevski and Steven Parker

School of Computing, University of Utah, Salt Lake City UT 84112, USA

Abstract. Modern microprocessors have sacrificed the exactness of ex-
ceptions for improved performance long ago. This is a side effect of re-
ordering instructions so that the microprocessor can execute instructions
which were not to be executed due to an exception. By throwing more cir-
cuits at the problem, microprocessors are designed so that they are able
to roll back to the instruction causing the exception. However, some mi-
croprocessors, like the HP Alpha, do not roll back and impose a paradigm
of inaccurate exceptions. This decision can reduce circuit complexity and
increase speed. We propose a similar method of handling exceptions in
a component environment that achieves high performance by sacrific-
ing exception accuracy when dealing with parallel Single Program Mul-
tiple Data (SPMD) components. The particular domain this design is
intended for is high performance computing, which requires maximum
resource use and efficiency. A performance-centric way to handle excep-
tions is explained as well as additional methodology to enforce exception
strictness if required.

1 Introduction

The component software abstraction is one that has been leveraged in multiple
computing environments. One such environment is that of high performance sci-
entific computing (see [1]). High performance computing is an environment that,
more so than others, emphasizes optimizing the performance of the application.
In order to achieve the maximum possible performance and leverage distributed
computing potential, the execution of an application may be performed in paral-
lel by multiple parallel computing threads. Typical parallel algorithms divide the
problem space in some fashion among the available computing threads, which
work in concert to solve the problem, sometimes communicating part of the
developing solution to each other. These algorithms often employ the Single
Program Multiple Data (SPMD) programming paradigm.

In a component environment, multiple computing threads can be coupled
to form one component called an SPMD parallel component. This collection of
computing threads is intended to work collaboratively to solve some problem. In
order to provide interaction between SPMD parallel components in a distributed
environment, collective method invocations are used from a proxy1 to a parallel

1 Proxies are objects used to represent other objects. All requests to the proxy are
forwarded to the represented object. They are used frequently in distributed mid-



component. Collective invocations are defined as ones which require the involve-
ment of each computing thread. That is, all callee computing threads receive
an invocation for the same method and all caller threads make an invocation.
Therefore, a method invocation launches all computing threads that proceed to
execute the same method on separate pieces of data (as the SPMD paradigm
suggests). The movement and separation of the data are problems that have
been discussed in literature [3, 4, 6, 2].

Parallel components have already been introduced by multiple component
frameworks intended for high performance applications. However, these frame-
works differ slightly in the way parallel component interaction is defined. For in-
stance, the Parallel Remote Method Invocation (PRMI) mechanism of the PAR-
DIS framework is indirect so that a parallel component’s invocation to another
parallel component is serialized before it is sent over the wire and deserialized
afterwards. That is, the data between components is transferred through a single
communication link [Figure 1 (left)]. The authors of PARDIS later acknowledged
the performance penalty of the serialization [7] and provided direct, multiport
component interaction [Figure 1 (right)]. The improved performance of the di-
rect method, in this case, was to be expected as this method provides better
utilization of the network and imposes less synchronization on the computing
threads. Our system, SCIRun2, leveraged the previous work in this field and
was built with collective invocations that provide direct communication between
each parallel computing thread (as it is needed).

Another important aspect of collective invocations is the level of synchro-
nization imposed in their implementation by the underlying system. In order to
provide a guarantee of collectiveness, systems often enforce a barrier on the col-
lective invocation. This unarguably provides better error reporting, but at a very
significant cost of execution speed, which is unacceptable for many high perfor-
mance computing applications. Because of this, SCIRun2 and other equivalent
systems extend unsynchronized behavior as much as possible. The imprecise ex-
ceptions described here, only make sense in a direct and mostly unsynchronized
component framework. In fact, their main goal is to loosen the synchronization
reigns that regular implementation of exceptions would require.

2 Problem Description and related work

This direct mode of invocation and communication introduces our nemesis when
dealing with exceptions. Specifically, what if only one computing thread on the
invoked (callee) component throws an exception? This exception will be prop-
agated quickly to one of its proxies on the invoking (caller) component, which
would cause one of the invoking threads to throw an exception. The rest of the
invoking threads are not aware of the exception as they do not participate in the
invocation on the excepting thread. The result is that the invoking component
has an incoherent state, possibly destroying the collective behavior of the caller.

dleware in order to invoke a method on a component. In this context, proxies are
synonymous to caller components.



Fig. 1. Serialized and multiport (direct) collective invocation of parallel components

The user is not in control of which invoking thread has received the exception and
is left with a mess to clean up. There is little useful that could come out of this
situation. One possibility is to do away with exceptions altogether. Another is
to provide the user with a necessary framework to propagate the exception to all
the processes of the invoking component. The latter approach has an additional
problem: due to the communication lag and the general unsynchronized nature
of the processes making the invocation, the exceptions may not arrive exactly
during the method invocation. We call these imprecise exceptions. Appropri-
ate thread synchronization can be in place to mitigate this problem; however
synchronization will always hurt the performance of the application. Instead we
introduce imprecise exceptions, allowing the programmer to trade off accuracy
of the exception and performance.

One category of exceptions that CORBA supports are those that represent
various network and system failures. These are termed system exceptions. Con-
versely, user purpose exceptions are explicitly defined in the IDL via a throws
clause in each method. While CORBA’s user exceptions occur only on the server
side, system exceptions can occur in both client and server. An exception hier-
archy of classes also exists. The base classes impose methods on the derived
classes which report useful information about the exception, such as whether or
not method completed executing or not. However, exception inheritance of any
sort is not allowed within the CORBA IDL.

Imprecise exceptions have been suggested for the Haskell functional pro-
gramming language [5]. This is a language that achieves high performance and
flexibility through lazy evaluation of expressions. Adding imprecise exceptions to
Haskell provides the stack unwinding error reporting mechanism of exceptions,
without sacrificing rich transformations or other strengths of the language. Some
of our ideas are similar to the ideas presented by Peyton-Jones et al. [5], although
the domain is quite different.

3 Design

This work will provide the utility of component exceptions in a distributed
SPMD component setting, while attempting not to sacrifice performance. In



doing this we ought to emphasize that very little additional overhead is imposed
in cases in which an exception does not occur. If an exception does occur, it is
thrown and the application incurs a performance penalty (as it should).

Let us consider an example that enables us to propose a design for imprecise
parallel component exceptions. In discussing this design, we will use the following
interface (written in Scientific Interface Definition Language (SIDL) [8]):

interface SomeThrowSomeNo {

void exceptionOnemethod() throws exceptionOne;

void exceptionTwomethod() throws exceptionTwo;

void noexceptionmethod();

}

The SomeThrowSomeNo interface contains two methods that throw excep-
tions and one method that does not. The noexceptionmethod method has no
implementation. The two exception-throwing methods have the following imple-
mentation:

void exceptionOnemethod() {

if (rank == 1) throw exceptionOne;

}

void exceptionTwomethod() {

if (rank == 2) throw exceptionTwo;

}

For the purposes of this discussion, we consider two SPMD parallel compo-
nents of three parallel threads each; one component will be the caller and the
other the callee. We assume that a proxy has already been created by the caller
component. Each thread of the caller component has a parallel proxy and is able
to invoke a method on any callee thread. However, the collective interaction
dictates that all callee threads should be invoked only once. Therefore, we have
a one-to-one correspondence in the collective invocation between the threads of
the parallel component. For the sake of clarity let’s assume that the caller thread
whose rank is zero invokes the method on the zero ranked callee thread, rank
one invokes on rank one, etc.

3.1 Reporting Imprecise Exceptions

Upon the execution of this SPMD code:

stsn-proxy->exceptionOnemethod();

stsn-proxy->noexceptionmethod();

The caller thread ranked one receives an exception message back from its
invocation. Threads zero and two have continued execution to some other part
of the code. We are concerned that threads zero and two eventually receive
information about the exception that occurred. Thread one has the responsibility



of informing the other threads of the exception in exceptionOnemethod. It does
so through an asynchronous message to each of the other threads. After this,
thread one can throw the C++ equivalent of exceptionOne and goes into its
appropriate catch block (if it exists).

All remote method invocation stubs contain code to check for the existence of
asynchronous messages notifying of exceptions in other threads. In the scenario
we discussed, we assume the threads are perfectly synchronized (i.e. they execute
the same instruction at the same time) and an asynchronous message travels at
lightning speed. Upon the invocation of noexceptionmethod, threads zero and
two will instantaneously detect the existence of exceptionOne and will throw it
within their context. At this time all threads would have excepted and reached
a steady state.

Asynchronous messages provide the appropriate behavior since they do not
impose synchronization of the processes in order to communicate the exception
and because reads for these messages come by at an extremely small cost. Per-
forming a check for an exception message within all remote invocations may be
unnecessary at times. At other times, it would be overzealous. Overall, we feel
that providing the check through each proxy use strikes a perfect balance in most
cases. The cost of checking for an asynchronous message is extremely small (typ-
ically checking a global flag) and negligible even if there are many frequent uses
of the proxy. However, if the opposite is true and proxy use is very infrequent it
could decrease the granularity of the exception checks to an unacceptable limit.
We discuss this problem in the next section. The extreme example of this case
is when there are no proxy uses after an exception and no opportunity to report
this exception. This problem is considered in Section 5.

3.2 getException method

We realize that it is unfair to assume lightning speed message delivery as we did
before. Therefore, if the threads are not synchronized, we should be prepared
to see exceptionOne thrown sometime later than the invocation of the noexcep-

tionmethod. In many cases this is not acceptable. Executing noexceptionmethod

may depend on the successful finish of exceptionOnemethod.

If the programmer is unable to count on exceptions to occur within a spe-
cific invocation, an exception can crop up too late or too early and provide the
wrong behavior. In order to allow the programmer to control where exceptions
occur in the code, we provide a getException method which is invoked on the
proxy (similar to Peyton-Jones et al.’s use of the same method). Once we in-
voke getException we guarantee that all exceptions that have occurred have been
propagated to this thread. The only real way to ensure this in a parallel and dis-
tributed environment is to synchronize the caller threads. That is, this method
requires a barrier and as such imposes a performance penalty. Despite this, it is
useful for it provides the programmer with a wider range of uses for exceptions.



4 Corner Cases

Although the design presented above is straightforward, the complex interaction
between two parallel components requires that a number of non-trivial scenarios
be analyzed.

Consider what would happen if the implementation of exceptionOnemethod

were something like this:

void exceptionOnemethod() { throw exceptionOne; }

Collective invocation to this method would result with each caller thread
receiving a separate exception. When this occurs, threads should ignore the
asynchronous exception messages reporting exceptionOne in order not to throw
the same exception multiple times. To do this, we keep an exception log which
makes sure that we are aware of exception we have already produced. In doing
this we have to make sure that we keep enough information to help us determine
the right course of action. We use a combination of tags to uniquely identify
each proxy invocation. The guarantee that all collective methods are invoked by
all computing threads can be relied on to uniquely tag each collective invocation
without imposing additional communication.

Let us consider the following example where method invocations are executed
by the caller component using the SomeThrowSomeNo interface:

stsn-proxy->exceptionOnemethod();

stsn-proxy->exceptionTwomethod();

Both exceptionOne and exceptionTwo have been thrown in this scenario.
Caller thread one and two respectively are the first ones to receive each exception.
Let us suppose that they both contact thread zero at about the same time so that
thread zero has received messages about two distinct exceptions. Now thread zero
has a dilemma about which exception to report: exceptionOne or exceptionTwo.
Here are some possible ways to resolve this problem:

• Allow non-determinism. This allows for either exception to be thrown.
It is probably an improvement over no exceptions being thrown, however it
is definitely not a clean solution as the collective nature of the caller is not
preserved, and the application may except differently in each run. This may
confuse the programmer and result with unwanted behavior.

• Always report the user exception before the system or vice versa. This may
prove to be effective in some situations. However, this choice would work poorly
when the confusion is between two user and two system exceptions.

• Report the first method’s exception first. Using the information tags that
we collect per each proxy invocation, we can easily make this determination.
This would provide consistent behavior and error reporting which would be of
use to a programmer. We opt for this solution.

This scenario also requires that thread rank two comes to its senses and
throws exceptionOne instead of exceptionTwo. In order to provide this behavior,



we should synchronize and determine the correct exception between all the ex-
ceptions that have been witnessed among all of the threads. This includes each
thread that comes in direct contact with an exception. It should not rush and
throw an exception before it makes sure that it is the correct exception to throw.
In order to perform this, our implementation modifies the tournament barrier
algorithm to determine the best exception to be thrown and propagate the result
to all the threads. This algorithm is also applied in the implementation of the
getException method, since similar exception election is needed there as well.
Detailed discussion of the tournament barrier and other barrier types can be
found in [9].

One situation not captured by our running example is one where a collective
invocation of the same method yields two different exceptions caught by separate
caller threads. This is a situation that is not likely to occur often. We propose a
random yet consistent choice of which exception to throw. The exception report-
ing mechanism will use a consistent way of choosing to throw the same exception
across different runs or compilations and in all of the computing threads. In our
system exceptions are related to exception IDs assigned by the compiler roughly
representing the order of the exceptions in the throws clause. The lower excep-
tion ID is chosen to resolve this confusion. This provides consistent behavior to
all runs of the code compiled by our IDL compiler. As every compiler and par-
allel component architecture could make this determination differently (we do
not propose that everyone uses exception IDs), we fully expect that a different
exception may be raised in the same situation in a different environment. This is
something that the parallel component programmer should be prepared to face.
Another possibility would be to prefer the exception type thrown by the lowest
(or highest) rank.

The exception reporting mechanism relies on the checks performed by the
proxy upon each method invocation. If no method invocation existed in the ex-
ecuting code we could fail to report an exception. In order to remedy this, we
could impose a getException call upon the proxy destructor. This would guaran-
tee that exceptions are reported and is a viable solution. However, if proxies are
created and deleted often, we would significantly constrain the performance of
the application by synchronizing the computing threads upon each invocation to
getException. Another possibility is to save the actual deletion of the proxy until
the very end of the program. Synchronization at the end of a program will not im-
pact performance. Our suggestion is to perform a getException synchronization
within the Object Request Broker2 (ORB) destructor. The ORB’s deallocation
by the destructor typically occurs when main finishes on a particular machine.

An imprecise exception can come before, during, or after the excepting method
invocation in caller threads that do not directly receive an exception. So far, we
have mostly discussed exceptions arriving after the collective method invocation
to the exception method is finished. We have not yet considered the case of them

2 Object Request Broker exists on each node and manages requests among compo-
nents. An ORB should be deallocated when all component interactions on one node
cease.



arriving before. Exceptions arriving before the invocation are very awkward to
face. In essence, we have been given a glimpse of the future and we respond
to this sight even though we have not yet reached this point of execution. The
best alternative is to rule this case out altogether using the proxy infrastruc-
ture we have already described. This comes at almost no extra cost and does
not impact performance. We can hold off and ignore the existence of a specific
exception from an asynchronous message until we encounter the method which
has produced it. When we reach this method we do not invoke it but throw the
exception at that time.

5 Conclusions

We have presented a paradigm of imprecise exceptions for parallel distributed
components. Based on the fact that less synchronization improves performance,
we claim that this approach saves us from a drastic execution speed penalty with
exceptions. We examined the difficult scenarios that are possible with imprecise
exceptions. We also provided a way to synchronize imprecise exceptions so that
they provide the same behavior as regular exceptions. This imprecise excep-
tion mechanism is targeted at a component-based distributed Problem-Solving
Environment, but could be applied to a variety of scenarios involving multiple
communicating SPMD parallel programs.

6 Results

The performance improvement of our design is somewhat self-validating. We
provide an exception handling method that allows a greater degree of asynchrony,
which in turn betters performance. In spite of this, we implemented a simple
example and provided some runtimes for it in order to show that our concepts
work and to exemplify how much of a performance increase we can achieve.

The use scenario we chose involves a parallel query tool sending queries to
a parallel data server. We implemented these as parallel components and tested
various modes of exception use: total imprecise exceptions, use of the getExcep-

tion method after each query, and use of regular (precise) exceptions. Assuming
the time to process the query is close to zero, here are the results of this test
(between two Pentium4 class machines connected by Gigabit Ethernet):

The results were largely what we expected. The performance increase of the
imprecise exceptions scales as the degree of parallelism increases. It is important
to note that the imprecise exceptions we measured do not make use of the
getException method. This total asynchrony is unrealistic in practice; therefore
the difference in performance would be slightly less exaggerated and peaking at
the numbers we have shown above.



Table 1. Average time for a single query (averaged for 10000 queries).

Instances of Query Tool Imprecise Exceptions getException() Precise Exceptions

1 658.39 675.89 672.91

2 978.55 1487.46 1595.33

3 1924.08 3482.97 4238.06

4 1705.58 6882.35 8899.77

Times are in microseconds.

7 Acknowledgements

The authors would like to acknowledge Matthew Flatt for initially pointing us to
Haskell exceptions. This work was funded by the Department of Energy Center
for Component Technology for Terascale Simulation Software (CCTTSS) and by
NSF ACI-0113829.

References

1. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and
B. Smolinski. Toward a Common Component Architecture for High-Performance
Scientific Computing. In Proceedings of the 8th IEEE International Symposium on
High Performance Distributed Computing, 1999.

2. F. Bertrand, Y. Yuan, K. Chiu, and R. Bramley. An approach to parallel MxN
communication. In Proceedings of the 3rd Los Alamos Computer Science Institute
(LACSI) Symposium, October 2003.

3. K. Damevski and S. Parker. Parallel remote method invocation and m-by-n data
redistribution. In Proceedings of the 3rd Los Alamos Computer Science Institute
(LACSI) Symposium, October 2003.

4. G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. CUMULVS: Providing fault-
tolerance, visualization and steering of parallel applications. In Environment and
Tools for Parallel Scientific Computing Workshop, Domaine de Faverges-de-la-Tour,
Lyon, France, August 1996.

5. S.L. Peyton Jones, A. Reid, F. Henderson, C.A.R. Hoare, and S. Marlow. A se-
mantics for imprecise exceptions. In Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation, pages 25–36, 1999.

6. K. Keahey, P. K. Fasel, and S. M. Mniszewski. PAWS: Collective invocations and
data transfers. In Proceedings of the 10th IEEE International Symposium on High
Performance Distributed Computation, July 2001.

7. K. Keahey and D. Gannon. Developing and evaluating abstractions for distributed
supercomputing. Journal of Cluster Computing, special issue on High Performance
Distributed Computing, 1(1), 1998.

8. S. Kohn, G. Kumfert, J. Painter, and C. Ribbens. Divorcing language dependencies
from a scientific software library. In Proceedings of the 10th SIAM Conference on
Parallel Processing, Portsmouth, VA, March 2001.

9. J.M. Mellor-Crummey and M.L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–
65, 1991.


